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Abstract—A new variant of the adaptive differential evolution
algorithm was proposed and tested experimentally on the CEC
2014 test suite. In the new variant, the adaptation is based on
the competition of several strategies. A part of strategies in the
pool uses the rotation-invariant current-to-pbest mutation in the
novel algorithm. The aim of the experimental comparison was
to find whether the presence of the rotation-invariant strategy
is able to improve the efficiency of the differential evolution
algorithm, especially in problems with rotated objective functions.
The results of the experiments showed that the new variant
performed well in a few of the test problems, while no apparent
benefit was observed in the majority of the benchmark problems.

I. INTRODUCTION

Differential evolution (DE) proposed in [1] is a population-
based optimization algorithm for single-objective problems
with a real-valued objective function. The possible solutions
in DE are represented as vectors with real-number compo-
nents, 𝒙 = (𝑥1, 𝑥2, , . . . , 𝑥𝐷), 𝐷 is the dimension of
the problem. The population is placed in the search space
Ω =

∏𝐷
𝑗=1[𝑎𝑗 , 𝑏𝑗 ], 𝑎𝑗 < 𝑏𝑗 , 𝑗 = 1, 2, , . . . , 𝐷 and evolves

during the search to the state of higher fitness. The solution
of the problem is the global minimum point 𝒙∗ satisfying
condition 𝑓(𝒙∗) ≤ 𝑓(𝒙), ∀𝒙 ∈ Ω.

The population of the size 𝑁 is developed step-by-step
from a generation 𝑃 to a generation 𝑄. The evolutionary
operators, i.e. mutation, crossover, and selection are applied in
the development of generation 𝑄. The DE algorithm is shown
in pseudo-code in Algorithm 1. The new trial point is created
from a mutant point 𝒖 generated by using a kind of mutation
and from the current point of the population by the application
of the crossover. A better point from the couple of 𝒙𝑖, 𝒚, based
on the value of the objective function, is selected for the new
generation 𝑄.

The DE algorithm has been studied intensively in recent
times. Comprehensive summary of advanced results in DE
research is available in [2] and [3]. Several kinds of mutation
and crossover were suggested as well as some adaptive or
self-adaptive DE variants. The main goal of designing adaptive
variants of DE is to enable the adaptation of the search carried

Algorithm 1 Differential evolution algorithm

initialize population 𝑃 = {𝒙1,𝒙2, . . . ,𝒙𝑁}
while stopping condition not reached do

for 𝑖 = 1, 2, . . . , 𝑁 do
create a new trial vector 𝒚
compute 𝑓(𝒚)
if 𝑓(𝒚) ≤ 𝑓(𝒙𝑖) then

insert 𝒚 into 𝑄
else

insert 𝒙𝑖 into 𝑄
end if

end for
𝑃 ← 𝑄

end while

out during the run of the DE algorithm to the current problem
without manual tuning of DE control parameters.

The remaining part of the paper is organized in the
following manner. Adaptive variants of DE from which the
new algorithm was inspired are described in Section II. The
novel DE algorithm is presented in Section III. Settings of
experiments are given in Section IV. The results of the novel
algorithm on CEC 2014 problems are depicted in Section V
and some conclusions are made in Section VI.

II. ADAPTIVE VARIANTS OF DIFFERENTIAL EVOLUTION

There are many adaptive DE variants that appeared in
literature during last decade. They differ in adaptive mecha-
nisms and/or in combinations of DE strategies applied. Among
published adaptive DE variants there are four commonly
considered as the state-of-the-art, namely jDE [4], SADE [5],
JADE [6], and EPSDE [7]. Several new adaptive variants of
DE were introduced on CEC 2013, e.g. [8]–[12].

For our novel algorithm, we borrow concepts from JADE
(rotation-invariant current-to-pbest mutation, archive) and the
adaptive mechanism of competing strategies from [13], [14].
These algorithms are described below.
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A. JADE

JADE variant of adaptive differential evolution [6] extends
the original DE concept with three different improvements –
current-to-pbest mutation, a new adaptive control of parameters
𝐹 and CR, and archive. The mutant vector 𝒖 is generated in
the following manner:

𝒖 = 𝒙𝑖 + 𝐹 (𝒙pbest − 𝒙𝑖) + 𝐹 (𝒙r1 − 𝒙r2 ), (1)

where 𝒙pbest is randomly chosen from 100 𝑝% best individuals
with input parameter 𝑝 = 0.05 recommended in [6]. The vector
𝒙r1 is randomly selected from 𝑃 (r1 ∕= 𝑖), 𝒙r2 is randomly
selected from the union 𝑃

∪
𝐴 (r2 ∕= 𝑖 ∕= r1 ) of the current

population 𝑃 and the archive 𝐴. In every generation, parent
individuals replaced by better offspring individuals are put into
the archive and the archive size is reduced to 𝑁 individuals
by randomly dropping surplus individuals. The trial vector is
generated from 𝒖 and 𝒙𝑖 using the binomial crossover. CR
and 𝐹 are independently generated for each individual 𝒙𝑖,
CR is generated from the normal distribution of mean 𝜇CR

and standard deviation 0.1, truncated to [0, 1]. 𝐹 is generated
from Cauchy distribution with location parameter 𝜇𝐹 and scale
parameter 0.1, truncated to 1 if 𝐹 > 1 or regenerated if 𝐹 < 0,
see [6] for details of 𝜇CR and 𝜇F adaptation.

B. Competitive DE

Competitive DE uses 𝐻 strategies with their control-
parameter values held in the pool. Any of 𝐻 strategies can
be chosen to create a new trial point 𝒚. A strategy is selected
randomly with probability 𝑞ℎ, ℎ = 1, 2, . . . , 𝐻 . The values
of probability are initialized uniformly, 𝑞ℎ = 1/𝐻 , and they
are modified according to the success rate in the preceding
steps. The ℎth strategy is considered successful if it produces
a trial vector entering into next generation. Probability 𝑞ℎ is
evaluated as the relative frequency of success according to

𝑞ℎ =
𝑛ℎ + 𝑛0∑𝐻

𝑗=1(𝑛𝑗 + 𝑛0)
(2)

where 𝑛ℎ is the current count of the ℎth setting successes, and
𝑛0 > 0 is an input parameter. The setting of 𝑛0 > 1 prevents
from a dramatic change in 𝑞ℎ by one random successful use of
the ℎth strategy. To avoid degeneration of the search process,
the current values of 𝑞ℎ are reset to their starting values if any
probability 𝑞ℎ decreases below some given limit 𝛿, 𝛿 > 0.

We use a variant of competitive DE that appeared well-
performing and robust in different benchmark tests [15]. In
this variant, denoted b6e6rl hereafter, 12 strategies are in
competition (𝐻 = 12), six of them using the binomial
crossover, rest of them using the exponential crossover.

The randrl/1 mutation (3) is applied in all the strategies,
two different values of control parameter 𝐹 are used, 𝐹 = 0.5
and 𝐹 = 0.8.

𝒖 = 𝒓𝑥1 + 𝐹 (𝒓𝑥2 − 𝒓𝑥3) , (3)

where the point 𝒓𝑥1 is tournament best among 𝒓1, 𝒓2, and
𝒓3, i.e. 𝑓(𝒓𝑥1) ≤ 𝑓(𝒓𝑥𝑗 ), 𝑗 = 2, 3, as proposed in [16].

Mutation can cause that a mutant point 𝒖 moves out of
the domain Ω. In such a case, the values of 𝑢𝑗 ∕∈ [𝑎𝑗 , 𝑏𝑗 ] are

turned over into Ω by using transformation 𝑢𝑗 ← 2× 𝑎𝑗 − 𝑢𝑗
or 𝑣𝑗 ← 2× 𝑏𝑗 − 𝑢𝑗 for the violated component.

The binomial crossover uses three different values of CR,
CR ∈ {0, 0.5, 1}. The values of CR for exponential crossover
are evaluated from the polynom equation [17]

CR𝐷 − 𝐷 𝑝𝑚 CR + 𝐷 𝑝𝑚 − 1 = 0. (4)

Three values of mutation probability 𝑝𝑚 are set up equidis-
tantly in the interval (1/𝐷, 1). The values of mutation prob-
ability and the corresponding values of CR applied to the
problems of 𝐷 = 10, 30, 50, and 100 are shown in Table I.

TABLE I. VALUES OF MUTATION PROBABILITY AND THE

CORRESPONDING VALUES OF CR FOR EXPONENTIAL CROSSOVER

𝐷 = 10 𝐷 = 30
𝑖 𝑝𝑖 CR𝑖 𝑝𝑖 CR𝑖

1 0.3250 0.7011 0.2750 0.8815
2 0.5500 0.8571 0.5167 0.9488
3 0.7750 0.9418 0.7583 0.9801

𝐷 = 50 𝐷 = 100
𝑖 𝑝𝑖 CR𝑖 𝑝𝑖 CR𝑖

1 0.2650 0.9262 0.2525 0.9611
2 0.5100 0.9688 0.4950 0.9837
3 0.7550 0.9880 0.7475 0.9938

III. NOVEL ALGORITHM COMBINING COMPETITIVE
ADAPTATION AND JADE

Seven adaptive DE variants [4]–[7], [15], [18] were com-
pared experimentally on six standard benchmark functions at
three levels of dimension in [19]. It was found that JADE [6]
and b6e6rl [15] were the best performing algorithms in the
comparison, JADE was the fastest and the second reliable
in average, while the b6e6rl was the most reliable and the
second in convergence speed. Four adaptive DE variants,
namely JADE, b6e6rl, EPSDE, and CoDE were also compared
experimentally on CEC 2013 benchmark functions in [20],
where JADE appeared the most efficient, followed by b6e6rl
and EPSDE.

It was found in [21] that the adaptive DE b6e6rl variant
based on the competition of strategies performs well on the
problems, where the objective function is not rotated, whilst the
performance in the problems with rotated functions is worse.
In this paper, a novel variant of the competitive DE combining
two adaptive approaches is proposed. The adaptive DE variant
derived from b6e6rl, where the randrl mutation is replaced
by the current-to-pbest mutation, was tested on the CEC2013
problem suite [22]. The new algorithm outperformed the parent
JADE and b6e6rl only in a few test problems [23].

The adaptive DE algorithm newly proposed for this paper
(denoted b3e3pbest hereafter) uses the competitive adaptive
mechanism described in subsection II-B but the pool of
competing strategies is redesigned. Six strategies using randrl
mutation are taken from the b6e6rl (all the strategies with
𝐹 = 0.8) and one strategy uses the current-to-pbest mutation
from JADE [23] with 𝐹 = 0.5. An archive from JADE
containing the old best solutions is also applied. Because of
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the fact that the current-to-pbest mutation includes arithmetic
crossover, no other crossover occurs in this strategy. Such
strategy gives the same result as the binomial or exponential
crossover with 𝐶𝑅 = 1. It is expected that application of
the rotation-invariant current-to-pbest mutation can help in
the solution of rotated functions. Thus, seven different DE
strategies compete in the search of the global minimum. The
new algorithm is shown in pseudo-code in Algorithm 2.

Algorithm 2 Competitive DE algorithm

initialize population 𝑃 = {𝒙1,𝒙2, . . . ,𝒙𝑁}
initialize empty archive 𝐴 of the size 𝑁
initialize probabilities of strategies
while stopping condition not reached do

for 𝑖 = 1, 2, . . . , 𝑁 do
choose a strategy by a roulette selection
create a new trial vector 𝒚
compute 𝑓(𝒚)
if 𝑓(𝒚) ≤ 𝑓(𝒙𝑖) then

insert 𝒚 into 𝑄
insert 𝒙𝑖 into 𝐴
update the value of a probability of used strategy

else
insert 𝒙𝑖 into 𝑄

end if
end for
𝑃 ← 𝑄

end while

First, the population 𝑃 of size 𝑁 , randomly uniformly
distributed in the area of the possible solutions, is initialized.
Along with, the empty archive 𝐴 of the size 𝑁 for the storage
of old solutions is also initialized. When the new trial point is
inserted into next generation 𝑄, the old solution 𝒙𝑖 is stored
in the archive 𝐴. If the archive is full, a randomly selected
point in the 𝐴 is replaced by the current 𝒙𝑖.

The other control parameters are set up to the recom-
mended values, i.e. 𝛿 = 1/(5 × 7) = 0.0286, 𝑛0 = 2 and
the control parameter for current-to-pbest mutation 𝑝 = 0.05.

IV. EXPERIMENTS

The new test suite of 30 functions was proposed for the
special session on Real-Parameter Numerical Optimization, a
part of Congress on Evolutionary Computation (CEC) 2014.
This session is intended as a competition of optimization al-
gorithms. The functions are described in report [24], including
the experimental settings required for the competition. The
source code of the functions is also available on the web site
given in the report. The benchmark functions can be used at
several levels of problem dimension varying from 2 to 100.
We can expect that this test suite will become one of the
most relevant benchmarks required for publishing new single-
objective optimization algorithms.

The algorithm is implemented in Matlab 2010a and this
environment was also used for experiments. All computations
were carried out on a standard PC with Windows 7, Intel(R)
Core(TM)2 CPU 6320, 1.86GH 1.87GH, 2GB RAM.

Experimental setting follows the requirements given in the
report [24], where 30 minimization problems are also defined.

TABLE II. RESULTS OF FUNCTION ERRORS FOR 𝐷 = 10.

Func. Best Worst Median Mean Std

1 0 0 0 0 1.60E-09

2 0 0 0 0 1.74E-09

3 0 0 0 0 1.38E-09

4 0 34.7803 34.7803 27.53369 13.9856

5 8.13405 20.1192 20.0739 19.20715 2.730173

6 0 0.003672 0 7.31E-05 0.000514

7 0 0.08993 0.047343 0.04605 0.020512

8 0 0 0 0 1.93E-09

9 2.63731 9.82905 6.31719 6.310018 1.397936

10 0 0 0 0.001225 0.008745

11 95.1019 486.853 315.549 306.0512 115.8411

12 0.197947 0.483994 0.365873 0.363756 0.069213

13 0.050217 0.195818 0.144352 0.139047 0.03014

14 0.062985 0.196257 0.115715 0.116497 0.028335

15 0.568242 1.26531 0.910707 0.928939 0.14502

16 1.51143 2.45688 2.14802 2.140389 0.231109

17 0 129.611 0.416286 4.840349 19.25361

18 0 9.95E-01 0 0.019509 1.39E-01

19 0.058644 0.682468 0.277017 0.281704 0.116528

20 0.042432 0.389328 0.19254 0.206819 0.080309

21 0.043387 0.94029 0.368279 0.369574 0.236436

22 1.44E-06 0.62436 0.031724 0.139596 0.166315

23 329.457 329.457 329.457 329.457 1.72E-13

24 107.039 117.845 112.596 112.2336 2.097979

25 101.729 201.374 119.496 145.2207 39.8456

26 100.08 100.203 100.141 100.1434 0.028952

27 0.78441 400.332 2.00649 41.03604 119.5913

28 384.913 386.547 384.913 385.1086 0.392145

29 220.358 225.054 220.575 221.0688 0.926018

30 308.549 628.744 314.121 365.6103 100.0853

The source code of the functions in C was downloaded from
the web page given in [24] and compiled by Lcc-win32 C 2.4.1
compiler. Search range (domain) for all the test functions is
[−100, 100]𝐷 .

The tests were carried out at four levels of dimension,
𝐷 = 10, 30, 50, 100, with 51 times repeated runs per each
test function. The run stops if the prescribed value of MaxFES
= 𝐷× 104 is reached or if the minimum function error in the
population is less than 1 × 10−8 because such a value of the
error is considered sufficient for an acceptable approximation
of the correct solution. The values of the function error less
than 1× 10−8 are treated as zero in further processing.

The population size was set up to N = 100 for all the
problems and the levels of dimension. The remaining control
parameters of the algorithms were set up to the recommended
values described in Section II and III.

V. RESULTS

The basic characteristics of the experiments are summa-
rized in the Tables II, III, IV, and V. The values of the
function errors less than 1 × 10−8 are substituted by zeros
in all the tables below. It can be observed that the proposed
DE algorithm is able to solve some of the problems. For the
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TABLE III. RESULTS OF FUNCTION ERRORS FOR 𝐷 = 30.

Func. Best Worst Median Mean Std

1 922.131 44959.8 10441.3 12058.55 9099.398

2 0 0 0 0 6.27E-10

3 0 0 0 0 5.30E-10

4 0 63.4007 0 3.729453 1.51E+01

5 20.2405 20.3834 20.3277 20.323 0.029026

6 9.72593 16.3713 14.2816 14.24751 1.195089

7 0 0.017241 0 0.001353 3.63E-03

8 0 0 0 0 8.91E-10

9 32.456 60.4819 43.8116 45.12717 6.108515

10 0 0.041639 0 0.002449 7.95E-03

11 1778.72 2834.78 2430.44 2420.86 240.3957

12 0.331581 0.531896 0.458726 0.451375 0.049384

13 0.173057 0.42036 0.271947 0.280898 0.054712

14 0.134383 0.299962 0.214213 0.21095 0.032145

15 4.44552 6.93575 5.69338 5.663361 0.617392

16 8.72549 10.5683 10.0337 9.940366 0.379194

17 401.458 1879.48 1080.64 1062.373 320.2895

18 19.8991 153.221 69.6468 74.19489 31.84657

19 2.55363 7.10202 4.63983 4.790698 0.946259

20 8.18754 144.134 18.6493 28.23484 28.9921

21 28.0778 756.986 299.971 319.472 163.3768

22 22.9186 443 131.636 142.3191 94.15324

23 315.244 315.244 315.244 315.244 2.30E-13

24 219.425 237.241 224.089 225.313 4.401665

25 202.558 204.895 203.689 203.6973 0.637062

26 100.153 100.357 100.272 100.2693 0.043459

27 300 403.495 306.275 320.7072 30.69734

28 673.624 917.18 736.105 746.0125 47.60603

29 472.509 862.216 755.361 756.997 52.2784

30 2048.58 4526.12 2786.96 2844.521 458.6856

problems defined by the composed functions from F23 to F30,
new algorithm is unable to find an acceptable solution for all
levels of the dimension. Based on the medians of the error,
the algorithm was successful in 7 problems for 𝐷 = 10, in 6
problems for 𝐷 = 30, in 3 problems for 𝐷 = 50, and in 3
problems for 𝐷 = 100.

In spite of the fact that the rotation-invariant mutation is
used, the performance of the algorithm on rotated benchmark
functions is worse at all the levels of dimension. The contrast
in the algorithm performance is apparently visible when we
compare the pairs of functions {8, 9} and {10, 11} which
differ only by rotation, the second function of the pair is the
same as the first but rotated. Convergence plots for these pairs
of functions and 𝐷 = 30 are depicted in Figures 1 and 2. It
is apparent that the convergence of the algorithm on rotated
functions is much smaller compared to the unrotated ones.

Frequency of the exploitation of different DE strategies
from the pool is shown in Figures 3 and 4. The box plots
are evaluated from 51 repeated runs of the algorithm on each
test problem. The strategies are labeled from s1 to s7 on
the horizontal axis. The strategy with the rotation-invariant
current-to-pbest mutation is denoted “s1”. The strategies using
the randrl rotation and the binary crossover are labeled “s2”,

TABLE IV. RESULTS OF FUNCTION ERRORS FOR 𝐷 = 50.

Func. Best Worst Median Mean Std

1 13179.3 369377 85708.2 103490.9 72986.81

2 0 0.001191 3.18E-06 6.43E-05 0.000199

3 4.01E-05 0.828042 0.011123 0.042915 0.120233

4 4.47E-08 98.3971 2.48028 16.20268 29.98973

5 20.3627 20.4718 20.4389 20.43241 0.025996

6 16.9153 33.173 29.3636 29.13724 2.562597

7 0 0.049176 0 0.005795 0.008787

8 0 0 0 0 5.14E-10

9 70.0044 129.68 102.874 103.968 13.50471

10 0 0.012492 0 0 0.004588

11 4418.35 5765.96 5341.12 5297.332 305.0039

12 0.368542 0.570135 0.478765 0.473602 0.039048

13 0.311991 0.584539 0.388711 0.39763 0.058991

14 0.179417 0.318381 0.251103 0.247495 0.030148

15 11.1216 20.7574 14.1781 14.48363 1.936628

16 17.6459 18.9716 18.4488 18.4054 0.311984

17 1283.27 15911.2 4026.2 4625.437 2482.289

18 71.6774 580.431 205.994 224.9669 87.69431

19 9.34958 80.1077 15.216 17.65322 12.78621

20 111.123 628.52 324.499 346.3786 105.7916

21 1114.21 6897.12 1898.41 2141.006 961.4198

22 151.328 900.828 602.166 591.5764 189.3

23 344.005 344.005 344.005 344.005 2.87E-13

24 280.394 302.099 289.082 288.8625 4.406833

25 205.312 229.418 209.808 211.6928 5.636189

26 100.252 200.04 100.361 104.2885 19.53723

27 399.228 677.869 563.471 548.5508 73.36652

28 876.661 1480.57 1019.86 1074.298 166.5429

29 773.176 1177.81 885.483 896.2533 78.59248

30 11947.7 19905.7 14147.8 14156.78 1127.687
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Fig. 1. Convergence plot of F8 and F9 test problems, 𝐷 = 30
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Fig. 2. Convergence plot of F10 and F11 test problems, 𝐷 = 30
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TABLE V. RESULTS OF FUNCTION ERRORS FOR 𝐷 = 100.

Func. Best Worst Median Mean Std

1 162090 1292790 435189 434103.3 206921

2 14.9169 106649 7254.73 15705.76 20889.35

3 3.23437 633.211 41.2978 91.28251 142.6779

4 75.9957 255.187 148.681 142.8395 39.25807

5 20.6245 20.7139 20.678 20.67425 0.021551

6 46.0904 81.5387 74.4628 69.4176 10.46363

7 0 0.061428 0 0.006315 1.23E-02

8 0 0 0 0 1.64E-10

9 192.153 383.95 302.119 310.6192 40.81764

10 0 0.018738 0 0.003674 4.53E-03

11 8929.85 14420.4 13275.6 12900.58 1365.915

12 0.250135 0.730922 0.661643 0.644243 0.074876

13 0.370024 0.620064 0.488726 0.489832 0.060413

14 0.217761 0.367661 0.301252 0.298722 0.030627

15 30.2445 81.7891 57.4855 56.80116 11.66319

16 39.0653 41.0041 40.4451 40.375 0.462606

17 14680.2 119667 43703 45136.86 18050.84

18 318.998 8782.69 1369.1 2345.985 2130.265

19 27.8039 130.083 101.452 86.53414 31.6961

20 404.092 2199.75 867.792 950.2607 341.9224

21 6195.83 78223.1 22330.7 26165.88 16559.49

22 663.396 2364.72 1595.58 1603.398 339.7521

23 3.48E+02 3.48E+02 348.235 348.235 2.30E-13

24 398.055 435.846 414.911 416.0454 8.062885

25 200 290.366 266.663 263.6285 13.91351

26 200.042 200.118 200.094 200.095 0.012032

27 1226.77 2135.95 1772.25 1771.73 168.351

28 1520.92 3385.76 2341.1 2254.01 378.891

29 714.162 2123.07 904.882 1134.9 432.455

30 7247.86 15112 10220.2 10849.7 2008.2

“s3”, and “s4”, the strategies with exponential crossover have
labels “s5”, “s6”, and “s7” and are orderer with respect to the
values of mutation probability in ascending way. In spite of the
expectation, the rotation-invariant current-to-pbest mutation is
more frequently used in not-rotated function than in rotated
one in both the pairs of the functions. A most prevalently used
DE strategy in all the problems is s2 strategy, where only one
element of the trial vector comes out from the mutant vector,
while the other strategies are rarely successful (their frequency
is mostly much less than 10 %). Here is a field for further
research.

The complexity of the algorithm evaluated according to
the requirement specified in the report [24] is presented in
Table VI. The values of time are given in seconds.

TABLE VI. COMPUTATIONAL COMPLEXITY.

𝑇0 (s) 𝑇1 (s) 𝑇2 (s) (𝑇2− 𝑇1)/𝑇0

D=10 0.2687 3.55 33.93 113.06

D=30 0.2687 5.47 36.42 115.18

D=50 0.2687 8.30 42.65 127.84

D=100 0.2687 21.76 62.50 151.62
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Fig. 3. Frequency of strategies used in the solution of F8 and F9 test problems,
𝐷 = 30
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Function 11 (rotated)
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Fig. 4. Frequency of strategies used in the solution of F10 and F11 test
problems, 𝐷 = 30
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VI. CONCLUSION

The experimental comparison shows that the novel b3e3-
pbest variant of competitive DE algorithm is able to solve
several problems of CEC 2014 suite but it cannot be considered
completely satisfactory. The algorithm does not perform well
on the most of the problems with rotated objective functions
or on composition functions. The inclusion of the rotation-
invariant current-to-pbest mutation into the pool of competing
DE strategies does not cause sufficient enhancement of the
algorithm performance.

Thus, the proposal of innovated DE variant increasing the
efficiency of DE on rotated or composition functions remains
the challenge for further research.
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