
 
 

 

  

Abstract—Deep Learning has attracted much attention 
recently since it can extract features taking account into the 
high-order knowledge. In this paper, we examine the Deep 
Boltzmann Machines for scene information of the Mario AI 
Championship. That is, the proposed method is composed of 
two parts: the DBM and a recurrent neural network. The DBM 
extracts features behind perceptual scene information, and it 
learns off-line. On the other hand, the recurrent neural network 
utilizes features to decide actions of the Mario AI agents, and it 
learns on-line by using Particle Swarm Optimization. 
Experimental results show the effectiveness of the proposed 
method. 

I. INTRODUCTION 
HIS  paper investigates the nature of Deep Boltzmann 

Machines [1][2] which applies inputs of evolutionary 
learning, i.e., scenes in the Mario AI Championships 

[3][4]. Deep Learning including the Deep Boltzmann 
Machines can extract higher-level features from learning data, 
by using a number of layers of Neural Networks. Such 
higher-level features are different with conventional features 
such as edge detection. The features extracted by the Deep 
Learning methods have higher-order information taking 
account into not only the local relationships in an image but 
also the relationships among low-level features. The DBM 
are usually used as feature extractors. The DBM show the 
distinguished performances on benchmark problems of 
speech recognitions and image recognitions [1][2]. In the case 
of Mario AI, scene information observed in each time step 
might have similar property of the images. This is our 
motivation of applying the DBM to the Mario AI 
Championships.  

In this paper, we introduce two-staged method for 
constituting Mario AI agents: First, a large number of scenes 
are collected in advance by using other agents, i.e., heuristic 
agents, agents evolved in easier difficulties. Collected scenes 
are used as learning data of the DBM. Off-line learning of the 
DBM is carried out before the following second stage. The 
learning at the second stage is for acquiring proper rules of 
input-actions, meanwhile the one at the first stage is for the 
dimensionality reduction of scene inputs in video games. That 
is, in the second-stage learning, game plays are iterated 
during evolution. At each time step in the game plays, agents 
observe the scene information, and must decide their actions. 
In the proposed approach, the agents don’t use the scene 
information directly: The observed scene is transferred into a 
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feature vector by using the DBM learned in the first stage. 
Therefore, the evolutionary agents decide their action by 
using the feature vector, instead of the scene information. 
This decision is carried out a recurrent neural network as 
known as Elman network [5]. Hence, evolutionary algorithms 
try to improve the score of plays by changing the weight 
vector of the recurrent neural networks. 

Related works are summarized: “Curse of dimensionality” 
[6] is also famous in reinforcement learning community so 
that many researches are examined a sort of the 
dimensionality reduction techniques [7][8]. On the other hand, 
in the case of the learning classifier systems [9] and the 
neruroevolution [10], it seems that to reduce such 
higher-dimensionality does not attract much attention since 
the LCS and the neuroevolution are expected to learn not only 
behavior rules but also the feature extraction if in 
higher-dimensional case. The conventional evolutionary 
approaches for Mario AI Championships also constitute the 
agents without the dimensionality reduction techniques or the 
feature extraction methods. [11][12]. In our previous study, 
the Manifold Leaning methods, a sort of non-linear 
dimensionality reduction techniques, are used for 
evolutionary learning [3][13].   

Organization of this paper is summarized as follows: The 
next section introduces the Mario AI Championship by 
referring to game rules, and the preprocessing of scenes. 
Section 3 reminds you of the Deep Boltzmann Machine, 
including how to cope with the scene information in Mario AI. 
Section 4 introduces a proposed framework. Experimental 
results are shown in Section 5.  

II. MARIO AI CHAMPIONSHIP 

A.  Overview 
This paper employs the software library provided by the 

competition organizers [3][4]. The Mario AI Championship 
is one of competitions held in IEEE CIS conferences and 
symposiums. There are a few tracks in the Mario AI 
Championship: constituting Non Player Characters (NPC), 
leaning of NPC, level generation, and Turing test track.  

In the software library, we can assign two parameters to 
decide levels to play: the difficulty and the random seed. 
Hence, we can examine various levels with the almost same 
difficulty, and we can iterate the identically same level for 
learning by assigning the same parameters. 

The software library provides us the simulated 
environments. At each time step, the learning agents should 
perceive inputs, and take actions: The learning agents can 
perceive their states at surrounding cells such that the size of 
cells is 22x22. Moreover, the positions of enemies, 
MarioOnGround, MarioAbleToJump, and so on, can be 
observed. For actions, there are five buttons: LEFT, RIGHT, 
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DOWN, JUMP, and SPEED. The LEFT and
are used for deciding the direction that the a
The agents crouch if the DOWN button is pr
can jump if the JUMP button is press
MarioOnGround is true. The height of the ju
the duration time of which the JUMP button 
flag MarioAbleToJump is true. This means, 
jump without any limitation. The SPEED b
the velocity of the agents. The distance of j
by the velocity of the agents, i.e., faster agen
bigger holes and obstacles. 

The goal of the agents is located at the mos
levels. The game is over if the agents are ca
the agents run out time for play, and the agen
In this paper, the settings of the simulator 
that the agents are of invulnerable mode suc
are not killed even if any enemies catch 
reason of the settings is that the main purpo
to investigate the effectiveness of the D
Machines for scene information.  

B. Scene Information and its Preprocessing 
Fig. 1. (a) depicts the original perceptu

agents: As mentioned in the previous subse
the inputs is 22x22. The center cell filled 
color indicates the position of the agents
perceptual inputs, the agents located only in
is, other cells are moved if the agents are m
with green color and yellow ocher mean the 
ground in the level, respectively. The blank
ground denote areas which are not shown in
The second, third, and fourth cells from the
ground (cells with yellow ocher).  They rep
hole. 

As preprocessing for the original perc
scene information is transformed: (1) the 
and (2) the absolute coordination systems. 
kinds of grounds, obstacles, and blocks. All
obstacles are transformed a unified type, e.
Similarly, all the blocks are also transformed
block cell. Therefore, any cell can take eithe
ground, block, or blank. 

The second transformation is of the coor
As depicted in Fig. 1. (b), the vertical posit
of the game screen is fixed: the 6th cell from 
the inputs. The blank cells from the 1st cell 
changed into the cell at the 6th cell. Therefo
holes which should have the blank cell at th
cells from the 1st cell to the 5th cell are set 
brown cells in Fig. 1. (b) are newly change
cell to ground cell. Note that the cells in the h
blank cell. 

III. DEEP BOLTZMANN MACH

A. Restricted Boltzmann Machines 
Restricted Boltzmann Machine (RBM) 

network  as shown in Fig.2: the input layer 
layer ݄. Each neuron in the input layer is c

d RIGHT buttons 
agents should go. 
ressed. The agents 
ed and the flag 
ump is decided by 
is pressed and the 
the agents cannot 

button can change 
jumps is affected 
nts can jump over 

st right area in the 
aught by enemies, 
nts fall into holes. 
are changed such 
ch that the agents 

the agents. The 
ose of this study is 
Deep Boltzmann 

ual inputs of the 
ection, the size of 

in the light-blue 
s. In the orginal 
n the center. That 
moved. The cells 
obstacles, and the 
k cells below the 

n the game screen. 
e right, there is no 
presents there is a 

eptual input, the 
cell information, 
We have several 

l the grounds and 
.g., a ground cell. 
d a unified type: a 
er of three values, 

rdination systems: 
tion of the bottom 
the bottom cell of 
to the 5th cell are 

ore, in the case of 
he 6th cell, all the 
to be blank. The 

ed from the blank 
hole remain as the 

HINES 

is a two-layered ݒ and the hidden 
onnected with all 

the neurons in the hidden layer, vice 
hidden layer is connected with all the
However, there is no connection betw
layer. 

Energy function for this RBM can
 Eሺv, hሻ ൌ െ   w୧୨h୧v୨୫

୨ୀଵ
୬

୧ୀଵ െ
where ݒ and ݄ denote the ݆th neuro
the ݅th neuron in the hidden layer, res
indicate a weight value, a bias term 
bias term for the hidden layer, repec
nymber of neurons in the input lay
respectively. By using this ener
probability pሺ࢜, ሻࢎ  can be represe
equation: pሺ࢜, ሻࢎ ൌ ݖ1 exp൫െE
 where ݖ denotes a normalization terݖ ൌ  exp ሺെEሺࢎ
The parameters in pሺ࢜, ሻ is iteratiࢎ
the following probability distribu
observation distribution: pሺ࢜ሻ ൌ  pሺࢎ࢜
This maximum-likelihood estimatio
Divergence Learning. 
For input ࢜ , the activation value 
hidden layer is calculated as follows

(a) Original input          

 
Fig. 1.  Preprocess of scenes. 

 

Fig. 2.  A Depiction of Restricted Boltzm

 

versa, each neuron in the 
e neuon in the input layer. 
ween neurons in the same 

n be written as follows: 

 b୨v୨୫
୨ୀଵ െ  c୧୬

୧ୀଵ h୧, 
on in the input layer and 
spectively. ݓ, ܾ, and ܿ 
for the input layer, and a 
tively. ݉ and ݊ mean the 

yer and the hidden layer, 
rgy function, the joint 
ented by the following 

Eሺ࢜,  ,ሻ൯ࢎ
rm represented by ሺ࢜,  .ሻሻࢎ
ively modified such that 
ution pሺ࢜ሻ  is closed to 

,࢜  .ሻࢎ
on is called Constrastive 

of the neuron ݄  in the 
s: 

 
 (b) Transformed input 

 
mann Machine. 
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                pሺ݄ ൌ ሻ࢜|1 ൌ σ ቌܿ   ݒݓ
ୀଵ ቍ

where σ stands for Sigmoid function. 
 
 

B. Deep Boltzmann Machines 
Deep Boltzmann Machines (DBM) have

delineated in Fig. 3. The DBM in this figur
five RBM. The parameter learning of the DB
by iterating the learning of the RBM: Supp
data is represented by ࢜ሺௗሻሺ݀ ൌ 1, … , ሻ, wܦ
the number of the learning data.  The first R
i.e., the input layer ࢜ଵand the hidden layer
using learning method in the previous 
learning data ࢜ሺௗሻ  is presented to ࢜ଵ . Af
learning data for the succeeding RBM is ge
equation (1). This procedure is iterated by la

C. Application of DBM to the Scene Informa
The learning data for the DBM is a large 

which are collected in advance by using oth
the other agents examine a large number o
same difficulty with different random seeds
not used for the evolutionary learning 
subsequent sections. The number ܦ of the le
to be 10,000. These learning data is used
DBM. In evolutionary learning, the DBM is
even if unknown scenes are observed. The D

Fig. 4.  The number of activated learning data for 
order of neuron is sorted by the number of activated

 

Fig. 3.  A Deep Boltzmann Machine used in this pap

ቍ,                    ሺ1ሻ 

e many layers as 
re is composed of 
BM is carried out 
pose that learning 

where ܦ represents 
RBM in the DBM, 
r ࢎଵis learned by 
subsection. The 

fter learning, the 
enerated by using 
ayer to layer. 

ation of Mario AI 
number of scenes 

her agents. Hence, 
of levels with the 
s. These levels are 

which describes 
earning data is set 

d for learning the 
s not learned at all 
DBM is only used 

for generating feature vectors in th
phase. 

We examine one RBM (484 inp
and 4 DBM, including Fig. 3. 4 DBM
(Fig.3), 5-layer, 4-layer, and 3-laye
neurons for each DBM is summarize

- 6-layer DBM: 484-240-120-6
- 5-layer DBM: 484-240-120-6
- 4-layer DBM: 484-240-120-1
- 3-layer DBM: 484-240-12 

10,000 learning data is given to each
DBM.  

Fig. 4. shows the number of act
each neuron, where the activated l
corresponding learning data activሼ݄ ൌ ሽ as in equation (1). The o࢜|1
by the number of activated learning
Fig. 4. is assigned by this order. The
bars for 3L-DBM and 4L-DBM, re
missing neurons activate all the lear
learning data. The result of the RBM
less activated neurons. The results o
are similar but the variance of the num
6L-DBM is small than the one of the

After learning, the value of each 
converges to 0 or 1. We regard th
threshold value 0.5. Therefore, each
into a binary vector whose size is 12
of learning data per encoded binary
the learning data encoded into the
regarded as members in the same clu
beginning of this subsection, we ha
Each algorithms have 12 neurons 
number of clusters is 2 ൌ 2ଵଶ ൌ 4
in Fig. 5. denotes clusters’ ID. Thes
ascending order of clusters’ size, w
number of learning data with the sam
In the case of the RBM, and the 3L
big clusters. Meanwhile, 5L-DBM a
number of small clusters. It may 
resolution of the DBM is fine. 

 
each neuron: The 

d learning data. 

 
per. 

 

Fig. 5.  The number of scenes in clusters, w
(learning data)  with the same output. 

 

he Evolutionary Learning 

puts -12 hidden neurons) 
M consist of 6-layer DBM 
er DBM. The number of 
ed as follows: 
60-30-12 
60-12 
12 

h of the RBM and the four 

tivated learning data for 
learning data means that 
vates a certain neuron 
order of neurons is sorted 
g data. The neuron ID in 
ere are only 5 bars and 10 
espectively. It means that 
rning data or none of the 

M show there are more and 
of 6L-DBM and 5L-DBM 
mber of activations of the 
e 5L-DBM. 
neuron for learning data 

hem either of 0 or 1 by 
h learning data is encoded 
2. Fig. 5. plots the number 
y vector (cluster). That is, 
 same binary vector are 

uster. As mentioned in the 
ave 10,000 learning data. ሺ݉ ൌ 12). The possible 4096. The horizontal axis 
se ID are assigned by the 
where the size means the 
me activated binary vector. 
L-DBM, there are several 
and 6L-DBM have a large 

imply the classification 

 
where cluster denotes scenes 
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Fig. 6. shows the various averaged imag
data. As mentioned in Section 2, each cell of
can take one of three values (blank, ground,
cell, the ratio of values is calculated, e.g., (0
the ratio is multiplied by 255: (204, 52, 0). T
regarded as the strength of color (Blue, Gree

The center image in Fig. 6. indicates an a
the learning data which have the same bina
The surrounding images are averaged imag
data with a 1-bit different output vector a
image. Hence, the surrounding images are 2
each other. Numbers below images mean th
learning data to be used for generatin
averaged image. 

These averaged images have similar tend
two ground cells from the bottom of scree
seven cells are appeared in the averaged im
are captured in the averaged image with few

IV. PROPOSED METHOD 

A. Overview 
Fig. 7. depicts the framework of the propo

proposed method consists of two parts:
recurrent neural networks. The learning of th
out in advance. That is, evolutionary algorith
improve the weights of the recurrent neur
task of the DBM is to extract features from p
i.e., 484 cells’ information. 

The inputs of the recurrent neural network
the output of the DBM, MarioAbleToJump,
(cf. section 2), and the distance from the gro

Each agent, i.e., the weight vector of the
network, is examined one game play. 
predefined in the software library is used for
agent. This fitness function takes account i
the goal, how many coins are collected, 
remains, and so on. 
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Fig. 6.  Averaged images: base image (MIDDLE
outputs of DBM for surrounding images are 1-bit 
one of the base image. Hence, surrounding images h
outputs of the DBM with each other.  
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outputs of DBM for surrounding images are 1-bit 
one of the base image. Hence, surrounding images h
outputs of the DBM with each other.  

ge of the learning 
f the learning data 
, block). For each 
0.8, 0.2, 0). Then, 

These numbers are 
en, Red). 

averaged image of 
ary output vector. 
es of the learning 

against the center 
-bit different with 
he number of the 

ng corresponding 

dencies: there are 
en so that totally 
mages. The holes 

w learning data. 

osed method. The 
: the DBM and 
he DBM is carried 
hms are applied to 
ral networks. The 
perceptual inputs, 

k are composed of 
 MarioOnGround 

ound. 
e recurrent neural 
Fitness function 

r evaluation of the 
into how close to 
how much time 

B. Recurrent Neural Networks 
The recurrent neural network used

the right hand of Fig. 7., which is k
There are three layers in the rec
Suppose that the neurons in the in
layer, and the output layer, are represࡴ ൌ ሺܪଵ, … , ࡻ ಹሻ, andܪ ൌ ൫ ଵܱ, …
neurons at the previous time step
denoted by ࡴԢ ൌ ሺܪԢଵ, … , Ԣಹሻ. Tܪ
input layer and the hidden layer, 
previous time step and the hidden la
and the output layer, are represented 
respectively. ݊ூ, ݊ு, and ݊ை stand fo
in the input layer, in the hidden lay
respectively. 

The output of the recurrent neural 
follows’ ܪ ൌ σ ቌ ܶு   ܫூுݓ 

ୀଵ
ܱ ൌ σ ቌ ܶை   ಹݓ

ୀଵ
where ܶு  and ܶை denote the 
corresponding neuron in the hidde
layer. σ is a sigmoid function. 
The number of neuron in the outpu
The ݅th button is pressed if ܱ  0. 
released.  

C. Particle Swarm Optimization 
As an evolutionary algorithm, we 
Optimization algorithms (PSO). A
recurrent neural networks ݓூு, ݓுᇱு
previous subsection are regarded 
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Fig. 7.  A depiction of the proposed method

 

d in this paper is shown in 
nown as Elman network. 
current neural network: 

nput layer, in the hidden 
sented by ࡵ ൌ ሺܫଵ, … , , ,ሻܫ ܱೀ൯, respectively. The 

p in the hidden layer is 
The weights between the 

the hidden layer at the 
ayer, and the hidden layer 

by ݓூு, ݓுᇱு, and ݓுை, 
or the number of neurons 
yer, and the output layer, 

networks is calculated as 

  ᇱಹܪுᇲுݓ
ୀଵ ቍ, 

 ,ቍܪுைݓ
threshold value for 

en layer, and the output 

ut layer ݊ை is set to be 5. 
Otherwise, the button is 

employ Particle Swarm 
ll the parameters of the ு, ݓுை, ܶு, and ܶைin the 
as a vector ࢞ , i.e., an 
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individual. This paper employ Clerc’s co
method [13][14]: 
1. Initialize individuals ࢞, and their velo
2. Evaluate individuals by playing a gam
3. Set the best individual during search, 

the personal best for each individual, c
4. Update the velocities and the individua           ࢂ ՚ K כ ሾࢂ  cଵ כ randሺሻ כ ሺpbest          cଶ כ randሺሻ כ ሺgbest െ           ࢞ ՚ ࢞   ࢂ
5. Go back to Step 2. until terminal criter
The parameters cଵ, and cଶ are set to be 2.05.
iscalculated by the following equation:    K ൌ 2ቤ2 െ φ െ ටφ

ଶ െ 4φቤ ൌ
φ ൌ  cଵ  cଶ 

V. EXPERIMENTS 

A. Experimental Settings 
This subsection describes experimental

following subsections. The population size 
to be 100. The number of generations is set 
totally, 10,000 fitness evaluations are exam
accordance with the setting of the competiti

Fig. 8.   Temporal changes of best fitness: averag
runs; the results of DBM (UPPER) and RBM (LOW

onstriction factor 

city ࢂ 
e per individual 
called gbest, and 

called pbesti 
als: െ ሻ࢞  െ  ሻሿ࢞
ria hold. 
. The parameter K 

0.72
 

 settings for the 
of the PSO is set 
to be 100. Hence, 
mined. This is in 
on.  

The horizontal and the vertical ax
the following subsections denote th
and the best fitness value averag
difficulty of games is set to be 1. It 
the level. Therefore, agents must lea
holes. 

B. Effectiveness of “Deep” Learning
This subsection examines the 6-la

introduced in Section 3. The subseq
method, i.e., is the recurrent neura
Section 4. The number of neurons i
DBM and the RBM are the same: 48
neurons in the hidden layer for the la
the RBM are set to be either of 
accordance with the number of t
number of input neurons of the recu
varied. Fig. 8. shows the experiment
method with the DBM (UPPER
(LOWER). 

The DBM with 12 neurons outper
difference between the RBM and th
extracted if the number of neurons i
“deepness” might bring in good eff
learning of the recurrent neural netw

Fig. 5. told up there are more 1,2
with 12 neurons. It is greater than t
with 10 neurons (at most 1,024 clust
why the DBM with 10 neurons
performance.  

C. Comparison with other methods 
This section compares the p

evolutionary learning with the Man
Manifold Learning) [4], and two n
inputs [11]. Two neural networks ar
and large NN. The small NN has the
surrounding the agents. On the othe
49 cells surrounding the agents. I
Manifold Learning, Isomap is used
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means there are holes in 
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84. The number of hidden 
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tal results of the proposed 
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fects for the evolutionary 
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200 clusters in the DBM 
the capacity of the DBM 
ters). It would be a reason 
s did not show better 

proposed method with 
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re composed of small NN 
e input of the state 9 cells 
er hand, the large NN has 
In the case of nn with 

d as a Manifold Learning 

 
ness: averaged results over 20 
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method [16]. As in the proposed method, Elman Network is 
used as neural networks in these algorithms. 

Fig. 9. shows the experimental results. Note that the 
performance of the small NN is better than the one of the 
large NN. This implies further addition of input cells may not 
work. In paper [4], the difficulty of levels is set to be 0 while it 
is set to be 1 in this paper. Main difference of the difficulty 0 
and 1 is the existence of holes. Hence, the agent by nn with 
Manifold Learning could not cope with holes. However, the 
agent with the proposed method jumps over such holes.  

VI. CONCLUSION 
In this paper, the Deep Boltzmann Machine is applied into 

the scene information in Mario AI Championship. By using 
features extracted by the Deep Boltzmann Machine, 
subsequent neuroevolution worked well. That is, by using the 
Deep Boltzmann Machine all the scene information, i.e., 
22x22 cells can be utilized.  Our previous method, i.e., nn 
with Manifold Learning could not apply games such that the 
difficulty of levels is 1, where holes exist. Meanwhile, the 
proposed method, i.e., Neural Networks with the Deep 
Boltzmann Machine worked well. This is one of contributions 
of this paper. 

In section 3, the sizes of clusters by the Restricted 
Boltzmann Machine and the Deep Boltzmann Machine are 
compared. “Deeper” Boltzmann Machine had more clusters. 
From Fig. 7, similar learning data are classified into the same 
clusters. Some exceptional learning data are also clustered 
even if cluster’s size is small. 

Future work is summarized as follows. Recently, there are 
a large number of Deep Learning methods are proposed so 
that we would like to examine them for the proposed method. 
Neuroevolution for Deep Learning might be promising 
research area for evolutionary computation community. 
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