
1

An Online Evolutionary Rule Learning Algorithm
with Incremental Attribute Discretization

Essam Debie, Kamran Shafi, Kathryn Merrick, and Chris Lokan
School of Engineering and Information Technology, University of New South Wales, Australian Defence Force

Academy, Canberra, Australia.
E.Debie@adfa.edu.au, K.Shafi@adfa.edu.au, k.merrick@adfa.edu.au,

C.Lokan@adfa.edu.au

Abstract—Classification rule induction involves two main pro-
cesses: finding the optimal conjuncts (attribute intervals or
attribute-value pairs) and their combination (disjuncts or rules)
to classify different concepts in the data. The evolutionary rule
learning approaches employ an evolutionary algorithm, such as
a genetic algorithm, to perform both these search operations
simultaneously. This approach often leads to significant problems
including population bloating and stalled evolutionary search in
real-valued attribute problems, especially with higher dimensions.
In this paper, we present an online evolutionary rule learning
approach referred to as ERL-AID that decouples the above
search processes and employs a discretization algorithm that
works on the attribute space and a genetic algorithm to combine
the discretized attributes into appropriate classification rules.
ERL-AID applies a sliding window approach to process inputs
in an online fashion. The proposed system is able to produce
compact rule sets with competitive performance and could
scale to higher dimensions. The experimental results show the
competitiveness of our algorithm.

I. INTRODUCTION

Data classification is a key task in machine learning research
which involves automatically categorizing data into distinct
concepts using a classification model. A large number of
approaches to build classification models have been proposed
over the years including those that rely on directly inducing
interpretable classification rules from the data. Evolutionary
Rule Learning (ERL) systems belong to the rule induction
category of machine learning approaches that apply evolution-
ary algorithms (EA) to build their rule based classification
models. The ERL systems have shown competitive perfor-
mance in comparison to their non-evolutionary counterparts
and have been successfully applied to a variety of classification
tasks [1], [2]. ERL systems have been proposed with different
flavours of EA including those based on genetic algorithm
(GA) [3], genetic programming (GP) [1], and evolutionary
strategy [4]. A complete taxonomy of such approaches is out of
scope of this paper; however, in the related work (Section II),
we will expand more upon the GA based ERL which are
more relevant to the subject of this paper. A key feature of
ERL is their ability to adapt their classification models quickly
to changing problem concepts. In this regard, the systems
with online learning mechanisms are more suitable and can
deal with stream or large-scale data mining problems where
multiple data scans are either not possible or computationally
too expensive. GA based ERL, also referred to as genetic

based machine learning (GMBL) or learning classifier sys-
tems (LCS) [5], generally belong to this class of algorithms.
These algorithms are generally classified into two main types
depending upon how the classification model is represented.
Pittsburgh-style ERL [6] evolves a population of classification
models (sets of rules) in order to find the best fit model.
Whereas, Michigan style ERL [3] evolves a single set of
rules and try to search for an optimal rule set. In addition
to online learning, dealing with larger classification problems
also requires designing scalable learning mechanisms in ERL.
The work presented in this paper is motivated under this
context.

Rule learning in ERL systems, similar to other rule-based
system, rely on two basic operations: finding the optimal
conjuncts (attribute intervals or attribute-value pairs) and their
combination (disjuncts or rules). Traditionally GA based ERL
systems, in specific the Michigan style LCS have used GA for
both of these operations. Previous research on the application
of such ERL on real-valued large-scale problems [7], [8]
has demonstrated the difficulty faced by these systems when
dealing with such problems. We attribute this poor perfor-
mance to not distinguishing between the above mentioned
processes and using GA implicitly to carry out both operations
simultaneously. Subsequently, we propose a novel ERL system
in this paper that focuses on decoupling these two search
processes and handling them independently.

The proposed system consists of two main components
operating in parallel and cooperating together to find the
optimal classification rules. The first component is an incre-
mental discretization algorithm that works on the attribute
space to find optimal interval based conjuncts where a list
of attribute value pairs (bins) [B] is maintained. The second
component is a genetic algorithm that aims at finding the
right combination of these conjuncts into optimal rules by
using a sliding window [W] of a certain size on the training
instances. In a sense, the discretization module enhances GA
performance by bootstrapping it with the right sized intervals.
Both algorithms are incremental and cooperate to find the
maximally general, concise and accurate set of classification
rules. The hypothesis is that by allowing GA to focus on one
problem only, the search space will be reduced, accordingly
computational cost will be reduced and the system will scale to
higher dimensions. The discretization component contributes
also to the improvement of rule learning by guiding the genetic

1116

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

2

search dynamically through merging and splitting operators.
By decoupling the discretization problem from the rule

learning, not only ERL-AID achieves better discretization
results but also the classification solution accuracy increas-
es without a huge increase in the computational cost. The
bloating effect, observed in real-valued problems, is alleviated.
As a result, the search space is significantly shrunk and the
resulting rule set is reduced compared to other techniques that
rely on GA for both tasks. Moreover, performing the two
tasks concurrently online allows the system to easily adapt
to dynamic environments.

The performance of the ERL-AID algorithm is evaluated
against other evolutionary learning algorithms using 15 real
data sets. As an evaluation criteria, we measure the classifi-
cation accuracy and the compactness of the generated rule set
in terms of the number of rules generated and the number of
attributes and conditions used per rule. Using 10-fold cross
validation, our algorithm was statistically shown to be the
best algorithm in terms of the classification accuracy and the
second best in terms of rule compactness.

The remaining sections of this paper is organized as follows:
Section 2 briefly reviews the related work. Description of
the proposed algorithm ERL-AID is presented in Section 3.
Experiments including experimental setup, data sets used, and
results and discussions are presented in Section 4. Section 5
summarizes, concludes, and discusses future work.

II. RELATED WORK

Many types of evolutionary rule learning approaches have
been proposed in the literature where GAs were used as
the primary search mechanism for finding good classification
rules. The first model was the Learning Classifier System
introduced in 1978 [9]. Since then, many algorithms have
been proposed in the literature [3], [10]. Other evolutionary
algorithms have been also investigated to the discovery of
classification rules such as Genetic Programming [1], Gene
expression programming [11]. In this section, we will expand
more on the GA-based algorithms as they are more related to
our work.

Despite the recent progress in evolutionary rule learning,
classification tasks with real-valued attributes remains a non-
trivial problem for ERL algorithms, especially in incremental
and stream formulations. There is, however, an increasing
number of problem domains where both these properties are
important. Examples include stock market, intrusion detection,
and web mining. An ideal algorithm for such tasks needs
to allow for stream incremental learning, avoid potential
difficulty with real-valued attributes in the input data, elim-
inate irrelevant input attributes, and keep the computational
complexity of learning low while achieving accurate prediction
and adequate generalization.

Some ERLs can only represent rule conditions with categor-
ical (nominal) attributes. If the classification task contains real-
avlued attributes, these attributes have to be converted to nom-
inal values using discretization techniques in a preprocessing
stage before the ERL is applied. This type of discretization is
known in the literature as global discretization. In spite of the

solid theoretical foundations that some of these discretization
approaches possess, they are not necessarily suitable for stream
learning. First, they were developed primarily for batch data
analysis and assumes that the training data are all available
a priori and discretization can be done separately from rule
learning. Second, they are not easily and/or efficiently adjusted
for integration with evolutionary rule learning from incremen-
tally arriving data.

Other ERLs can directly represent rule conditions with
both categorical and real-valued attributes . These are rather
well suited for incremental and stream learning, particularly
for low dimensional problems. The ERL is doing a local
(embedded) discretization of real values on the fly, since by
creating rule conditions such as 30 ≤ 𝑎𝑔𝑒 ≤ 40 the ERL is
generating discrete intervals. These ERLs use GA for dual
roles such that it searches at both attribute level and rule
level. At the attribute level, the task of EA is to find the
optimal interval bounds for each attribute. At the rule level, the
task is to find the optimal combinations of attributes intervals
that best describe the target concept. However, on the one
hand, empirical results have indicated that global discretization
methods often produced superior results compared to local
embedded methods since the former use the entire value
domain of a numeric attribute for discretization, whereas local
methods produce intervals that are applied to sub-partitions
of the instance space [12]. On the other hand, since these
techniques allocate resources to cover the input space in a
localized fashion, with an increasing number of attributes, they
encounter an exponential explosion in the number of rules
required for accurate prediction. This phenomenon is often
referred to as the “population bloating” which hinder both
efficiency and effectiveness of these approaches and poses
scalability issues.

Generally, the evolutionary rule learning algorithms can
be classified into three groups: Pittsburgh, Michigan, and
Iterative. The Pittsburgh-style algorithms evolve a population
of candidate rules, the best individual found during the evo-
lutionary process is used to predict the class of unknown
examples. Pittsburgh algorithms are traditionally used in an
off-line mode where all the training data are always available
a priori. Thus, real-valued attributes are normally transformed
into nominal values in a pre-processing discretization step.
Genetic Algorithms based claSSIfier system (GAssist) [13]
is a Pittsburgh genetic-based machine learning system. The
system evolves individuals that represent complete problem
solutions. An individual consists of an ordered, variable-length
rule set. The GAssist algorithm initialises the population at
random. Real-valued attributes are represented by an adaptive
discretization intervals evolved by the system simultaneously
during the rule learning. This representation consists, in gener-
al terms, of a hierarchical uniform-width discretization of each
attribute having different cut-points for the same attribute in
different rules.

The Incremental Learning with Genetic Algorithms (IL-
GA) [14] is an incremental Pittsburgh rule learning algorithm.
The initial population is created in either two ways: 1) the
best one-condition rule set, or 2) the whole population of
chromosomes in the previous solution. ILGA solves real-

1117

3

valued problem on an attribute-based incremental manner such
that the algorithm performs a one-dimensional search along the
first attribute, trying to find the boundary information for all
classes. The second step inherits this boundary information,
and continues searching the boundary information for the two
attributes and so on.

Michigan-style algorithms, on the other hand, evolve a set
of rules which are updated as more data becomes available in
an online manner. A collection of these rules comprises the
solution for the classification problem. Examples of Michigan-
style algorithms include the sUpervised Classification System
(UCS) [10] which is an accuracy based Michigan-style
LCS. The algorithm starts with an empty population and
then incrementally adds rules as new data becomes available.
The algorithm encodes real-valued attributes directly into GA
using interval-base representation. The incremental Genetic
Algorithm for mining classification rules in the presence of
concept drift (IGA) [15] is also a Michigan-style evolutionary
rule learning algorithm. It employs a window scheme such that
training instances are accumulated until the window is full,
and a genetic algorithm (GA) is then applied to determine the
set of classification rules. As new training instances arrive in
the window, old instances are forgotten. Once all the original
instances have been replaced by new ones, the GA is re-
executed to determine the new set of best classification rules.
The initial population pool of the GA applied at each stage of
the incremental learning process comprises a mix of the best
solutions obtained in the previous stage and an appropriate
number of random individuals. The algorithm only deals with
nominal values and real-valued attributes are assumed to be
discretised before running the algorithm.

Some algorithms have been proposed that combined both
the Michigan-style and Pittsburgh-style such as COevolution-
ary Rule Extractor (CORE) [16]. The CORE co-evolves rules
and rule sets concurrently in two cooperative populations to
limit the search space and to produce good rule sets that are
comprehensive. The main population encodes a population of
rules using Michigan style while the co-populations are then
presented with these good candidate rules to form rule sets
using Pittsburgh style. The algorithm encodes real-valued at-
tributes directly into the population using ranges and employed
six comparison operators to evolve best rule sets.

Iterative rule learning algorithms create an ordered list of
rules. The system iteratively applies an EA and the best
individual returned is added to the end of the list of rules
and all the matching instances are removed from the training
data set. This process is repeated until the training data set
becomes empty. HIerarchical DEcision Rules (HIDER) [17] is
one example of such algorithms. It initialises the population by
randomly selecting some training instances and creating rules
that cover these instances. Then, the evolutionary search is run
for a certain number of generations. The best rule obtained is
added to the final rule set and the instances covered by the
rule are removed from the training data set and the process is
repeated. The algorithm encodes real-valued attributes directly
into GA using the natural coding representation proposed by
the author, which is a tabular representation of the computed
cut-points of a specific discretization method.

III. ERL-AID DESCRIPTION

Our proposed model consists of two components running in
parallel and cooperating together to find the optimal rules de-
scribing target concepts. The first component is a discretization
algorithm responsible for constructing attribute intervals while
the second component is a genetic algorithm searching at the
rule level to find optimal combinations of intervals constructed
by the first component. The discretization algorithm is used
to shrink and enlarge the search space as needed online by
merging/splitting attribute intervals. It is possible that some
attributes will be discretized into one interval only. Thus, they
are ignored by GA focusing the search on important attributes
only.

While the discretization algorithm process training instances
incrementally one by one, GA employs a fixed window size
𝑊 , i.e. it can hold a total of 𝑊 training instances. Once
the window is full, GA is applied to generate new candidate
rules based upon this particular set of training instances. Initial
population is generated incrementally as data arrives. Once a
new instance arrives, statistics of attribute intervals are updated
and the population is scanned to find covering rules for the
new instance. A new rule is created and inserted if there is no
cover in the current population. Each time that a new training
instance arrives, an old training instance is forgotten. The
population of evolved rules [P] represents the solution for the
classification problem in hand. The overall flow of ERL-AID
is shown in Figure 1.

Sliding window
[W] Discretization Bins pool

GA

Data Stream

Fig. 1. High level overview of ERL-AID.

A. Online Discretization Component

A supervised incremental approach is proposed such that
given a problem of D dimensions; each attribute 𝑎𝑑 of the
problem is initially divided into a number B of “micro bins” of
equal sizes, where B is chosen to be higher number of intervals
than what is usually required. A micro bin array of length B
is maintained over time where each micro bin is a structure
with four components: 1) the lower bound value, 2) the upper
bound value, 3) an array of length K (the number of classes)
to store each class frequency statistics, and 4) the macro bin
index (used for mapping between original and merged bins as
will be explained subsequently).

Given a new instance x𝑡 with associated class label 𝑆𝑘, for
each attribute value x𝑡[d] of x𝑡 the algorithm finds the matched
micro bin (b𝑚𝑖𝑐𝑟𝑜) and updates its class frequencies. A merge
condition is checked. If the bin meets this merge condition,
then the left and right adjacent bins are checked for merging.

1118

4

Once two adjacent bins are qualified for merging, they form
a larger bin called “macro bin”. Each macro bin is a structure
with three components: 1) the lower bound value, 2) the upper
bound value, 3) an array of length K (the number of classes) to
store each class frequency statistics. The newly formed macro
bin is stored in a different array (macro bin array), the statistics
of the newly created macro bin is then initialized from the two
merged bins.

If the matched micro bin b𝑚𝑖𝑐𝑟𝑜 is already a part of a
macro bin, then a split condition is checked to see weather the
macroBin needs to be split. If the condition is met, the lower
and upper bound values of b𝑚𝑖𝑐𝑟𝑜 are considered candidate cut
points. The left and right hand side areas of the corresponding
macro bin are compared and if they are statistically different,
then the macro bin is partitioned into two smaller macro/micro
bins.

The merge/split condition is achieved using 𝜒2 test which
is a statistical measure used to test the hypothesis of indepen-
dence of two variables. Applied to the discretization problem,
it tests the hypothesis that the class attribute is independent of
which of two adjacent intervals an instance belongs as follows:

𝜒2 =

𝑚∑
𝑖=1

𝐾−1∑
𝑗=1

(𝐴𝑖𝑗 − 𝐸𝑖𝑗)
2

𝐸𝑖𝑗
(1)

Where:
m : is the number of bins being compared
K : is the number of classes and 𝐾 − 1 is the degree

of freedom
A𝑖𝑗 : is the number of instances in the ith bin and jth

class
E𝑖𝑗 : is the expected frequency of A𝑖𝑗 and calculated as

follows: 𝐸𝑖𝑗 =
𝑅𝑖.𝑆

𝑗

𝑁 Where:
R𝑖 is the number of instances in ith interval
S𝑗 is the number of instances in jth class
N is the total number of instances

Once we calculated 𝜒2, we can conclude weather the class
attribute is independent of both bins or not given the level of
significance chosen (i.e. 𝛼 = 0.05 or 0.1). If the conclusion
of the 𝜒2 test is that the class is independent of the intervals,
then the intervals should be merged. On the other hand, if the
𝜒2 test concludes that they are not independent, it indicates
that the difference in relative class frequencies is statistically
significant and therefore the intervals should remain separate
or be separated if they are already merged.

1) Computational Requirements: In terms of memory re-
quirements, the memory required to store micro bin array plus
that required to store macro bin array is as follows:

1) micro bin array memory = number of attributes 𝐷 ×
number of micro bins (𝐵𝑚𝑖𝑐𝑟𝑜) × number of classes
(𝐾)

2) macro bin array memory = number of attributes (D)×
number of macro bins (𝐵𝑚𝑎𝑐𝑟𝑜) × number of classes
(K)

Though the number of macro bins is not known a priori,
in the worst case where each pair of micro bins are merged
together, the size of macro bin array is 𝐵𝑚𝑎𝑐𝑟𝑜 = 𝐵𝑚𝑖𝑐𝑟𝑜/2.
While the best case is that there is no merge and macro bin

is empty. The total memory cost is on average:

𝑀𝐶 = 𝐷𝐾 (𝐵𝑚𝑖𝑐𝑟𝑜 + 𝐵𝑚𝑖𝑐𝑟𝑜/4)
= 5

4𝐷𝐾𝐵𝑚𝑖𝑐𝑟𝑜

Thus, the memory required is linearly related to the number
of dimensions of the problem.

B. Genetic-based Rule Learning Algorithm

A steady state genetic algorithm is adopted to search for
optimal rules. The steady state GA [18] is different from
traditional genetic algorithms in that in each generation of the
algorithm only one new individual is obtained and inserted into
the current population and the worst individual is removed.
Therefore the computational time is much smaller than the
traditional one. Once the window of instances is full, GA is
applied 𝐼 times on the rules currently exist in [𝑃].

1) Encoding Individuals: The system evolves a population
[P] of rules, each denoted 𝑅𝑛 where 𝑛 ∈ 1, 2, ..., 𝑁 , and
𝑁 must not exceed the maximum population size 𝑁𝑚𝑎𝑥 set
by the user. Each rule consists of a condition part, an action
part (the label of the predicted class), and a set of associated
parameters estimating the quality of the rule. A typical rule
𝑅𝑛 has the form:

𝑅𝑛 = (𝐶𝑛, 𝑎𝑐𝑐𝑛, 𝑠𝑖𝑚𝑝𝑛)

Where 𝐶𝑛 is the condition part; it is a conjunction of a set
of predicates. 𝑎𝑐𝑐𝑛 is the classification accuracy calculated
as the proportion of the number of instances matched by the
condition and action of the rule to its support. 𝑠𝑖𝑚𝑝𝑛 is the
simplicity of the rule calculated as the proportion of attributes
removed (with flag = 0) among all attributes. A chromosome
in GA represents a single rule with 𝐷 + 1 genes where each
gene corresponds to one attribute and consists of two parts: 1)
the index of a bin in the micro bin array, and 2) a binary flag
indicates whether this attribute is being used. The last gene
corresponds to the class label that this rule advocates. Figure
2 shows the general chromosome structure.

𝐴1 𝐴2 𝐴3 ... 𝐴𝑑 𝐴𝐷

𝑐𝑠𝐵𝑖𝑑𝑥1 𝐵𝑖𝑑𝑥2 𝐵𝑖𝑑𝑥3 ... 𝐵𝑖𝑑𝑥𝑑 𝐵𝑖𝑑𝑥𝐷

𝑓𝑙𝑎𝑔 𝑓𝑙𝑎𝑔 𝑓𝑙𝑎𝑔 ... 𝑓𝑙𝑎𝑔 𝑓𝑙𝑎𝑔

Fig. 2. Encoding chromosome

C. Population Initialization

Initially, the population is empty and incrementally filled
with rules through a so-called “covering operator”. For each
new training instance, if there is no matching rule with the
same class label in the current population, a new rule is created
to cover this instance and inserted into the population. A
covering rule is created by finding the matching micro bin
for each attribute value and the class label is set to the class
label of the current training instance.

1119

5

1) Evaluating Individuals: The fitness of the rules in the
population is calculated based on a function containing two
terms namely: classification accuracy 𝑎𝑐𝑐 and simplicity. The
accuracy of a rule 𝑅𝑛 is calculated as

𝑎𝑐𝑐𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

Where 𝑇𝑃 is the true positive rate, that is the number
of instances correctly matched by the rule, and 𝐹𝑃 is the
false positive rate, that is the number of instances incorrectly
matched by the rule.

The standard way of measuring simplicity is to count the
number of conditions in the rule. If a rule has at most 𝐷
conditions, the simplicity of the rule (or individual) 𝑅𝑛 can
be defined as:

𝑠𝑖𝑚𝑝𝑛 =
𝐷 − 𝑢

𝐷
(3)

Where 𝑢 is the number of attributes that take part in the rule.
The fitness function is computed as the arithmetic weighted

mean of classification accuracy and simplicity:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑛 = 𝑤1 ∗ 𝑎𝑐𝑐𝑛 + 𝑤2 ∗ 𝑠𝑖𝑚𝑝𝑛 (4)

Where 𝑤1 and 𝑤2 are weights assigned by the user. For
simplicity, in this paper we assume equal weights for both
components: 𝑤1 = 0.5 and 𝑤2 = 0.5

2) Genetic Operators: One point crossover is applied on
the condition flags with a probability 𝑃𝜒 to construct two
new offspring. Once the cut points are identified, the flags
are swaped between the two parents while the actual attribute
values are transferred without modification to create new two
offsprings. Two mutation operators are applied on each created
offspring after crossover is complete. The first mutation opera-
tor is applied with probability 𝑃𝑚𝑓 and randomly flips the flag
value such that if a flag value is “0” it becomes “1” and vice
versa. However, if an attribute is reported as irrelevant by the
discretization algorithm (i.e. it is discretized into one interval),
its flag value is always “0”. Another mutation operator is
applied with a probability 𝑃𝑚𝑣 to change the value of an
attribute to another value, that is, change the micro bin index
to another one from the micro bin index array maintained by
the discretization module.

IV. EXPERIMENTAL STUDY

The focus of this analysis is to study the classification
accuracy and interpretability of the proposed system, therefore
the evaluation metrics used in this analysis includes the system
classification accuracy and rule compactness in terms of the
number of evolved rules, and the number of attributes used. In
order to analyze the algorithm performance, we have carried
out an experimental study on a set of data sets with varying
dimensionality obtained from the UCI repository. The system
performance is compared with three other evolutionary rule-
based learning algorithms. Namely: sUpervised Classifier Sys-
tem (UCS) [10], Hierarchical Decision Rules (HIDER) [19],
coevolutionary algorithm for rules discovery in data mining
(CORE) [16].

A. Data Sets

The data sets used to evaluate the proposed algorithm are
obtained from UCI (University of Califrnia at Irvine) Machine
Learning Repositorty.

The main characteristics of the data sets are summarized
in Tables I. The columns describe: the identifier of the data
set (id.), the name of the data set (data set), the number
of instances (#inst), the total number of features (#Att), the
number of real features (#Real), the number of integer features
(#int), the number of nominal features (#Nom), the number
of classes (#Clas), the proportion of instances of the minority
class (%Min), the proportion of instances of the majority class
(%Maj).

B. Experimental Setup

The compared algorithms in this study learn incrementally
from the training instances, in particular, our proposed al-
gorithm scans the training set only once. After the training
phase is finished, the algorithms are exposed to the testing
set to record the classification accuracy rates. 10-fold cross
validation procedure is applied to 15 data sets. Each data set is
partitioned into 10 data subsets. Each time a different partition
is used as the test set and the remaining nine are used as the
training set.

The statistics on the training data set and test data set of
the 10 runs are averaged and reported.

To analyse the statistical significance of results, a non-
parametric Wilcoxon test is utilized as suggested in [20].

The parameters of the proposed algorithm used in this
experimental study is as follows: The maximum population
size 𝑁 = 300, the algorithms passes one time over the training
instances, the number of microbins 𝐵 = 20, window size
𝑊 = 50, chi-square significance threshold 𝛼 = 0.05, one-
point cross over is used with crossover probability 𝑃𝜒 = 0.5,
flip mutation probability 𝑃𝑚𝑓 = 0.2, value mutation prob-
ability 𝑃𝑚𝑣 = 0.1, tournament selection is used for parent
selection, number of GA runs 𝐼 = 100.

C. Results and Comparison on Real Data Sets

This section presents the results obtained in the empirical
study using 10-fold cross validation scheme. Our proposed
approach ERL-AID is compared with UCS, Hider, and CORE
in terms of classification accuracy, number of rules generated,
number of attributes per rule, and number of conditions per
rule.

a) Classification Accuracy: We compared the algorithms
under investigation in terms of classification accuracy obtained
on the testing data sets. The average accuracy rates are shown
in Table II in which the best results are shown in bold. Acc
refers to the average classification accuracy while Std indicates
the standard deviation obtained. In terms of test accuracy, the
results indicate that ERL-AID obtained better or comparative
accuracy when compared with other methods. In particular, it
got better classification results in eight out of fifteen datasets
under investigations and second best in other four data sets
with very slight differences. In the remaining data sets, ERL-
AID also delivers competitive performance.

1120

6

TABLE I
DATA SETS CHARACTERISTICS.

Id. Name #inst #Att #Real #Int #Nom #clas %Min %Maj
mag magic 19020 10 10 0 0 2 35.16 64.84
win Wine 178 13 12 1 0 3 26.97 39.89
seg segmentation 2310 19 19 0 0 7 10.65 11.43
hep Hepatitis 155 19 2 4 13 2 20.65 79.36
rng Ringnorm 7400 20 20 0 0 2 49.50 50.50
tnrm Twonorm 7400 20 20 0 0 2 49.96 50.04
mus Mushrooms 8124 20 0 0 20 2 47.67 46.68
par Parkinson 195 22 22 0 0 2 24.62 75.38
wdbc W. diagnose Breast cancer 569 30 30 0 0 2 37.30 62.70
ion Ionosphere 351 34 34 0 0 2 36.90 64.10
soy soybean-large 682 35 0 0 35 19 0.12 13.47
kr King-Rook vs. King-Pawn 3196 36 0 0 36 2 47.78 52.22
spt Spectf 267 44 0 44 0 2 20.60 79.40
spa Spambase 4597 57 55 2 0 2 39.44 60.66
son Sonar 208 60 60 0 0 2 46.67 53.33

TABLE II
CLASSIFICATION ACCURACY OF ERL-AID AND OTHER EVOLUTIONARY

ALGORITHMS.

Id. UCS Hider CORE ERL-AID
Acc Std Acc Std Acc Std Acc Std

mag 69.13 4.85 76.08 0.74 74.54 1.95 71.98 2.41
win 90.46 6.03 66.22 15.95 93.30 5.44 90.46 7.81
seg 96.67 0.89 76.90 4.30 31.39 9.96 97.23 2.66
hep 79.54 10.27 84.03 14.04 79.38 3.94 83.87 8.64
ring 50.42 0.31 40.00 0.00 62.93 2.60 73.38 4.71
tnrm 70.74 16.95 69.97 3.64 67.92 2.28 79.09 2.14
mus 97.12 0.64 90.00 0.94 87.58 3.98 98.55 0.98
par 79.45 7.93 56.91 15.08 75.39 1.87 83.95 9.13
wdbc 93.33 4.59 44.56 9.00 62.74 0.70 93.15 3.91
ion 86.33 5.68 78.50 4.90 63.24 5.97 88.32 6.24
soy 32.00 1.70 85.98 3.85 14.49 4.20 63.41 5.76
kr 83.64 2.02 94.31 1.31 59.14 2.72 91.46 2.51
spt 75.30 4.96 45.92 7.27 79.42 1.75 79.07 5.16
spa 93.20 0.70 94.60 1.30 60.60 0.00 59.49 3.04
son 52.40 11.20 57.50 7.60 53.38 1.71 68.69 9.34
avg 76.65 5.25 70.77 5.99 64.36 3.27 81.47 4.96

TABLE III
WILCOXON TEST OF ACCURACY (ERL-AID IS THE CONTROL

ALGORITHM)

Algorithm p-value Hypothesis
UCS 0.01660 Rejected
HIDER 0.02155 Rejected
CORE 0.00263 Rejected

Since the obtained results may not present normal distri-
bution or homogeneity of variance, we consider the use of
non-parametric Wilcoxon signed-rank test to find significant
differences among the results obtained by the proposed al-
gorithm and the other algorithms. Table III indicates that
p-value are smaller than the significance level chosen 0.05,
so the hypothesis of equivalence of results is rejected with
all other algorithms in the comparison. Thus, ERL-AID is
considered statistically better than the other algorithms in
terms of classification accuracy.

b) Rule Compactness: The compactness results are
shown in Table IV, where #rules is the average number of
rules, #att is the average number of attributes per rule, #cond
is the average number of conditions per rule respectively.
It must be pointed out that CORE algorithm learns DNF

rules (CORE), while the other methods learn non-DNF rules.
A DNF rule is a special type of rule which can comprise
several simple rules together. This explains the reason why
The number of conditions reported for the UCS, Hider, and
ERL-AID algorithms is the same as the number of attributes.
CI is a compactness index computed in order to measure the
compactness of generated rules as suggested in [21], with the
following expression:

𝐶𝐼 = 𝑅𝑛𝑟𝑚𝑙𝑧 + 𝐴𝑛𝑟𝑚𝑙𝑧 + 𝐶𝑛𝑟𝑚𝑙𝑧 (5)

Where 𝑅𝑛𝑟𝑚𝑙𝑧; 𝐴𝑛𝑟𝑚𝑙𝑧 and 𝐶𝑛𝑟𝑚𝑙𝑧 are the normalized values
for the number of rules, number of attributes per rule, and
number of conditions per rule, respectively. The lower the
value of CI the better the rule compactness. Table V showed
that obtained Wilcoxon two-sided p-value are smaller than the
significance level chosen 0.05. Thus the hypothesis of equiv-
alence of rule compactness with other algorithms is rejected.
CORE is statistically the best algorithm in terms of rule com-
pactness while ERL-AID algorithm is statistically the second
best algorithm in this regard. Although CORE algorithm is
the best algorithm regarding compactness, its classification
accuracy was the worst among all four algorithms. While
both the classification accuracy and the rule compactness are
desired objectives, achieving good rule compactness at the
expense of the classification accuracy is not the ultimate goal.
Figure 3 highlights the accuracy vs. compactness tradeoff for
the four algorithms on each data set under investigation where
the x-axis represents the average accuracy obtained by each
algorithm and the y-axis represents the compactness index
computed according to Equation 5.

Overall, the results show that the proposed system can
provide a good balance between classification accuracy and
interpretability while learning incrementally from real-valued
data sets.

1121

7

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(a) Magic.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(b) Wine.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(c) Segmentation.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(d) Hepatitis.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(e) Ringnorm.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(f) Twonorm.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(g) Mushroom.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(h) Parkinson.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(i) W. diagnose Breast Cancer.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(j) Ionoshpere.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(k) Soybean-large.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(l) King-Rook vs. King-Pawn.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(m) Spectf.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(n) Spambase.

0 20 40 60 80 100
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

Accuracy

C
om

pa
ct

ne
ss

UCS
HIDER
CORE
ERL−AID

(o) Sonar.

Fig. 3. Accuracy Vs. Compactness for each data set

1122

8

TABLE IV
RULE COMPACTNESS OF THE ERL-AID AND OTHER EVOLUTIONARY ALGORITHMS.

Id. UCS HIDER CORE ERL-AID
#rules #Att #cond CI #rules #Att #cond CI #rules #Att #cond CI #rules #Att #cond CI

mag 5468.50 10 10 3 47.90 9.63 9.63 1.92 3.67 1.73 2.05 0.11 7.40 1.41 1.41 0.00
win 3376.40 13 13 3 27.70 12.36 12.36 1.86 3.00 4.50 4.56 0.00 81.40 7.95 7.95 0.83
seg 6074.70 19 19 3 4.91 3.00 3.00 0.16 3.17 5.99 6.06 0.51 11.30 1.60 1.60 0.00
hep 2599.20 19 19 3 4.33 6.50 6.50 0.16 6.33 4.77 5.99 0.00 72.90 10.93 10.93 0.84
ring 5863.60 20 20 3 3202.00 19.53 19.53 2.49 10.50 4.71 6.64 0.22 29.30 3.94 3.94 0.00
tnrm 5899.30 20 20 3 2568.00 19.00 19.00 2.31 7.50 4.05 5.03 0.03 27.50 4.59 4.59 0.04
mus 6211.20 22 22 3 6.23 7.10 7.10 0.20 6.00 3.32 8.00 0.06 205.60 13.43 13.43 1.00
par 4306.40 22 22 3 44.40 21.00 21.00 1.91 1.00 2.00 2.00 0.00 76.40 12.10 12.10 1.03
wdbc 4301.70 30 30 3 180.70 29.75 29.75 2.02 1.00 5.00 5.00 0.00 83.80 15.56 15.56 0.86
ion 4586.10 34 34 3 8.90 5.80 5.80 0.00 1.67 5.80 6.43 0.02 141.50 19.40 19.40 1.00
soy 5486.5 35 35 3 20.60 8.67 8.67 0.36 1.00 3.00 3.00 0.00 198.40 14.13 14.13 0.73
kr 6070.10 36 36 3 3.00 2.40 2.40 0.00 14.00 8.86 12.07 0.48 240.80 16.77 16.77 0.89
spt 5494.00 44 44 3 70.00 36.09 36.09 1.43 1.00 17.00 17.00 0.00 108.40 24.49 24.49 0.57
spa 6300.90 57 57 3 15.60 31.65 31.65 1.01 1.00 17.00 17.00 0.44 21.30 5.85 5.85 0.00
son 5928.60 60 60 3 178.20 59.97 59.97 2.03 1.00 17.50 17.50 0.00 137.00 33.33 33.33 0.77
avg 3 1.19 0.12 0.57

TABLE V
WILCOXON TEST OF COMPACTNESS (ERL-AID IS THE CONTROL

ALGORITHM)

Algorithm p-value Hypothesis
UCS 0.00 Rejected
HIDER 0.04126 Rejected
CORE 0.01025 Rejected

V. CONCLUSIONS AND FUTURE WORK

We presented a new incremental algorithm based on Chi-
square statistical test and GA for solving real-valued classifica-
tion problems. The algorithm performs attribute discretization
incrementally and in parallel with evolutionary rule searching
which also includes an embedded feature selection.

An experimental study involving three well-known evolu-
tionary learning algorithms has been carried out on 15 data
sets, and classification accuracy and compactness have been
compared and analyzed. Comparative results show that the
proposed method produces better or comparable classification
accuracy with concise set of rules for the data sets being
tested. As future work, it would be of interest to perform an
extensive study on extremely high dimensional problems. It is
also important to compare different discretization approaches
and study the effects on the overall system performance.
The use of Multi-objective evolutionary algorithms are also
possible direction for future research since the current problem
is comprised of two goals.

REFERENCES

[1] A. A. Freitas, “A genetic programming framework for two data mining
tasks: classification and generalized rule induction,” in Genetic Program-
ming 1997: Proc 2nd Annual Conf. Morgan Kaufmann, 1997, pp.
96–101.

[2] ——, “A review of evolutionary algorithms for data mining,” in Soft
Computing for Knowledge Discovery and Data Mining. Springer, 2008,
pp. 79–111.

[3] S. W. Wilson, “Classifier fitness based on accuracy,” Evol. Comput.,
vol. 3, no. 2, pp. 149–175, 1995.

[4] W. Ruojun, C. Duwu, and Z. Ye, “Rule induction based on a novel
evolutionary strategy,” in Intelligent Control and Automation, 2002.
Proceedings of the 4th World Congress on, vol. 4. IEEE, 2002, pp.
3171–3174.

[5] A. A. Freitas, Data mining and knowledge discovery with evolutionary
algorithms. Springer, 2002.

[6] K. A. DeJong and W. M. Spears, “Learning concept classification rules
using genetic algorithms,” DTIC Document, Tech. Rep., 1990.

[7] K. Shafi, T. Kovacs, H. Abbass, and W. Zhu, “Intrusion detection with
evolutionary learning classifier systems,” Natural Computing, vol. 8,
no. 1, pp. 3–27, 2009.

[8] E. Debie, K. Shafi, C. Lokan, and K. Merrick, “Performance analysis
of rough set ensemble of learning classifier systems with differential
evolution based rule discovery,” Evolutionary Intelligence, pp. 1–18,
2013.

[9] J. H. Holland, “Adaptation,” in Progress in Theoretical Biology IV,
A. Press, Ed. Academic, New York, 1976, pp. 263–293.

[10] E. Bernado, Mansilla, and J. M. Garrell-Guiu, “Accuracy-based learning
classifier systems: models, analysis and applications to classification
tasks,” Evol. Comput., vol. 11, no. 3, pp. 209–238, 2003.

[11] C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving accurate
and compact classification rules with gene expression programming,”
Evolutionary Computation, IEEE Transactions on, vol. 7, no. 6, pp.
519–531, 2003.

[12] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent
survey,” GESTS International Transactions on Computer Science and
Engineering, vol. 32, no. 1, pp. 47–58, 2006.

[13] J. Bacardit and J. M. Garrell, “Evolving multiple discretizations with
adaptive intervals for a pittsburgh rule-based learning classifier system,”
in Genetic and Evolutionary ComputationGECCO 2003. Springer,
2003, pp. 1818–1831.

[14] S.-U. Guan and F. Zhu, “An incremental approach to genetic-algorithms-
based classification,” Systems, Man, and Cybernetics, Part B: Cybernet-
ics, IEEE Transactions on, vol. 35, no. 2, pp. 227–239, 2005.

[15] I.-H. Li, I.-E. Liao, and W.-Z. Pang, “Mining classification rules in the
presence of concept drift with an incremental genetic algorithm,” Journal
of Theoretical & Applied Information Technology, vol. 4, no. 7, 2008.

[16] K. Tan, Q. Yu, and J. Ang, “A coevolutionary algorithm for rules
discovery in data mining,” International Journal of Systems Science,
vol. 37, no. 12, pp. 835–864, 2006.

[17] J. Aguilar-Ruiz, J. Riquelme, and M. Toro, “Evolutionary learning of
hierarchical decision rules.” Transactions on Systems and Man and and
Cybernetics - Part B: Cybernetics, vol. 33, no. 2, pp. 324–331, 2003.

[18] D. Whitley and J. Kauth, GENITOR: A different genetic algorithm.
Colorado State University, Department of Computer Science, 1988.

[19] J. Aguilar-Ruiz, R. Giráldez, and J. Riquelme, “Natural encoding for
evolutionary supervised learning,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 4, pp. 466–479, 2007.

[20] J. Demšar, “Statistical Comparisons of Classifiers over Multiple Data
Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006. [Online].
Available: http://dl.acm.org/citation.cfm?id=1248547.1248548

[21] F. J. Berlanga, A. Rivera, M. J. del Jesús, and F. Herrera, “Gp-
coach: Genetic programming-based learning of compact and accurate
fuzzy rule-based classification systems for high-dimensional problems,”
Information Sciences, vol. 180, no. 8, pp. 1183–1200, 2010.

1123

