
Effects of Population Initialization on Differential
Evolution for Large Scale Optimization

Borhan Kazimipour∗, Xiaodong Li∗, A. K. Qin∗†
∗School of Computer Science and Information Technology, RMIT University, Melbourne, 3000, Victoria, Australia

Email:{borhan.kazimipour, xiaodong.li, kai.qin}@rmit.edu.au
†School of Automation, Southeast University, Nanjing, China, 210096

Abstract—This work provides an in-depth investigation of the
effects of population initialization on Differential Evolution (DE)
for dealing with large scale optimization problems. Firstly, we
conduct a statistical parameter sensitive analysis to study the
effects of DE’s control parameters on its performance of solving
large scale problems. This study reveals the optimal parame-
ter configurations which can lead to the statistically superior
performance over the CEC-2013 large-scale test problems. Thus
identified optimal parameter configurations interestingly favour
much larger population sizes while agreeing with the other
parameter settings compared to the most commonly employed
parameter configuration. Based on one of the identified optimal
configurations and the most commonly used configuration, which
only differ in the population size, we investigate the influence of
various population initialization techniques on DE’s performance.
This study indicates that initialization plays a more crucial role
in DE with a smaller population size. However, this observation
might be the result of insufficient convergence due to the use of
a large population size under the limited computational budget,
which deserve more investigations.

I. INTRODUCTION

Differential Evolution (DE) which was originally proposed
by Storn and Price, is one of the most effective and effi-
cient stochastic optimization techniques [1]. After about two
decades, DE has been developed into one of the most powerful
and promising research topics in the field of evolutionary
computation [2]. So far, a great and still growing body of liter-
ature is devoted to improving its performance [3], explaining
its behaviour [4] and expanding its applications in numerous
fields [2]. The family of DE variants has presented an ex-
ceptional performance when solving challenging optimization
problems in different forms [5]. DE related techniques have
always been among the best performers in past optimiza-
tion competitions such as those held at IEEE Congress on
Evolutionary Computation (CEC) on single objective, multi-
objective and large scale global optimization [6].

Beside its efficiency and effectiveness, DE performance can
be significantly affected by its three main control parameters:
population size, crossover rate and mutation scale factor. In
other words, employing DE with improper parameter config-
uration will dramatically degrade its efficiency and effective-
ness. To lessen this issue, many studies have been done on DE
parameters tuning and adaptation [5], [6], [7].

In addition to parameter values, the quality of DE initial
population is also reported to have significant impact on its
performance. Hence, several advanced population initialization
techniques have been proposed and applied to DE [8], [9], [10],
[11], [12].

Although the previous studies on DE parameter calibra-
tion and population initialization are scientifically valuable,
they suffer from some problems. Firstly, to the best of our
knowledge, all works on DE parameter calibration are only
done on low dimensional problems. In fact, the best parameter
configuration for DE in dealing with large scale problems still
remain to be discovered. So far, researchers and practitioners
use the same values for high dimensional problems as they use
for low dimensional ones. To date, there are still no evidences
to confirm or decline that the dimensionality of problems has
any effect on the best values for DE parameters.

Secondly, all experiments on DE initial population are
done using arbitrary parameter values. Indeed, little attention
has been taken to study the effects of population initializers
while the best parameter configuration is used. Obviously,
when improper parameter values are used, the performance
of population initialization techniques may be affected and the
resulting conclusions may not be precise and practical. This
issue, which exists in studies on both low and high dimensional
problems, is the source of some contradictions and confusions
on the effectiveness of advanced initializers [13], [14].

To fill these gaps in literature, this study conducts a
systematic framework to firstly investigate the best parameter
configuration of DE when dealing with large scale optimization
problems. In fact, this paper investigates whether the best
parameter values for low and high dimensions are similar or
not.

Secondly, this study compares the effects of some well-
known population initialization techniques using the most
commonly used and the best found parameter configuration.
In other words, this paper investigates whether the quality of
initial population has significant influence on DE performance
when proper parameter values are used.

Answers to the above mentioned questions will shed more
light on the effects of DE parameters and initial population on
its performance, especially when handling high dimensional
problems. Particularly, researchers and practitioners can use
the provided advices for DE parameter calibration in dealing
with black-box optimization problems. Moreover, this study
clarifies the relation between population initialization and DE
main control parameters.

The rest of the paper is organized as follows. The next
section presents a brief review of a classic DE algorithm,
its main control parameters and some advanced population
initialization techniques. Experiments and their results are

2404

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

provided in Section III. Some ideas for future works are given
in Section IV. Finally, Section V concludes the paper.

II. BACKGROUND

In this part a brief review of DE, its main control parame-
ters and some advanced population initialization techniques is
provided.

A. Differential Evolution

DE is known as one of the most effective optimizers in
dealing with continuous problems. Numerous variants of DE
have been proposed and applied on a variety of real-world
applications. DE, like other Evolutionary Algorithms (EAs), is
designed to deal with black-box optimization problems [15].

Without loss of generality, an optimization (minimization,
here) problem can be defined as:

x∗ = arg min
x∈RD

f(x), f(x) ∈ R (1)

where x = {x1, x2, . . . , xD} is a D-dimensional vector of
decision variables and f(x) ∈ R is a real-valued objective
function. Note that the exact formula of f(x) in not available
in black-box problems. In EA literature, problems with large
number of decision variables (e.g. D > 100) are widely
referred to as large scale problems.

Similar to the majority of EAs, DE is also a population-
based algorithm. This means, DE is initially starts with a
set of decision variables (i.e. initial population) which are
usually drawn randomly from the uniform distribution within
the solution space (see Section II-B for more details). Then,
DE operators are applied to each individual in the population
(as parents) to produce another population (as offspring). Both
populations then evaluated using the objective function (see
Equation 1) and each parent is substituted by its offspring if
the offspring is fitter (in terms of objective value) than its
parent. The reproduction, evaluation and selection steps are
repeated iteratively till termination criteria have met (usually
maximum number of objective function evaluations). Finally,
the fittest individual of the population from the last iteration
is returned as the solution of the optimization problem.

In each iteration of DE process, three operators are applied
to each single individual (so-called target vector): mutation,
recombination and selection. These operators work as follows:

1) Mutation: For each target vector, a base vector is chosen
from the current population members and added to the scaled
difference of a few randomly selected members. The resulting
vector is usually called mutant vector.

~yti = ~xtb + F × (~xtr1 − ~x
t
r2), i = 1, 2, . . . ,NP (2)

where r1 and r2 are randomly chosen from [1,NP] and t
denotes the iteration number. ~xb and ~yi are base and mutant
vectors, respectively. Note that base and mutant vectors may be
produced differently according to various mutation strategies.

2) Recombination: After mutation (see Equation 2), a trial
vector is generated by the combination of mutant and target
vectors.

~zti,j =

{
~yti,j , if(rand(0, 1) ≤ CR | j = jr)
~xti,j , otherwise

(3)

where ~zi is the trial vector of ith target vector, j indicates
the jth variable of vectors, jr is chosen randomly from
[1,NP] and rand(0, 1) generate a random number from [0,1].
Note that among several DE recombination schemes, discrete
recombinations (a.k.a. crossovers) are the most widely used.

3) Selection: Finally, each target vector (as the main parent
and the corresponding trial (as the its offspring) are compared
based on their fitness values. The fittest one (e.g. with the
smallest objective value in a minimization problem) is selected
to remain in the population.

~xt+1
i =

{
~zti , iff(~xti) > f(~zti)
~xti, otherwise

(4)

These three DE operators are iteratively applied to all
population members in a round-robin fashion till termination
criteria are met.

DE has many variants which are usually denoted using
DE/x/y/z style, where:

• ‘x’ defines the base vector generation scheme. For
example, ‘best’ indicates the current fittest member
is selected as the base vector, while ‘rand’ means the
base vector is selected randomly.

• ‘y’ defines the number of pairs of members used in
construction of the difference vector(s) (see Equa-
tion 2).

• ‘z’ defines the scheme of recombination. For example,
‘bin’ and ‘exp’ indicate binomial (uniform) and expo-
nential (circular two-point) crossovers, respectively.

DE in a very general form has three main control param-
eters:

1) Population size (NP): Like other population-based al-
gorithm, NP plays a crucial role in the efficiency and effec-
tiveness of DE. Large population size potentially increases the
population diversity and helps DE to sample more regions,
simultaneously. However, when computational budget is lim-
ited (which in practice usually is), increasing the population
size will decrease the number of iterations (i.e generations)
and may result in early termination. In other words, DE may
be terminated before the population converges to a desirable
point.

2) Crossover rate (CR): In discrete recombination, CR
value determines the number of decision variables of each tar-
get vector which must be interchanged with the corresponding
variables of mutant vector. As a rule of thumb, small CR values
can boost convergence speed when a few decision variables are
interacting with each others. In turn, large CR values are more
effective when lots of decision variables are interacting.

2405

3) Mutation scale factor (F): In DE, the exploration-
exploitation balance is controlled by F value. As a rule of
thumb, too small F values increase the risk of premature
convergence (i.e. converge to an undesirable point), while too
large F values decrease the convergence speed that degrades
DE efficiency and may result in early termination.

Note that advanced variants of DE may have extra control
parameters [16]. So far, several strategies such as fixed [17],
control [18] and adaptive [19], [20] schemes are proposed for
DE parameter calibration. This work follows the framework
suggested in [6] and hence, falls into the fixed scheme group.

B. Population Initialization Techniques

Producing initial population is the first step of all pop-
ulation based algorithms including DE. In this starting step,
first estimations of the solution(s) are made. Obviously, staring
from a good set of estimates improves optimizer performance
and save lots of computational resources [21], [22]. How-
ever, in dealing with black-box optimization problems, it is
almost impossible to identify the best set of estimates (as
initial population) before evaluating the whole optimization
process. Consequently, for a long time, researchers mostly use
uniformly distributed random numbers as the initial population
for DE.

Recently, a large and growing body of literature are devoted
to advanced EA population initialization techniques [12], [14].
Indeed, several studies claimed that it is possible to improve
EAs (including DE) performance only by employing more
advanced initialization techniques [22], [23]. Regarding this
finding, several works have been done and reported on popu-
lation initialization for DE [10], [12].

Generally speaking, population initialization techniques are
of different forms and hence varying in many characteristics.
Among these techniques, pseudo-random number generators
(PRNGs) are the most widely used techniques [24], [25].
In fact, most of the experiments on large scale optimization
have been done using PRNGs because they are available in
every programming language and there is no restriction on the
number of points (i.e., NP) or dimension size (i.e., D). Despite
the simplicity and popularity of PRNGs, it is claimed that they
are not the best available options for population initialization
of DE when dealing with large scale problems [12].

Recently, a new family of number generators, widely
known as chaotic number generators (CNGs), are used to
improve the randomness and uniformity of the initial popu-
lation [26]. Generally, chaotic systems (which CNGs try to
reflect their behaviour) are dynamic systems which are very
sensitive to their initial conditions. Ergodicity, randomness
and unpredictability are the main characteristics of chaotic
systems [27]. To produce a chaotic sequence, a proper map
is required. For example, the following equation is known as
tent map [28]:

xk+1
i,j =

{
µxki,j for xki,j <

1
2

µ(1− xki,j) for xki,j ≥ 1
2

(5)

while xki,j is the jth variable of the ith population member in
kth iteration and µ is a positive real constant. If µ = 2 and
x0i,j ∈ (0, 1), tent map will produce chaotic sequences.

Another big family of number generators are those which
do not care about randomness of the population, but its
uniformity. These algorithms, which are usually deterministic
(i.e., produce exactly the same population every time they are
evaluated), try to generate points that are evenly distributed
over the search space. In many cases (e.g. Sobol set [29] and
good lattice point [30]) some theoretical upper-bounds exist
on the non-uniformity (a.k.a. discrepancy) of the resulting
population. These upper-bounds estimate the expected non-
uniformity of population in the worst case scenario.

Several studies claimed that these algorithms can signifi-
cantly improve EAs performance [25], [31]. The application of
deterministic uniform number generators on large scale opti-
mization problems, however, is under doubt. While it is widely
believed that uniformity of the initial population in dealing
with higher dimensional problems is more critical (because
of the sparsity of the population), the performance of these
number generators may degrade to undesirable levels when
dimensionality grows (a.k.a. ‘curse of dimensionality’) [13],
[32], [33].

Not all population initialization techniques consider
randomness or uniformity of the population. A popular group
of initializers, which recently attracts extensive attentions,
exploits objective function to investigate which estimates have
more potentials to improve EA performance in succeeding
iterations. Opposition-based learning (OBL) technique for
population initialization, which originally introduced to DE
is the most well-known technique in this group [34]. OBL
and its variants, such as quasi-opposition-based learning
(QOBL) [21], firstly produce a population of size NP. Then
using some simple rules, they produce another population so-
called opposite population. Finally, the best subset (according
to their objective values) from the union of both populations is
selected as DE initial population. Several studies confirm that
the family of OBL techniques improves DE performance on
low and high dimensional problems [35], [16].

EA population initialization techniques are not limited to
these groups and examples. Indeed, numerous techniques have
been proposed and applied to different problems. Reviewing
all published works on this topic demands a comprehensive
survey paper which is out of the scope of this study [14].

III. EXPERIMENTS

This study investigates the effects of population initializa-
tion on DE in dealing with large scale problems. For a deep
investigation and also finding the interaction of population
initialization and DE main control parameters, the experiments
are divided into two parts. The first part tries to find the best pa-
rameter configuration of a well-known DE model when applied
to large scale optimization benchmark functions. The second
experiment aims to compare the effects of different population
initialization techniques on the same DE model when the most
common (according to literature) and the best (based on the
findings of the first part) parameter configurations are used.

In all parts of the experiments, DE/rand/1/bin is used
because of its simplicity and popularity. This classical DE has
been used in similar studies on DE parameter calibration in
dealing with low dimensional problems [6]. All experiments
are done on the most recently benchmark suite for large

2406

scale global optimization (LSGO) which were introduced in
CEC-2013 (see Section III-A). Succeeding parts provide more
information regarding the benchmarks, experimental setup,
obtained results and statistical analysis.

A. Benchmark Functions

The CEC 2013 LSGO benchmark suite is currently the
latest proposed benchmark in the field of large scale opti-
mization [36]. The suite consists of 15 continuous functions
which are grouped into five distinct categories: fully separable
functions (f1−f3), partially separable functions with a separa-
ble subcomponent (f4−f7), partially separable functions with
no separable subcomponents (f8− f11), overlapping functions
(f12 − f14) and one fully non-separable function (f15). All
functions have 1000 decision variables, except f12 and f14
which have 905 variables due to overlapping subcomponents.

To improve previously proposed benchmark suite (e.g.
CEC 2008 LSGO [37]), new functions with non-uniform sub-
component sizes and overlapping subcomponents have been
added to the recent suite. Moreover, new transformations such
as ill-conditioning, symmetry breaking and irregularities have
been added to CEC 2013 LSGO suite. More details regarding
this suite are available in [36].

B. Experimental Setup

As mentioned earlier, this experiment consists of two parts:
DE parameter calibration and population initializations effects.
The following paragraphs discuss the experimental setups of
all parts in details.

1) Parameter Calibration: In the first part of the
experiment, the performance of DE/rand/1/bin on all
15 functions of CEC 2013 LSGO benchmark suite are
evaluated using 84 different parameter configurations.
These parameter configurations consist of all possible
combinations of 14 population sizes (i.e. NP∈
[10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 150, 200, 250, 300]),
three crossover rates (i.e. CR∈ [0.1, 0.5, 0.9]) and two
mutation scale values (i.e. F∈ [0.5, 0.8]). These configurations
cover most of the advised values in previously published
studies [6].

For each function, DE/rand/1/bin with all 84 configurations
is run for 51 times. Following the framework used in [6], the
ith runs of all configurations initialized by the same seed while
ith and jth (i 6= j) runs of any configuration differ in initial
seed. To be consistent with CEC 2013 LSGO framework, the
maximum number of function evaluations is restricted to 3e+06
for all functions.

2) Population Initialization: In the second part of the ex-
periment, the effects of six population initialization techniques
on the performance of DE/rand/1/bin on all 15 functions of
CEC 2013 LSGO benchmark suite are evaluated. Beside the
common random population initializer (i.e., PRNG), five well-
known and potentially effective initializers are also employed.

Among the selected population initialization techniques,
Mersenne Twister [38] and tent map [28] (chosen from
PRNG and CNG group, respectively) are stochastic population
generators which each run of them (using different initial
seed) results in a different population. In contrast, Sobol set

(SBL) [29] and good lattice points [30] are selected form the
deterministic population generators. They are claimed to be
able to provide evenly scattered points with a high level of
uniformity. Contrary to those four techniques, OBL [8] and
QOBL [21] initializers are chosen from the greedy algorithms
who evaluate a big population to select the best subset as the
DE initial population. Common values are set for the control
parameters of all initialization techniques as suggested and
discussed in [12].

In this part of the experiments, two parameter configura-
tions for DE/rand/1/bin are used: the most common parameter
configuration ([NP, CR, F]=[50, 0.9, 0.5]) and the best config-
uration found from the first part of the experiment ([NP, CR,
F]=[150, 0.9, 0.5]).

For each function, DE/rand/1/bin with six population ini-
tialization techniques and two configurations is run for 51
times. Similar to the first part, the ith runs of all six initializers
use the same initial seed while the initial seeds for runs ith
and jth (i 6= j) of any technique are chosen differently. The
same as the first part, 3e+06 is set for the maximum number
of function evaluations.

C. Results and Discussions

The following parts are dedicated to the analysis and
discussions of the obtained experimental results.

1) Parameter Calibration: To find the superior parame-
ter configuration(s) for DE/rand/1/bin on CEC 2013 LSGO
benchmark among 84 different configurations, some advanced
non-parametric statistical tools are employed. In this study,
Iman and Davenport test (a.k.a. Friedman rank test) is used
to rank the configurations [39]. Based on this ranking,
[NP, CR, F]=[150, 0.9, 0.5] is the superior configuration for
DE/rand/1/bin on these particular benchmark functions. Ta-
ble I reports the main statistics of the results obtained using
this configuration. For comparison, the results obtained from
DE/rand/1/bin using the most common configuration ([NP,
CR, F]=[50, 0.9, 0.5]), which is also previously reported as the
superior configuration on low dimensional problems [6], are
added to Table I. As apparent from Table I, the performance
of DE/rand/1/bin in most cases is significantly improved when
the superior configuration is used.

Note that the ranking is calculated in respect of the config-
urations performance on all 15 functions. Indeed, we did not
compare configurations performance on each single function
separately. There are two reasons to avoid such statistical
analysis. Firstly, according to [39], at least 252 independent
runs of each function (per configuration) are needed to com-
pare 84 algorithms. Otherwise the comparison may not be
statistically meaningful. Secondly, we aim to provide some
general rules of thumb for users of DE/rand/1/bin to tune its
parameters in dealing with black-box problems. Hence, the
general assumption is that users have no prior knowledge on
the degree of separability of the decision variables of their
problems. Consequently, even if superior configuration for
each single function of the benchmark suite was reported, users
may not be able to find the proper one for their particular
application.

To investigate which configurations are significantly domi-
nated by the superior configuration, some post-hoc procedures

2407

must be applied. In this study, we employed Li post-hoc
procedure [40]. According to [39], Li post-hoc procedure is
one of the most powerful procedures among the common
statistical tools. Generally, post-hoc procedures compare all
methods against a control method to investigate whether they
perform significantly different.

In this part of the experiment, each parameter configuration
is treated as a single algorithm and the superior configuration
(founded by Iman and Davenport ranking) is chosen as the con-
trol method. Based on the Li adjusted p-values (not reported
here due to limited space), the configurations are divided
into two groups: those which their performance significantly
differ from (i.e. worse than) the control method (here, [NP,
CR, F]=[150, 0.9, 0.5]), and those which statistically perform
similar to the control configuration. Table II demonstrate the
results.

As Table II indicates, the best values for CR and F are 0.9
and 0.5, respectively. This values are consistent with the [6]’s
findings for low dimensional problems (i.e., D∈ [10, 30, 50])
where these values are founded among the best configurations
for DE/rand/1/bin. Table II also reveals that the best range of
population size for solving high dimensional problems (with
regard to the dedicated computational budget) is between 80
to 250. In comparison with [6]’s findings, which 40 to 60
are suggested as the best range for population size, our results
show that DE/rand/1/bin (and probably other EAs) needs more
population members when dimension size increases. In other
words, while the effective CR and F values for both low
and high dimension problems are the same, population size
is greatly affected by dimension growth.

It should be noted that these findings are based on the
dedicated computational budget (i.e. 3e+06 maximum number
of function evaluations). Large increment or decrement of this
limit may affect the findings. As an intuitive rule of thumb,
providing larger computational budget allows EA to use bigger
populations, effectively.

Note that direct comparison between the obtained results
from this study and the experiment on low dimensional prob-
lems in [6] is impossible. Although both studies follow the
same framework and use a similar DE version, since the bench-
marks and the computational budgets are greatly different, the
direct comparison would be meaningless. However, since both
studies provide some general rules of thumb, their findings can
be compared.

2) Population Initialization: To study the effects of ad-
vanced population initialization techniques on large scale prob-
lems, six potentially effective initializers with two configura-
tions are compared. The obtained results from DE/rand/1/bin
with the superior ([NP, CR, F]=[150, 0.9, 0.5]) and the most
common ([NP, CR, F]=[50, 0.9, 0.f]) configurations using the
six population initialization techniques are reported in Ta-
bles III and IV, respectively. As shown in these tables, ad-
vanced techniques improved the common PRNG initializer in
some functions for both configurations. However, to examine
whether these improvements are significant, some statistical
tools should be employed (see bellow).

In order to identify superior initialization techniques among
six examined algorithms, similar statistical tools (i.e. Iman
and Davenport with Li post-hoc procedure) are employed.

However, due to the large values of the calculated p-values
(i.e. greater than 0.05), the obtained ranks are not statistically
reliable while the superior configuration is used. In other
words, although some improvements are achieved by employ-
ing advanced population initialization techniques, the improve-
ments are not significant from the statistical point of view.
This means all population initialization techniques perform
statistically similar when they are applied to DE/rand/1/bin
with well-tuned control parameters. This is a new finding
that indicates when proper values for the control parameters
are used, population initialization has only a minor effect on
the optimizer performance. In fact, increasing population size
from 50 to 150 has more significant impact than changing the
initializer algorithm.

This new finding is very important because it challenges the
common belief on the effect of population initialization tech-
niques in improvement of EAs on large scale problems [12].
Although some previous works (e.g. [13], [32], [33]) raise
doubt about the effectiveness of some techniques in high
dimensional spaces, common belief was that advanced tech-
niques can improve EAs performance in both low and high
dimensional problems.

It seems the contradiction between the new findings and
some of the previous claims is due to two shortcomings of
some of previous works. Firstly, to the best of our knowledge,
none of the previous studies has tried to compare popula-
tion initialization techniques on the well-tuned optimizers.
Obviously neglecting the significant effects of main control
parameters (specially population size) on the performance of
EAs may lead the study to weak conclusions.

Secondly, the necessity of employing advanced statistical
tools (such as those recommended in [39] and used in this
study) for validating the analysis and findings is neglected
in most of the previous works. Consequently, some statisti-
cally minor improvements of using advanced initializers may
wrongly considered as significant contributions.

Note that, although this study is well conducted based
on a systematic framework and the findings are statistically
validated, the authors are well aware of the need of further
investigations to generalise the findings from DE/rand/1/bin to
other EAs.

IV. FUTURE WORKS

As mentioned earlier, the findings from this study chal-
lenge the general belief on the potential effects of advanced
population initialization techniques on DE/rand/1/bin, when
applied to large scale problems. For further generalization
of the findings to other EAs, we are interested in repeating
this study on other popular EA models. Moreover, considering
other performance metrics (besides final objective values) can
help us to investigate whether advanced initializers are able to
significantly improve EAs according to other aspects.

Furthermore, we believe computational budget has signif-
icant effects on the performance of EAs when armed with
different population initialization techniques. Consequently, we
are interested to study the influence of different computational
resource limits on the performance of well-known initializers
in dealing with large scale optimization problems.

2408

TABLE I. COMPARISON BETWEEN THE OBTAINED RESULTS FROM THE MOST COMMON ([NP, CR, F]=[50, 0.9, 0.5]) AND THE SUPERIOR ([NP, CR,
F]=[150, 0.9, 0.5]) CONFIGURATIONS FOR DE/RAND/1/BIN ON CEC 2013 LSGO BENCHMARKS. CC AND CS STAND FOR THE MOST COMMON AND THE
SUPERIOR CONFIGURATIONS, RESPECTIVELY. B, M, W, A AND S STAND FOR THE BEST, MEAN, WORST, AVERAGE (MEAN) AND STANDARD DEVIATION

OF 51 INDEPENDENT RUNS, RESPECTIVELY.

Conf. Stat. Group 1 Group 2 Group 3 Group 4 Group 5
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

CC

B 5.0e+05 1.9e+04 2.0e+01 1.7e+10 1.5e+06 1.1e+06 5.1e+07 8.9e+13 1.4e+08 9.3e+07 3.9e+10 4.5e+08 4.6e+09 9.6e+10 6.1e+07
M 4.2e+06 2.0e+04 2.1e+01 4.3e+10 2.2e+06 1.1e+06 1.2e+08 3.5e+14 2.1e+08 9.4e+07 1.5e+11 5.1e+09 8.6e+09 2.0e+11 6.8e+09
W 3.9e+08 2.2e+04 2.1e+01 9.0e+10 3.2e+06 1.1e+06 8.5e+08 7.9e+14 2.8e+08 9.5e+07 6.4e+11 2.0e+10 1.5e+10 4.3e+11 6.7e+11
A 3.3e+07 2.0e+04 2.1e+01 4.6e+10 2.3e+06 1.1e+06 1.5e+08 3.7e+14 2.1e+08 9.4e+07 1.7e+11 6.0e+09 8.9e+09 2.1e+11 5.2e+10
S 8.0e+07 9.2e+02 8.9e-02 1.7e+10 4.1e+05 1.1e+03 1.2e+08 1.7e+14 3.0e+07 2.5e+05 1.1e+11 4.9e+09 2.1e+09 8.4e+10 1.2e+11

CS

B 6.4e+05 7.2e+03 1.1e+01 5.5e+09 7.5e+06 1.8e+01 9.3e+07 2.7e+12 5.4e+07 6.7e+01 5.5e+09 3.0e+07 3.6e+09 4.2e+10 2.8e+07
M 1.7e+06 8.4e+03 1.3e+01 1.5e+10 8.4e+06 2.0e+01 2.1e+08 1.5e+13 1.4e+08 1.5e+02 4.9e+10 8.3e+07 5.3e+09 8.2e+10 5.5e+07
W 1.0e+07 9.5e+03 1.4e+01 3.0e+10 8.7e+06 3.8e+01 4.5e+08 1.0e+14 6.5e+08 3.3e+02 1.1e+11 3.8e+09 9.4e+09 1.9e+11 1.2e+08
A 2.0e+06 8.4e+03 1.3e+01 1.5e+10 8.4e+06 2.0e+01 2.3e+08 2.2e+13 2.7e+08 1.6e+02 5.0e+10 1.8e+08 5.5e+09 8.4e+10 6.1e+07
S 1.5e+06 5.1e+02 7.1e-01 5.5e+09 2.7e+05 2.9e+00 9.0e+07 1.8e+13 2.3e+08 5.4e+01 2.3e+10 5.3e+08 1.3e+09 2.7e+10 2.0e+07

TABLE II. THE BEST PARAMETER CONFIGURATIONS ACCORDING TO IMAN AND DAVENPORT TEST WITH LI POST-HOC PROCEDURE ON ALL 15
FUNCTIONS OF CEC 2013 LSGO BENCHMARK SUITE. AMONG 84 EXAMINED CONFIGURATIONS, THOSE LEADING TO THE STATISTICALLY BETTER
PERFORMANCE WITH 0.05 SIGNIFICANCE LEVEL OVER OTHERS ARE MARKED BY X. THE OTHERS ARE STATISTICALLY WORSE THAN THE MARKED

CONFIGURATIONS.

Parameters Population Size
F CR 10 20 30 40 50 60 70 80 90 100 150 200 250 300

0.5
0.1 - - - - - - - - - - - - - -
0.5 - - - - - - - - - - - - - -
0.9 - - - - - - - X X X X X X -

0.8
0.1 - - - - - - - - - - - - - -
0.5 - - - - - - - - - - - - - -
0.9 - - - - - - - - - - - - - -

TABLE III. THE PERFORMANCE OF SIX POPULATION INITIALIZATION TECHNIQUES USING THE SUPERIOR PARAMETER CONFIGURATION ([NP, CR,
F]=[150, 0.9, 0.5]) FOR DE/RAND/1/BIN. PRNG, CNG, SBL, GLP, OBL AND QOBL STAND FOR PSEUDO-RANDOM NUMBER GENERATOR, CHAOTIC

NUMBER GENERATOR, SOBOL SET, GOOD LATTICE POINTS, OPPOSITION-BASED LEARNING AND QUASI-OPPOSITION-BASED LEARNING, RESPECTIVELY. B,
M, W, A AND S STAND FOR THE BEST, MEAN, WORST, AVERAGE AND STANDARD DEVIATION OF 51 RUNS, RESPECTIVELY.

Init. Stat. Group 1 Group 2 Group 3 Group 4 Group 5
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

PRNG

B 6.4e+05 7.2e+03 1.1e+01 5.5e+09 7.5e+06 1.8e+01 9.3e+07 2.7e+12 5.4e+07 6.7e+01 5.5e+09 3.0e+07 3.6e+09 4.2e+10 2.8e+07
M 1.7e+06 8.4e+03 1.3e+01 1.5e+10 8.4e+06 2.0e+01 2.1e+08 1.5e+13 1.4e+08 1.5e+02 4.9e+10 8.3e+07 5.3e+09 8.2e+10 5.5e+07
W 1.0e+07 9.5e+03 1.4e+01 3.0e+10 8.7e+06 3.8e+01 4.5e+08 1.0e+14 6.5e+08 3.3e+02 1.1e+11 3.8e+09 9.4e+09 1.9e+11 1.2e+08
A 2.0e+06 8.4e+03 1.3e+01 1.5e+10 8.4e+06 2.0e+01 2.3e+08 2.2e+13 2.7e+08 1.6e+02 5.0e+10 1.8e+08 5.5e+09 8.4e+10 6.1e+07
S 1.5e+06 5.1e+02 7.1e-01 5.5e+09 2.7e+05 2.9e+00 9.0e+07 1.8e+13 2.3e+08 5.4e+01 2.3e+10 5.3e+08 1.3e+09 2.7e+10 2.0e+07

CNG

B 5.1e+05 7.3e+03 1.1e+01 4.7e+09 7.7e+06 1.8e+01 1.1e+08 3.1e+12 7.3e+07 7.5e+01 1.2e+10 1.6e+07 3.3e+09 4.3e+10 3.4e+07
M 1.7e+06 8.3e+03 1.3e+01 1.5e+10 8.3e+06 2.0e+01 2.2e+08 2.2e+13 1.4e+08 1.5e+02 4.7e+10 8.6e+07 5.7e+09 8.5e+10 6.3e+07
W 2.2e+07 9.4e+03 1.4e+01 2.8e+10 8.9e+06 3.2e+01 7.4e+08 8.5e+13 6.7e+08 5.4e+02 1.1e+11 7.1e+08 9.0e+09 1.7e+11 1.5e+08
A 2.7e+06 8.3e+03 1.3e+01 1.4e+10 8.3e+06 2.1e+01 2.3e+08 2.6e+13 3.2e+08 1.6e+02 5.0e+10 1.3e+08 5.8e+09 8.7e+10 6.7e+07
S 3.9e+06 4.5e+02 6.3e-01 5.2e+09 2.7e+05 2.8e+00 1.1e+08 2.0e+13 2.4e+08 8.4e+01 2.1e+10 1.3e+08 1.2e+09 2.7e+10 2.3e+07

SBL

B 6.6e+05 7.2e+03 1.2e+01 4.8e+09 7.5e+06 1.8e+01 1.2e+08 7.8e+11 7.0e+07 7.6e+01 1.0e+10 2.4e+07 3.0e+09 3.3e+10 4.3e+07
M 1.9e+06 8.5e+03 1.3e+01 1.4e+10 8.4e+06 2.0e+01 2.3e+08 1.9e+13 1.5e+08 1.4e+02 5.3e+10 9.4e+07 5.6e+09 8.4e+10 7.9e+07
W 1.4e+07 9.5e+03 1.4e+01 2.7e+10 8.9e+06 2.7e+01 6.1e+08 1.0e+14 6.6e+08 4.0e+02 1.3e+11 3.4e+08 7.9e+09 1.5e+11 1.3e+08
A 2.6e+06 8.5e+03 1.3e+01 1.5e+10 8.3e+06 2.0e+01 2.6e+08 2.5e+13 3.5e+08 1.6e+02 5.8e+10 1.2e+08 5.6e+09 8.8e+10 7.9e+07
S 2.3e+06 4.8e+02 5.8e-01 5.8e+09 2.9e+05 1.5e+00 1.1e+08 2.1e+13 2.5e+08 6.0e+01 2.6e+10 8.0e+07 1.1e+09 2.5e+10 1.9e+07

GLP

B 5.5e+05 7.6e+03 1.2e+01 6.2e+09 7.4e+06 1.8e+01 1.1e+08 4.0e+12 6.1e+07 7.4e+01 1.0e+10 2.2e+07 3.6e+09 4.3e+10 7.8e+07
M 1.6e+06 8.6e+03 1.3e+01 1.5e+10 8.3e+06 2.1e+01 2.1e+08 1.4e+13 1.4e+08 1.5e+02 4.7e+10 9.5e+07 5.9e+09 8.1e+10 1.4e+08
W 2.0e+07 9.4e+03 1.5e+01 2.9e+10 8.8e+06 3.0e+01 7.1e+08 9.4e+13 6.6e+08 3.0e+02 1.6e+11 1.1e+09 7.9e+09 1.5e+11 1.9e+08
A 2.6e+06 8.6e+03 1.3e+01 1.5e+10 8.3e+06 2.1e+01 2.4e+08 2.1e+13 3.2e+08 1.6e+02 5.4e+10 1.6e+08 5.9e+09 8.4e+10 1.4e+08
S 3.2e+06 4.4e+02 6.8e-01 5.6e+09 3.0e+05 1.8e+00 1.2e+08 1.7e+13 2.4e+08 5.5e+01 2.9e+10 1.8e+08 1.0e+09 2.4e+10 2.2e+07

OBL

B 5.8e+05 7.2e+03 1.1e+01 6.5e+09 7.7e+06 1.7e+01 9.6e+07 1.1e+12 7.2e+07 7.6e+01 1.1e+10 2.5e+07 2.9e+09 3.1e+10 3.7e+07
M 2.0e+06 8.4e+03 1.3e+01 1.5e+10 8.3e+06 2.0e+01 2.2e+08 1.8e+13 1.4e+08 1.6e+02 4.5e+10 7.5e+07 6.0e+09 7.8e+10 6.5e+07
W 1.1e+07 9.6e+03 1.4e+01 3.5e+10 8.8e+06 2.2e+01 4.1e+08 9.9e+13 6.6e+08 3.3e+02 1.0e+11 9.5e+08 8.4e+09 1.7e+11 1.7e+08
A 2.3e+06 8.4e+03 1.3e+01 1.6e+10 8.3e+06 2.0e+01 2.2e+08 2.3e+13 3.3e+08 1.7e+02 5.0e+10 1.4e+08 5.8e+09 8.1e+10 7.1e+07
S 1.9e+06 4.7e+02 6.7e-01 5.8e+09 2.6e+05 1.3e+00 8.3e+07 2.1e+13 2.4e+08 6.5e+01 2.2e+10 1.8e+08 1.2e+09 2.6e+10 2.4e+07

QOBL

B 4.5e+05 8.0e+03 1.1e+01 4.3e+09 7.5e+06 1.7e+01 1.1e+08 2.1e+12 6.3e+07 7.1e+01 1.9e+10 2.1e+07 3.5e+09 3.6e+10 3.6e+07
M 1.6e+06 8.6e+03 1.3e+01 1.3e+10 8.3e+06 2.0e+01 2.3e+08 1.7e+13 1.5e+08 1.6e+02 5.1e+10 8.1e+07 6.0e+09 8.2e+10 6.5e+07
W 1.6e+07 9.7e+03 1.5e+01 3.3e+10 8.8e+06 3.5e+01 5.3e+08 5.3e+13 6.7e+08 5.6e+02 1.0e+11 9.2e+08 1.1e+10 1.3e+11 1.9e+08
A 2.5e+06 8.7e+03 1.3e+01 1.5e+10 8.3e+06 2.0e+01 2.4e+08 2.0e+13 3.3e+08 1.6e+02 5.3e+10 1.2e+08 5.9e+09 8.1e+10 7.5e+07
S 2.7e+06 4.5e+02 6.4e-01 6.4e+09 2.6e+05 2.5e+00 1.0e+08 1.3e+13 2.5e+08 7.2e+01 2.3e+10 1.3e+08 1.3e+09 2.3e+10 2.9e+07

V. CONCLUSION

In this study, the effects of population initialization on
the most commonly used DE variant are investigated when
solving large scale problems. To achieve a strong conclusion,
the best values for main control parameters of DE/rand/1/bin
are found among a wide range of configurations which covers
nearly all previously advised values. The obtained results
indicate the best CR and F values for solving high dimensional

problems are almost the same as the previously found values
for low dimensional problems. However, the empirical study
suggests to increase population size to some threshold values
when dimensionality of the problems grows. Indeed, the most
commonly used population size is shown to be inferior for
dealing with the most of the large scale benchmark functions.

Besides the provided advices for selecting parameter values
of DE/rand/1/bin for solving large scale problems, this paper

2409

TABLE IV. THE PERFORMANCE OF SIX POPULATION INITIALIZATION TECHNIQUES USING THE COMMON PARAMETER CONFIGURATION ([NP, CR,
F]=[50, 0.9, 0.5]) FOR DE/RAND/1/BIN. PRNG, CNG, SBL, GLP, OBL AND QOBL STAND FOR PSEUDO-RANDOM NUMBER GENERATOR, CHAOTIC

NUMBER GENERATOR, SOBOL SET, GOOD LATTICE POINTS, OPPOSITION-BASED LEARNING AND QUASI-OPPOSITION-BASED LEARNING, RESPECTIVELY. B,
M, W, A AND S STAND FOR THE BEST, MEAN, WORST, AVERAGE AND STANDARD DEVIATION OF 51 RUNS, RESPECTIVELY.

Init. Stat. Group 1 Group 2 Group 3 Group 4 Group 5
F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

PRNG

B 5.0e+05 1.9e+04 2.0e+01 1.7e+10 1.5e+06 1.1e+06 5.1e+07 8.9e+13 1.4e+08 9.3e+07 3.9e+10 4.5e+08 4.6e+09 9.6e+10 6.1e+07
M 4.2e+06 2.0e+04 2.1e+01 4.3e+10 2.2e+06 1.1e+06 1.2e+08 3.5e+14 2.1e+08 9.4e+07 1.5e+11 5.1e+09 8.6e+09 2.0e+11 6.8e+09
W 3.9e+08 2.2e+04 2.1e+01 9.0e+10 3.2e+06 1.1e+06 8.5e+08 7.9e+14 2.8e+08 9.5e+07 6.4e+11 2.0e+10 1.5e+10 4.3e+11 6.7e+11
A 3.3e+07 2.0e+04 2.1e+01 4.6e+10 2.3e+06 1.1e+06 1.5e+08 3.7e+14 2.1e+08 9.4e+07 1.7e+11 6.0e+09 8.9e+09 2.1e+11 5.2e+10
S 8.0e+07 9.2e+02 8.9e-02 1.7e+10 4.1e+05 1.1e+03 1.2e+08 1.7e+14 3.0e+07 2.5e+05 1.1e+11 4.9e+09 2.1e+09 8.4e+10 1.2e+11

CNG

B 7.0e+05 1.7e+04 2.1e+01 2.2e+10 1.5e+06 1.1e+06 5.4e+07 9.8e+13 1.5e+08 9.3e+07 4.2e+10 3.7e+08 4.2e+09 9.7e+10 1.7e+08
M 5.6e+06 2.0e+04 2.1e+01 4.1e+10 2.2e+06 1.1e+06 1.3e+08 3.4e+14 2.0e+08 9.4e+07 1.5e+11 6.0e+09 8.3e+09 2.0e+11 1.1e+10
W 2.6e+08 2.3e+04 2.1e+01 7.4e+10 3.1e+06 1.1e+06 4.5e+08 7.8e+14 2.6e+08 9.4e+07 4.6e+11 1.8e+10 1.2e+10 4.9e+11 6.3e+11
A 2.1e+07 2.0e+04 2.1e+01 4.4e+10 2.2e+06 1.1e+06 1.5e+08 3.4e+14 2.0e+08 9.4e+07 1.8e+11 6.4e+09 8.1e+09 2.2e+11 5.2e+10
S 4.2e+07 9.7e+02 8.2e-02 1.4e+10 4.0e+05 1.1e+03 8.0e+07 1.7e+14 2.8e+07 2.7e+05 1.1e+11 4.2e+09 1.9e+09 8.6e+10 1.1e+11

SBL

B 8.8e+05 1.8e+04 2.0e+01 1.6e+10 1.5e+06 1.1e+06 4.6e+07 1.0e+14 1.4e+08 9.3e+07 6.7e+10 3.9e+08 5.3e+09 8.2e+10 6.6e+06
M 7.7e+06 2.0e+04 2.1e+01 4.4e+10 2.2e+06 1.1e+06 1.4e+08 3.4e+14 2.2e+08 9.4e+07 1.8e+11 4.2e+09 8.7e+09 2.1e+11 1.0e+07
W 2.2e+08 2.3e+04 2.1e+01 9.4e+10 3.3e+06 1.1e+06 4.5e+08 6.0e+14 2.8e+08 9.5e+07 4.3e+11 1.1e+10 1.5e+10 4.4e+11 1.5e+07
A 2.1e+07 2.0e+04 2.1e+01 4.6e+10 2.3e+06 1.1e+06 1.8e+08 3.3e+14 2.1e+08 9.4e+07 2.0e+11 4.8e+09 9.2e+09 2.2e+11 1.0e+07
S 3.7e+07 1.0e+03 9.9e-02 1.9e+10 4.1e+05 9.4e+02 1.2e+08 1.2e+14 3.4e+07 2.4e+05 9.3e+10 3.2e+09 2.3e+09 8.0e+10 2.0e+06

GLP

B 1.0e+06 1.8e+04 2.0e+01 1.8e+10 1.2e+06 1.1e+06 6.2e+07 8.5e+13 1.5e+08 9.4e+07 1.5e+10 1.6e+08 4.0e+09 7.7e+10 7.0e+06
M 1.1e+07 2.0e+04 2.1e+01 4.5e+10 2.3e+06 1.1e+06 1.3e+08 3.4e+14 2.0e+08 9.4e+07 1.3e+11 4.7e+09 7.5e+09 2.2e+11 9.7e+06
W 2.0e+08 2.2e+04 2.1e+01 1.2e+11 3.4e+06 1.1e+06 5.1e+08 7.6e+14 3.0e+08 9.5e+07 6.7e+11 1.8e+10 1.5e+10 3.7e+11 2.0e+07
A 3.6e+07 2.0e+04 2.1e+01 4.7e+10 2.3e+06 1.1e+06 1.6e+08 3.4e+14 2.1e+08 9.4e+07 1.6e+11 6.0e+09 7.9e+09 2.2e+11 1.0e+07
S 5.1e+07 8.0e+02 1.0e-01 2.0e+10 4.8e+05 1.2e+03 8.5e+07 1.4e+14 3.0e+07 2.2e+05 1.0e+11 4.7e+09 2.4e+09 8.2e+10 2.6e+06

OBL

B 8.9e+05 1.8e+04 2.0e+01 1.3e+10 1.2e+06 1.1e+06 4.1e+07 1.1e+14 1.5e+08 9.3e+07 3.6e+10 6.0e+08 3.8e+09 9.9e+10 1.5e+08
M 4.8e+06 2.0e+04 2.1e+01 4.4e+10 2.3e+06 1.1e+06 1.3e+08 3.0e+14 2.1e+08 9.4e+07 1.6e+11 4.2e+09 8.2e+09 1.9e+11 9.8e+09
W 9.1e+08 2.3e+04 2.1e+01 8.9e+10 3.3e+06 1.1e+06 7.6e+08 7.4e+14 3.1e+08 9.4e+07 4.5e+11 1.5e+10 1.3e+10 5.1e+11 4.4e+11
A 5.5e+07 2.0e+04 2.1e+01 4.6e+10 2.3e+06 1.1e+06 1.7e+08 3.3e+14 2.1e+08 9.4e+07 1.7e+11 5.2e+09 8.2e+09 2.2e+11 3.6e+10
S 4.6e+07 8.0e+02 1.0e-01 1.7e+10 4.1e+05 1.0e+03 1.0e+08 1.4e+14 3.5e+07 2.2e+05 1.4e+11 4.1e+09 1.9e+09 9.0e+10 2.5e+11

QOBL

B 6.8e+05 1.9e+04 2.0e+01 1.9e+10 1.4e+06 1.1e+06 5.3e+07 6.5e+13 1.7e+08 9.3e+07 3.6e+10 5.0e+08 4.5e+09 1.1e+11 3.9e+08
M 4.0e+06 2.1e+04 2.1e+01 4.7e+10 2.2e+06 1.1e+06 1.4e+08 3.3e+14 2.2e+08 9.4e+07 1.8e+11 4.4e+09 7.8e+09 1.8e+11 2.1e+10
W 2.6e+08 2.2e+04 2.1e+01 9.0e+10 3.4e+06 1.1e+06 5.4e+08 6.5e+14 3.0e+08 9.4e+07 7.3e+11 1.8e+10 1.3e+10 5.5e+11 1.7e+12
A 1.6e+07 2.0e+04 2.1e+01 4.7e+10 2.3e+06 1.1e+06 1.7e+08 3.4e+14 2.2e+08 9.4e+07 2.2e+11 5.4e+09 8.0e+09 2.0e+11 8.9e+10
S 4.6e+07 8.0e+02 1.0e-01 1.7e+10 4.1e+05 1.0e+03 1.0e+08 1.4e+14 3.5e+07 2.2e+05 1.4e+11 4.1e+09 1.9e+09 9.0e+10 2.5e+11

studied six well-known population initialization techniques.
The obtained results from the potentially effective techniques
indicate that some improvements may be expected by employ-
ing advanced initializers on large scale problems. However, ad-
vanced non-parametric statistical tools show that the improve-
ments are not statistically significant when larger population
sizes are used. This new finding challenges the common belief
of the effect of advanced initialization techniques on EAs in
dealing with large scale problems.

New findings from this study suggest future studies on
population initialization techniques to be carried out with extra
considerations. Firstly, the significant effects of main control
parameters, especially population size, should not be neglected.
Secondly, advance statistical tests must be employed to validate
the findings. Otherwise, minor enhancements may wrongly
be reported as significant improvements. To generalize the
findings to other EA models, further investigations are yet
required to be done on this topic.

ACKNOWLEDGEMENT

This work was supported by NSFC under Grant No.
61005051, SRFDP under Grant No. 20100092120027 and
ARC Discovery Grant (DP120102205).

REFERENCES

[1] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of
global optimization, vol. 11, no. 4, pp. 341–359, 1997.

[2] H. A. Abbass, “The self-adaptive pareto differential evolution algo-
rithm,” in Evolutionary Computation, 2002. CEC’02. Proceedings of
the 2002 Congress on, vol. 1. IEEE, 2002, pp. 831–836.

[3] U. K. Chakraborty, Advances in differential evolution. Springer, 2008,
vol. 143.

[4] D. Zaharie, “Critical values for the control parameters of differential
evolution algorithms,” in Proceedings of MENDEL, 2002, pp. 62–67.

[5] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” Evolutionary Computation, IEEE Transactions on,
vol. 15, no. 1, pp. 4–31, 2011.

[6] A. Qin and X. Li, “Differential evolution on the cec-2013 single-
objective continuous optimization testbed,” in Evolutionary Computa-
tion (CEC), 2013 IEEE Congress on. IEEE, 2013, pp. 1099–1106.

[7] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” Evolutionary Computation,
IEEE Transactions on, vol. 10, no. 6, pp. 646–657, 2006.

[8] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “A novel population
initialization method for accelerating evolutionary algorithms,” Comput-
ers & Mathematics with Applications, vol. 53, no. 10, pp. 1605–1614,
2007.

[9] L. Peng, Y. Wang, and G. Dai, “Ude: differential evolution with uni-
form design,” in Parallel Architectures, Algorithms and Programming
(PAAP), 2010 Third International Symposium on. IEEE, 2010, pp.
239–246.

[10] M. Ali, M. Pant, and A. Abraham, “Unconventional initialization meth-
ods for differential evolution,” Applied Mathematics and Computation,
2012.

[11] V. V. de Melo and A. C. Botazzo Delbem, “Investigating smart
sampling as a population initialization method for differential evolution
in continuous problems,” Information Sciences, vol. 193, pp. 36–53,
2012.

[12] B. Kazimipour, X. Li, and A. Qin, “Initialization methods for large
scale global optimization,” in Evolutionary Computation (CEC), 2013
IEEE Congress on. IEEE, 2013, pp. 2750–2757.

[13] R. W. Morrison, “Dispersion-based population initialization,” in Genetic
and Evolutionary ComputationGECCO 2003. Springer, 2003, pp.
1210–1221.

[14] B. Kazimipour, X. Li, and A. Qin, “A review of population initialization

2410

techniques for evolutionary algorithms,” in Evolutionary Computation
(CEC), 2014 IEEE Congress on. IEEE, 2014.

[15] B. Kazimipour, B. Salehi, and M. Z. Jahromi, “A novel genetic-based
instance selection method: Using a divide and conquer approach,” in
Artificial Intelligence and Signal Processing (AISP), 2012 16th CSI
International Symposium on. IEEE, 2012, pp. 397–402.

[16] B. Kazimipour, M. N. Omidvar, X. Li, and A. Qin, “A novel hybridiza-
tion of opposition-based learning and cooperative co-evolutionary for
large-scale optimization,” in Evolutionary Computation (CEC), 2014
IEEE Congress on. IEEE, 2014.

[17] K. V. Price, R. M. Storn, and J. A. Lampinen, “Differential evolution
a practical approach to global optimization,” 2005.

[18] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in Proceedings of the 2005
conference on Genetic and evolutionary computation. ACM, 2005, pp.
991–998.

[19] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Evolutionary Computation,
2005. The 2005 IEEE Congress on, vol. 2. IEEE, 2005, pp. 1785–
1791.

[20] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, no. 2, pp. 1679–
1696, 2011.

[21] S. Rahnamayan, H. R. Tizhoosh, and M. M. Salama, “Quasi-
oppositional differential evolution,” in Evolutionary Computation, 2007.
CEC 2007. IEEE Congress on. IEEE, 2007, pp. 2229–2236.

[22] M. Clerc, “Initialisations for particle swarm optimisation,” Online at
http://clerc. maurice. free. fr/pso, 2008.

[23] M. Pant, M. Ali, and V. Singh, “Differential evolution using quadratic
interpolation for initializing the population,” in Advance Computing
Conference, 2009. IACC 2009. IEEE International. IEEE, 2009, pp.
375–380.

[24] S. Kimura and K. Matsumura, “Genetic algorithms using low-
discrepancy sequences,” in Proceedings of the 2005 conference on
Genetic and evolutionary computation. ACM, 2005, pp. 1341–1346.

[25] Z. Ma and G. A. Vandenbosch, “Impact of random number generators
on the performance of particle swarm optimization in antenna design,”
in Antennas and Propagation (EUCAP), 2012 6th European Conference
on. IEEE, 2012, pp. 925–929.

[26] A. Gutiérrez, M. Lanza, I. Barriuso, L. Valle, M. Domingo, J. Perez, and
J. Basterrechea, “Comparison of different pso initialization techniques
for high dimensional search space problems: A test with fss and antenna
arrays,” in Antennas and Propagation (EUCAP), Proceedings of the 5th
European Conference on. IEEE, 2011, pp. 965–969.

[27] Y. Gao and Y.-J. Wang, “A memetic differential evolutionary algorithm
for high dimensional functions’ optimization,” in Natural Computation,
2007. ICNC 2007. Third International Conference on, vol. 4. IEEE,
2007, pp. 188–192.

[28] N. Dong, C.-H. Wu, W.-H. Ip, Z.-Q. Chen, C.-Y. Chan, and K.-
L. Yung, “An opposition-based chaotic ga/pso hybrid algorithm and
its application in circle detection,” Computers & Mathematics with
Applications, vol. 64, no. 6, pp. 1886–1902, 2012.

[29] P. Bratley and B. L. Fox, “Algorithm 659: Implementing sobol’s
quasirandom sequence generator,” ACM Transactions on Mathematical
Software (TOMS), vol. 14, no. 1, pp. 88–100, 1988.

[30] I. H. Sloan and S. Joe, Lattice methods for multiple integration. Oxford
University Press, 1994.

[31] H. Maaranen, K. Miettinen, and M. M. Mäkelä, “Quasi-random initial
population for genetic algorithms,” Computers & Mathematics with
Applications, vol. 47, no. 12, pp. 1885–1895, 2004.

[32] W. J. Morokoff and R. E. Caflisch, “Quasi-random sequences and their
discrepancies,” SIAM Journal on Scientific Computing, vol. 15, no. 6,
pp. 1251–1279, 1994.

[33] X. Wang and I. H. Sloan, “Low discrepancy sequences in high
dimensions: How well are their projections distributed?” Journal of
Computational and Applied Mathematics, vol. 213, no. 2, pp. 366–386,
2008.

[34] Q. Xu, L. Wang, N. Wang, X. Hei, and L. Zhao, “A review of

opposition-based learning from 2005 to 2012,” Engineering Applica-
tions of Artificial Intelligence, 2014.

[35] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition versus
randomness in soft computing techniques,” Applied Soft Computing,
vol. 8, no. 2, pp. 906–918, 2008.

[36] X. Li, K. Tang, M. N. Omidvar, Z. Yang, K. Qin, and H. China,
“Benchmark functions for the cec2013 special session and competition
on large-scale global optimization,” gene, vol. 7, p. 33, 2013.

[37] K. Tang, X. Yáo, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen,
and Z. Yang, “Benchmark functions for the cec2008 special session
and competition on large scale global optimization,” Nature Inspired
Computation and Applications Laboratory, USTC, China, 2007.

[38] M. Matsumoto and T. Nishimura, “Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number gen-
erator,” ACM Transactions on Modeling and Computer Simulation
(TOMACS), vol. 8, no. 1, pp. 3–30, 1998.

[39] J. Derrac, S. Garcı́a, D. Molina, and F. Herrera, “A practical tutorial
on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms,” Swarm and
Evolutionary Computation, vol. 1, no. 1, pp. 3–18, 2011.

[40] S. Garcı́a, A. Fernández, J. Luengo, and F. Herrera, “Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: Experimental analysis of
power,” Information Sciences, vol. 180, no. 10, pp. 2044–2064, 2010.

2411

