

Abstract—Deep Learning has attracted much attention
recently since it can extract features taking account into the
high-order knowledge. In this paper, we examine the Deep
Boltzmann Machines for scene information of the Mario AI
Championship. That is, the proposed method is composed of
two parts: the DBM and a recurrent neural network. The DBM
extracts features behind perceptual scene information, and it
learns off-line. On the other hand, the recurrent neural network
utilizes features to decide actions of the Mario AI agents, and it
learns on-line by using Particle Swarm Optimization.
Experimental results show the effectiveness of the proposed
method.

I. INTRODUCTION
HIS paper investigates the nature of Deep Boltzmann

Machines [1][2] which applies inputs of evolutionary
learning, i.e., scenes in the Mario AI Championships

[3][4]. Deep Learning including the Deep Boltzmann
Machines can extract higher-level features from learning data,
by using a number of layers of Neural Networks. Such
higher-level features are different with conventional features
such as edge detection. The features extracted by the Deep
Learning methods have higher-order information taking
account into not only the local relationships in an image but
also the relationships among low-level features. The DBM
are usually used as feature extractors. The DBM show the
distinguished performances on benchmark problems of
speech recognitions and image recognitions [1][2]. In the case
of Mario AI, scene information observed in each time step
might have similar property of the images. This is our
motivation of applying the DBM to the Mario AI
Championships.

In this paper, we introduce two-staged method for
constituting Mario AI agents: First, a large number of scenes
are collected in advance by using other agents, i.e., heuristic
agents, agents evolved in easier difficulties. Collected scenes
are used as learning data of the DBM. Off-line learning of the
DBM is carried out before the following second stage. The
learning at the second stage is for acquiring proper rules of
input-actions, meanwhile the one at the first stage is for the
dimensionality reduction of scene inputs in video games. That
is, in the second-stage learning, game plays are iterated
during evolution. At each time step in the game plays, agents
observe the scene information, and must decide their actions.
In the proposed approach, the agents don’t use the scene
information directly: The observed scene is transferred into a

H. Handa is with Kindai University, Kowakae 3-4-1, Higashi-Osaka

577-8502, JAPAN (corresponding author to provide phone: +81 6 6721
2332; fax: +81 6 6727 2024; e-mail: handa@ info.kindai.ac.jp).

This work was partially supported by the Grant-in-Aid for Young
Scientists (B) of MEXT, Japan (21700254, 23700267), and by Grant-in-Aid
for Scientific Research (B) of MEXT, Japan (26330291).

feature vector by using the DBM learned in the first stage.
Therefore, the evolutionary agents decide their action by
using the feature vector, instead of the scene information.
This decision is carried out a recurrent neural network as
known as Elman network [5]. Hence, evolutionary algorithms
try to improve the score of plays by changing the weight
vector of the recurrent neural networks.

Related works are summarized: “Curse of dimensionality”
[6] is also famous in reinforcement learning community so
that many researches are examined a sort of the
dimensionality reduction techniques [7][8]. On the other hand,
in the case of the learning classifier systems [9] and the
neruroevolution [10], it seems that to reduce such
higher-dimensionality does not attract much attention since
the LCS and the neuroevolution are expected to learn not only
behavior rules but also the feature extraction if in
higher-dimensional case. The conventional evolutionary
approaches for Mario AI Championships also constitute the
agents without the dimensionality reduction techniques or the
feature extraction methods. [11][12]. In our previous study,
the Manifold Leaning methods, a sort of non-linear
dimensionality reduction techniques, are used for
evolutionary learning [3][13].

Organization of this paper is summarized as follows: The
next section introduces the Mario AI Championship by
referring to game rules, and the preprocessing of scenes.
Section 3 reminds you of the Deep Boltzmann Machine,
including how to cope with the scene information in Mario AI.
Section 4 introduces a proposed framework. Experimental
results are shown in Section 5.

II. MARIO AI CHAMPIONSHIP

A. Overview
This paper employs the software library provided by the

competition organizers [3][4]. The Mario AI Championship
is one of competitions held in IEEE CIS conferences and
symposiums. There are a few tracks in the Mario AI
Championship: constituting Non Player Characters (NPC),
leaning of NPC, level generation, and Turing test track.

In the software library, we can assign two parameters to
decide levels to play: the difficulty and the random seed.
Hence, we can examine various levels with the almost same
difficulty, and we can iterate the identically same level for
learning by assigning the same parameters.

The software library provides us the simulated
environments. At each time step, the learning agents should
perceive inputs, and take actions: The learning agents can
perceive their states at surrounding cells such that the size of
cells is 22x22. Moreover, the positions of enemies,
MarioOnGround, MarioAbleToJump, and so on, can be
observed. For actions, there are five buttons: LEFT, RIGHT,

Deep Boltzmann Machine for Evolutionary Agents of Mario AI
Handa Hisashi

T

36

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

DOWN, JUMP, and SPEED. The LEFT and
are used for deciding the direction that the a
The agents crouch if the DOWN button is pr
can jump if the JUMP button is press
MarioOnGround is true. The height of the ju
the duration time of which the JUMP button
flag MarioAbleToJump is true. This means,
jump without any limitation. The SPEED b
the velocity of the agents. The distance of j
by the velocity of the agents, i.e., faster agen
bigger holes and obstacles.

The goal of the agents is located at the mos
levels. The game is over if the agents are ca
the agents run out time for play, and the agen
In this paper, the settings of the simulator
that the agents are of invulnerable mode suc
are not killed even if any enemies catch
reason of the settings is that the main purpo
to investigate the effectiveness of the D
Machines for scene information.

B. Scene Information and its Preprocessing
Fig. 1. (a) depicts the original perceptu

agents: As mentioned in the previous subse
the inputs is 22x22. The center cell filled
color indicates the position of the agents
perceptual inputs, the agents located only in
is, other cells are moved if the agents are m
with green color and yellow ocher mean the
ground in the level, respectively. The blank
ground denote areas which are not shown in
The second, third, and fourth cells from the
ground (cells with yellow ocher). They rep
hole.

As preprocessing for the original perc
scene information is transformed: (1) the
and (2) the absolute coordination systems.
kinds of grounds, obstacles, and blocks. All
obstacles are transformed a unified type, e.
Similarly, all the blocks are also transformed
block cell. Therefore, any cell can take eithe
ground, block, or blank.

The second transformation is of the coor
As depicted in Fig. 1. (b), the vertical posit
of the game screen is fixed: the 6th cell from
the inputs. The blank cells from the 1st cell
changed into the cell at the 6th cell. Therefo
holes which should have the blank cell at th
cells from the 1st cell to the 5th cell are set
brown cells in Fig. 1. (b) are newly change
cell to ground cell. Note that the cells in the h
blank cell.

III. DEEP BOLTZMANN MACH

A. Restricted Boltzmann Machines
Restricted Boltzmann Machine (RBM)

network as shown in Fig.2: the input layer
layer ݄. Each neuron in the input layer is c

d RIGHT buttons
agents should go.
ressed. The agents
ed and the flag
ump is decided by
is pressed and the
the agents cannot

button can change
jumps is affected
nts can jump over

st right area in the
aught by enemies,
nts fall into holes.
are changed such
ch that the agents

the agents. The
ose of this study is
Deep Boltzmann

ual inputs of the
ection, the size of

in the light-blue
s. In the orginal
n the center. That
moved. The cells
obstacles, and the
k cells below the

n the game screen.
e right, there is no
presents there is a

eptual input, the
cell information,
We have several

l the grounds and
.g., a ground cell.
d a unified type: a
er of three values,

rdination systems:
tion of the bottom
the bottom cell of
to the 5th cell are

ore, in the case of
he 6th cell, all the
to be blank. The

ed from the blank
hole remain as the

HINES

is a two-layered ݒ and the hidden
onnected with all

the neurons in the hidden layer, vice
hidden layer is connected with all the
However, there is no connection betw
layer.

Energy function for this RBM can
 Eሺv, hሻ ൌ െ w୧୨h୧v୨୫

୨ୀଵ
୬

୧ୀଵ െ
where ݒ and ݄ denote the ݆th neuro
the ݅th neuron in the hidden layer, res
indicate a weight value, a bias term
bias term for the hidden layer, repec
nymber of neurons in the input lay
respectively. By using this ener
probability pሺ࢜, ሻࢎ can be represe
equation: pሺ࢜, ሻࢎ ൌ ݖ1 exp൫െE
 where ݖ denotes a normalization terݖ ൌ exp ሺെEሺࢎ
The parameters in pሺ࢜, ሻ is iteratiࢎ
the following probability distribu
observation distribution: pሺ࢜ሻ ൌ pሺࢎ࢜
This maximum-likelihood estimatio
Divergence Learning.
For input ࢜ , the activation value
hidden layer is calculated as follows

(a) Original input

Fig. 1. Preprocess of scenes.

Fig. 2. A Depiction of Restricted Boltzm

versa, each neuron in the
e neuon in the input layer.
ween neurons in the same

n be written as follows:

 b୨v୨୫
୨ୀଵ െ c୧୬

୧ୀଵ h୧,
on in the input layer and
spectively. ݓ, ܾ, and ܿ
for the input layer, and a
tively. ݉ and ݊ mean the

yer and the hidden layer,
rgy function, the joint
ented by the following

Eሺ࢜, ,ሻ൯ࢎ
rm represented by ሺ࢜, .ሻሻࢎ
ively modified such that
ution pሺ࢜ሻ is closed to

,࢜ .ሻࢎ
on is called Constrastive

of the neuron ݄ in the
s:

 (b) Transformed input

mann Machine.

37

 pሺ݄ ൌ ሻ࢜|1 ൌ σ ቌܿ ݒݓ
ୀଵ ቍ

where σ stands for Sigmoid function.

B. Deep Boltzmann Machines
Deep Boltzmann Machines (DBM) have

delineated in Fig. 3. The DBM in this figur
five RBM. The parameter learning of the DB
by iterating the learning of the RBM: Supp
data is represented by ࢜ሺௗሻሺ݀ ൌ 1, … , ሻ, wܦ
the number of the learning data. The first R
i.e., the input layer ࢜ଵand the hidden layer
using learning method in the previous
learning data ࢜ሺௗሻ is presented to ࢜ଵ . Af
learning data for the succeeding RBM is ge
equation (1). This procedure is iterated by la

C. Application of DBM to the Scene Informa
The learning data for the DBM is a large

which are collected in advance by using oth
the other agents examine a large number o
same difficulty with different random seeds
not used for the evolutionary learning
subsequent sections. The number ܦ of the le
to be 10,000. These learning data is used
DBM. In evolutionary learning, the DBM is
even if unknown scenes are observed. The D

Fig. 4. The number of activated learning data for
order of neuron is sorted by the number of activated

Fig. 3. A Deep Boltzmann Machine used in this pap

ቍ, ሺ1ሻ

e many layers as
re is composed of
BM is carried out
pose that learning

where ܦ represents
RBM in the DBM,
r ࢎଵis learned by
subsection. The

fter learning, the
enerated by using
ayer to layer.

ation of Mario AI
number of scenes

her agents. Hence,
of levels with the
s. These levels are

which describes
earning data is set

d for learning the
s not learned at all
DBM is only used

for generating feature vectors in th
phase.

We examine one RBM (484 inp
and 4 DBM, including Fig. 3. 4 DBM
(Fig.3), 5-layer, 4-layer, and 3-laye
neurons for each DBM is summarize

- 6-layer DBM: 484-240-120-6
- 5-layer DBM: 484-240-120-6
- 4-layer DBM: 484-240-120-1
- 3-layer DBM: 484-240-12

10,000 learning data is given to each
DBM.

Fig. 4. shows the number of act
each neuron, where the activated l
corresponding learning data activሼ݄ ൌ ሽ as in equation (1). The o࢜|1
by the number of activated learning
Fig. 4. is assigned by this order. The
bars for 3L-DBM and 4L-DBM, re
missing neurons activate all the lear
learning data. The result of the RBM
less activated neurons. The results o
are similar but the variance of the num
6L-DBM is small than the one of the

After learning, the value of each
converges to 0 or 1. We regard th
threshold value 0.5. Therefore, each
into a binary vector whose size is 12
of learning data per encoded binary
the learning data encoded into the
regarded as members in the same clu
beginning of this subsection, we ha
Each algorithms have 12 neurons
number of clusters is 2 ൌ 2ଵଶ ൌ 4
in Fig. 5. denotes clusters’ ID. Thes
ascending order of clusters’ size, w
number of learning data with the sam
In the case of the RBM, and the 3L
big clusters. Meanwhile, 5L-DBM a
number of small clusters. It may
resolution of the DBM is fine.

each neuron: The

d learning data.

per.

Fig. 5. The number of scenes in clusters, w
(learning data) with the same output.

he Evolutionary Learning

puts -12 hidden neurons)
M consist of 6-layer DBM
er DBM. The number of
ed as follows:
60-30-12
60-12
12

h of the RBM and the four

tivated learning data for
learning data means that
vates a certain neuron
order of neurons is sorted
g data. The neuron ID in
ere are only 5 bars and 10
espectively. It means that
rning data or none of the

M show there are more and
of 6L-DBM and 5L-DBM
mber of activations of the
e 5L-DBM.
neuron for learning data

hem either of 0 or 1 by
h learning data is encoded
2. Fig. 5. plots the number
y vector (cluster). That is,
 same binary vector are

uster. As mentioned in the
ave 10,000 learning data. ሺ݉ ൌ 12). The possible 4096. The horizontal axis
se ID are assigned by the
where the size means the
me activated binary vector.
L-DBM, there are several
and 6L-DBM have a large

imply the classification

where cluster denotes scenes

38

Fig. 6. shows the various averaged imag
data. As mentioned in Section 2, each cell of
can take one of three values (blank, ground,
cell, the ratio of values is calculated, e.g., (0
the ratio is multiplied by 255: (204, 52, 0). T
regarded as the strength of color (Blue, Gree

The center image in Fig. 6. indicates an a
the learning data which have the same bina
The surrounding images are averaged imag
data with a 1-bit different output vector a
image. Hence, the surrounding images are 2
each other. Numbers below images mean th
learning data to be used for generatin
averaged image.

These averaged images have similar tend
two ground cells from the bottom of scree
seven cells are appeared in the averaged im
are captured in the averaged image with few

IV. PROPOSED METHOD

A. Overview
Fig. 7. depicts the framework of the propo

proposed method consists of two parts:
recurrent neural networks. The learning of th
out in advance. That is, evolutionary algorith
improve the weights of the recurrent neur
task of the DBM is to extract features from p
i.e., 484 cells’ information.

The inputs of the recurrent neural network
the output of the DBM, MarioAbleToJump,
(cf. section 2), and the distance from the gro

Each agent, i.e., the weight vector of the
network, is examined one game play.
predefined in the software library is used for
agent. This fitness function takes account i
the goal, how many coins are collected,
remains, and so on.

101 21 3

17 85

13 4 8

Fig. 6. Averaged images: base image (MIDDLE
outputs of DBM for surrounding images are 1-bit
one of the base image. Hence, surrounding images h
outputs of the DBM with each other.

101 21 3

17 85

13 4 8

Fig. 6. Averaged images: base image (MIDDLE
outputs of DBM for surrounding images are 1-bit
one of the base image. Hence, surrounding images h
outputs of the DBM with each other.

ge of the learning
f the learning data
, block). For each
0.8, 0.2, 0). Then,

These numbers are
en, Red).

averaged image of
ary output vector.
es of the learning

against the center
-bit different with
he number of the

ng corresponding

dencies: there are
en so that totally
mages. The holes

w learning data.

osed method. The
: the DBM and
he DBM is carried
hms are applied to
ral networks. The
perceptual inputs,

k are composed of
 MarioOnGround

ound.
e recurrent neural
Fitness function

r evaluation of the
into how close to
how much time

B. Recurrent Neural Networks
The recurrent neural network used

the right hand of Fig. 7., which is k
There are three layers in the rec
Suppose that the neurons in the in
layer, and the output layer, are represࡴ ൌ ሺܪଵ, … , ࡻ ಹሻ, andܪ ൌ ൫ ଵܱ, …
neurons at the previous time step
denoted by ࡴԢ ൌ ሺܪԢଵ, … , Ԣಹሻ. Tܪ
input layer and the hidden layer,
previous time step and the hidden la
and the output layer, are represented
respectively. ݊ூ, ݊ு, and ݊ை stand fo
in the input layer, in the hidden lay
respectively.

The output of the recurrent neural
follows’ ܪ ൌ σ ቌ ܶு ܫூுݓ

ୀଵ
ܱ ൌ σ ቌ ܶை ಹݓ

ୀଵ
where ܶு and ܶை denote the
corresponding neuron in the hidde
layer. σ is a sigmoid function.
The number of neuron in the outpu
The ݅th button is pressed if ܱ 0.
released.

C. Particle Swarm Optimization
As an evolutionary algorithm, we
Optimization algorithms (PSO). A
recurrent neural networks ݓூு, ݓுᇱு
previous subsection are regarded

 307

 5

 3

E CENTER); the
different with the

have 2-bit different

 307

 5

 3

E CENTER); the
different with the

have 2-bit different

Fig. 7. A depiction of the proposed method

d in this paper is shown in
nown as Elman network.
current neural network:

nput layer, in the hidden
sented by ࡵ ൌ ሺܫଵ, … , , ,ሻܫ ܱೀ൯, respectively. The

p in the hidden layer is
The weights between the

the hidden layer at the
ayer, and the hidden layer

by ݓூு, ݓுᇱு, and ݓுை,
or the number of neurons
yer, and the output layer,

networks is calculated as

 ᇱಹܪுᇲுݓ
ୀଵ ቍ,

 ,ቍܪுைݓ
threshold value for

en layer, and the output

ut layer ݊ை is set to be 5.
Otherwise, the button is

employ Particle Swarm
ll the parameters of the ு, ݓுை, ܶு, and ܶைin the
as a vector ࢞ , i.e., an

d.

39

individual. This paper employ Clerc’s co
method [13][14]:
1. Initialize individuals ࢞, and their velo
2. Evaluate individuals by playing a gam
3. Set the best individual during search,

the personal best for each individual, c
4. Update the velocities and the individua ࢂ ՚ K כ ሾࢂ cଵ כ randሺሻ כ ሺpbest cଶ כ randሺሻ כ ሺgbest െ ࢞ ՚ ࢞ ࢂ
5. Go back to Step 2. until terminal criter
The parameters cଵ, and cଶ are set to be 2.05.
iscalculated by the following equation: K ൌ 2ቤ2 െ φ െ ටφ

ଶ െ 4φቤ ൌ
φ ൌ cଵ cଶ

V. EXPERIMENTS

A. Experimental Settings
This subsection describes experimental

following subsections. The population size
to be 100. The number of generations is set
totally, 10,000 fitness evaluations are exam
accordance with the setting of the competiti

Fig. 8. Temporal changes of best fitness: averag
runs; the results of DBM (UPPER) and RBM (LOW

onstriction factor

city ࢂ
e per individual
called gbest, and

called pbesti
als: െ ሻ࢞ െ ሻሿ࢞
ria hold.
. The parameter K

0.72

 settings for the
of the PSO is set
to be 100. Hence,
mined. This is in
on.

The horizontal and the vertical ax
the following subsections denote th
and the best fitness value averag
difficulty of games is set to be 1. It
the level. Therefore, agents must lea
holes.

B. Effectiveness of “Deep” Learning
This subsection examines the 6-la

introduced in Section 3. The subseq
method, i.e., is the recurrent neura
Section 4. The number of neurons i
DBM and the RBM are the same: 48
neurons in the hidden layer for the la
the RBM are set to be either of
accordance with the number of t
number of input neurons of the recu
varied. Fig. 8. shows the experiment
method with the DBM (UPPER
(LOWER).

The DBM with 12 neurons outper
difference between the RBM and th
extracted if the number of neurons i
“deepness” might bring in good eff
learning of the recurrent neural netw

Fig. 5. told up there are more 1,2
with 12 neurons. It is greater than t
with 10 neurons (at most 1,024 clust
why the DBM with 10 neurons
performance.

C. Comparison with other methods
This section compares the p

evolutionary learning with the Man
Manifold Learning) [4], and two n
inputs [11]. Two neural networks ar
and large NN. The small NN has the
surrounding the agents. On the othe
49 cells surrounding the agents. I
Manifold Learning, Isomap is used

ged results over 20
WER)

Fig. 9. Temporal changes of best fitn
runs; comparison with NN with Manif
(small and large)

es of the graphs shown in
he number of generations
ged over 20 runs. The
means there are holes in

arn how to jump over the

g
ayers DBM and the RBM
uent part of the proposed
al networks presented in
in the input layer for the
84. The number of hidden
ast layer of the DBM and
10, 12, 14, and 16. In

the hidden neurons, the
urrent neural networks is
tal results of the proposed
R) and with the RBM

rforms other settings. The
he DBM is only features
is the same. To introduce
fects for the evolutionary

works.
200 clusters in the DBM
the capacity of the DBM
ters). It would be a reason
s did not show better

proposed method with
nifold learning (nn with
eural networks with raw

re composed of small NN
e input of the state 9 cells
er hand, the large NN has
In the case of nn with

d as a Manifold Learning

ness: averaged results over 20
fold Learning, raw input NN

40

method [16]. As in the proposed method, Elman Network is
used as neural networks in these algorithms.

Fig. 9. shows the experimental results. Note that the
performance of the small NN is better than the one of the
large NN. This implies further addition of input cells may not
work. In paper [4], the difficulty of levels is set to be 0 while it
is set to be 1 in this paper. Main difference of the difficulty 0
and 1 is the existence of holes. Hence, the agent by nn with
Manifold Learning could not cope with holes. However, the
agent with the proposed method jumps over such holes.

VI. CONCLUSION
In this paper, the Deep Boltzmann Machine is applied into

the scene information in Mario AI Championship. By using
features extracted by the Deep Boltzmann Machine,
subsequent neuroevolution worked well. That is, by using the
Deep Boltzmann Machine all the scene information, i.e.,
22x22 cells can be utilized. Our previous method, i.e., nn
with Manifold Learning could not apply games such that the
difficulty of levels is 1, where holes exist. Meanwhile, the
proposed method, i.e., Neural Networks with the Deep
Boltzmann Machine worked well. This is one of contributions
of this paper.

In section 3, the sizes of clusters by the Restricted
Boltzmann Machine and the Deep Boltzmann Machine are
compared. “Deeper” Boltzmann Machine had more clusters.
From Fig. 7, similar learning data are classified into the same
clusters. Some exceptional learning data are also clustered
even if cluster’s size is small.

Future work is summarized as follows. Recently, there are
a large number of Deep Learning methods are proposed so
that we would like to examine them for the proposed method.
Neuroevolution for Deep Learning might be promising
research area for evolutionary computation community.

REFERENCES
[1] R. Salakhutdinov, and G. E. Hinton, “Deep Boltzmann machines”,

Proc. JMLR Workshop and Conference Proceedings: AISTATS 2009,
vol. 5, 2009, pp. 448–455.

[2] A. Fischer, and C. Igel, “An Introduction to Restricted Boltzmann
Machines,” Proc. CIARP 2012, LNCS 7441, 2012, pp. 14–36.

[3] S. Karakovsky, and J. Togelius, “Mario AI Benchmark and
Competitions”, IEEE Trans. Computational Intelligence and AI in
Games, Vol.4, No.1, pp. 55–67 (2012)

[4] H. Handa, “Neuroevolution with manifold learning for playing Mario”,
International Journal of Bio-Inspired Computation, Vol. 4, No.1, 2012,
pp. 14–26.

[5] J. L. Elman, “Finding structure in time”, Cognitive Science, Vol. 14,
1990, pp. 179–211.

[6] R. Bellman, “Dynamic Programming”, Dover Publications, reprint
edition, 2003.

[7] T. Tateyama, S. Kawata, and T. Oguchi, “A teaching method using a
self-organizing map for reinforcement learning”, Artificial Life and
Robotics, Vol. 7, No. 4, 2006, pp. 193–197.

[8] H. Handa, A. Ninomiya, T. Horiuchi, T. Konishi, and M. Baba,
“Adaptive State Construction for Reinforcement Learning and its
Application to Robot Navigation Problems”, Proceedings of the 2001
IEEE Systems, Man and Cybernetics Conference, 2001, pp.1436–1441.

[9] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning”, Addison-Wesley, 1989.

[10] X. Yao, “Evolving artificial neural networks”,

[11] J. Togelius, S. Karakaovskiy, J., Koutnik, and J. Schmidhuber, “Super
mario evolution”, Proceedings of IEEE Symposium on Computational
Intelligence and Games (CIG), 2009, pp. 156–161.

[12] S. Bojarski, and C. B. Congdon, “REALM: A Rule-Based Evolutionary
Computation Agent that Learns to Play Mario”, Proceedings of the
2010 IEEE Conference on Computational Intelligence and Games (CIG
2010), 2010, pp.83–90.

[13] H. Handa, “Experimental Analysis of the Effect of Dimensionality
Reduction on Instance-Based Policy Optimization”, PRICAI 2010:
Trends in Artificial Intelligence, 11th Pacific Rim International
Conference on Artificial Intelligence, LNCS6230, 2010, pp.433–444.

[14] R. C. Eberhart, and Y. Shi, “Particle swarm optimization:
developments, applications and resources”, Proceedings of the 2001
IEEE Congress on Evolutionary Computation, Vol.1, 2001, pp.81–86.

[15] M. Clerc, “The swarm and the queen: towards a deterministic and
adaptive particle swarm optimization”, Proceedings of the 1999 IEEE
Congress on Evolutionary Computation, Vol.3, 1999, pp.1951–1957.

[16] J. B. Tenenbaum, V. de Sliva, and J. C. Lagford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction”, Science, Vol.
290, 2000, pp.2319–2323

41

