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Abstract—The pickup and delivery problem combines vehicle
routing and objects distribution to cope with logistic problems.
While most research on PDP aims to minimize the transportation
cost for the sake of service providers, this study proposes the
minimum latency pickup and delivery problem (MLPDP) that
seeks a low-latency route to transport commodities among nodes,
where latency represents the sum of transportation time between
demanders and the corresponding suppliers. The MLPDP is
pertinent to time-sensitive services and logistics focusing on
customer satisfaction. This study defines the latency of a customer
as the average time elapsed aboard of goods received. The
last-in-first-out loading method is employed to simulate real-
world rear-loaded vehicles. This study further designs a genetic
algorithm (GA) to resolve the MLPDP. In particular, we propose
the edge aggregate crossover (EAC) and the reversely weighting
technique to improve the performance of GA on the MLPDP.
Experimental results show the effectiveness of the proposed GA.
The results further indicate that EAC leads to significantly better
performance than conventional crossover operators in solution
quality and convergence speed on the MLPDP.

I. INTRODUCTION

The pickup and delivery problem (PDP) combines vehicle
routing and objects distribution. The goal of PDP is to find the
optimal visiting schedules for vehicles to convey passengers or
commodities from pickup nodes to delivery nodes. According
to the properties of transportation endpoints, PDPs can be
categorized into three structures: one-to-one, one-to-many-to-
one, and many-to-many [1], [2], [3]. This study focuses on
many-to-many PDP, where a delivery customer can have any
source of supply considering the applications like farm fresh
distribution that collects produce from farms and warehouses
to serve grocers, restaurants, and institutions. While most
research on PDP aims to minimize the transportation cost for
the sake of service providers, we consider customer satisfac-
tion and propose the minimum latency pickup and delivery
problem (MLPDP). Specifically, latency represents the sum of
transportation time between demanders and the corresponding
suppliers; for the example of farm fresh distribution that
conveys perishable freight, minimizing the latency can reduce
the deterioration in nutrition so as to provide reliable produce.
The MLPDP seeks a low-latency route to gather commodities
from pickup nodes and distribute them to delivery nodes in
the meanwhile. In addition, the vehicle load is bounded by
its capacity and must be non-negative along the visiting tour

to avoid overload and insufficient supply, respectively. The
objective of the MLPDP is to optimize the visiting tour in
terms of transportation time as well as customer satisfaction,
and therefore meets the crucial requirements of time-sensitive
services.

Latency is a common measurement of system performance
in practice, which gauges the response time to a request
or the delay experienced in a system. The requirement for
minimizing latency arises in real-world applications such
as multimedia processing and packet-switched network, in
that the instruction set of processors as well as networking
devices and transmission media cause delay and encumber
overall efficiency in some cases. In logistics industry, service
provider associates latency with the waiting time before the
customer’s demand is satisfied. Example scenarios include
door-to-door freight services and humanitarian aid after natural
disaster. This problem has been formulated as the cumulative
capacitated vehicle routing problem (CCVRP) to minimize
the total arrival time to reach customers through designated
routes subject to capacity limitation [4], [5], [6], [7]. The
CCVRP is closely related to the minimum latency problem
(MLP) [8], [9], [10], which discards vehicle capacity and
is applicable in managing the schedules for repairmen or
house cleaning services. The Dial-a-Ride problem, moreover,
specifies pairs of points to transport passengers from particular
places to respective destinations and thus generalizes the
routing problems. In such a demand-responsive transportation
system, the objective takes waiting time and riding time of
customers into account for their satisfaction [11], [12], [13],
[14]. Instead of reducing the transportation cost that benefits
the service provider, latency minimization strikes a balance
between customer satisfaction and prime cost, leading to good
brand reputation and attracting more potential customers. The
above customer-oriented formulations in operations research
therefore reconfirm the rationality of the minimum latency
pickup and delivery problem.

To resolve the MLPDP, this study designs a genetic algo-
rithm (GA) with novel edge aggregate crossover operator. GA
is a nature-inspired global search approach and has succeeded
in solving a variety of optimization problems. It utilizes a set of
chromosomes representing candidate solutions and exchanges
or infuses slight fluctuation into genetic information through
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crossover and mutation. The fitness evaluation determines the
improvement direction for the search and assists selection
of parents and survivors for advancing solution quality. The
alternate exploration and exploitation in the search space in-
troduced by variation operators and selection pressure respec-
tively imitates evolution and leads the population toward the
global optimum after generations. Instead of commonly used
crossover operators for permutation representation, e.g., order
crossover, cycle crossover, and partially mapped crossover,
this study devises the edge aggregate crossover to construct
offspring based on the information acquired from fitness
evaluation. Furthermore, we design the reversely weighting
technique to evaluate the fitness value with time complexity
O(n2). This evaluation along with the violation measure spec-
ifies fitter individuals regarding the feasibility and constitutes
the constraint handling method that directs the search to low-
latency feasible solution. Experiments compare the perfor-
mance of edge aggregate crossover with other permutation-
based crossover operators. The results validate the efficacy of
the proposed operators in terms of both solution quality and
convergence speed.

The organization of this study is as follows. Section II
presents the formulation of MLPDP. The reversely weight-
ing technique and edge aggregate crossover are proposed in
Section III; Section IV examines their effectiveness through
a series of experiments. Finally, we draw conclusions and
recommend the directions for future work in Section V.

II. PROBLEM FORMULATION

The MLPDP aims to schedule a visiting route with lowest
total latency to transport commodities from pickup nodes to
delivery nodes under the constraint on vehicle load. Given
a complete graph G = (V,A) with V = {v0, ..., vn} and
A = {(vi, vj)|vi, vj ∈ V, vi �= vj}, in which each vertex
vi ∈ V is associated with a demand di, and each arc
(vi, vj) ∈ A has a non-negative cost ci,j > 0, representing
the transportation time among nodes. The vertex set V is
the union of the starter v0 with d0 = 0 and two disjoint
sets, namely V + = {vi|vi ∈ V, di > 0} of pickup nodes
and V − = {vi|vi ∈ V, di < 0} of delivery nodes. The
objective of the MLPDP is to find a feasible permutation
π = (v0, v(1), ..., v(n)), where v(i) denotes the ith visited cus-
tomer, such that the total latency experienced by all delivery
nodes is minimum. Formally,

min
∑

vi∈V −

ωi · latency(π, vi), (1)

where ωi specifies the importance of a customer. This study
considers all delivery nodes equally important and defines the
latency as the weighted sum of transportation time within a
demander and its corresponding suppliers; to be specific, each
supplier contributes to a portion of demands of a delivery
node, and the latency of particular freight is the product of
time elapsed aboard and the ratio of its amount to the total
commodities requested. In other words, let xi,j be the decision

variable with

xi,j =

{
1 vehicle travels from vi to vj
0 otherwise

The objective function (1) is defined by

min
∑

vi∈V −

∑
vj∈V +

σj,i
|di| · tj→i (2)

s.t. ∑
vi∈V

xi,j = 1, ∀vj ∈ V (3)

∑
vi,vj∈S

xi,j < |S|, ∀S ⊂ V (4)

0 ≤ λ(i) ≤ Q, ∀i ∈ {0, . . . , n} (5)
xi,j ∈ {0, 1} (6)

where pickup node vj supplies delivery node vi with com-
modities amounted to σj,i, which is a non-negative integer
and keeps conservation of quantity:

∑
vj∈V + σj,i = |di| for

each vi ∈ V − and
∑

vi∈V − σj,i = dj for each vj ∈ V +;
tj→i denotes the transportation time from pickup node vj
to delivery node vi via the resultant route, i.e., ti→i =
0 and tj→i = min0≤k≤n

cj,k
xj,k

+ tk→i, recursively taking
steps toward particular demander. The objective function (2)
presents the latency regarding the composition of freight,
where normalization indicates the average transportation time
consumed to satisfy customer requests. Constraints (3) and
(4) guarantee to visit each node exactly once and eliminate
subtours, respectively. The vehicle load limits are presented
in (5), where λ(i) indicates the vehicle load at v(i) along
the visiting order, i.e., λ(i) = λ(i−1) + d(i) with λ(0) = 0.
Notably, σj,i not only records the amount of commodities
supplied to vi but indicates their source vj . In this study, the
carrier discharges goods in a last-in-first-out (LIFO) manner to
simulate rear-loaded vehicles in practice. Figure 1 illustrates
an example route π = (v0, v4, v5, v3, v1, v2) for the MLPDP.
Given the visiting order and LIFO loading, v3, v5 and v4
contribute σ3,1 = 8, σ5,1 = 1, and σ4,1 = 1 to v1,
respectively. As a result, v1 encounters latency amounted to
8
10 · 4 + 1

10 · (4 + 3) + 1
10 · (4 + 3+ 6) in accordance with the

objective function. On the other hand, v4 satisfies the demand
of v2, taking 5

5 · (9 + 4 + 3 + 6) of latency; the total latency
of the route is therefore 27.2 from all delivery nodes. Note
that formula (1) is a general-purpose objective function for
the MLPDP; other practical definitions of latency function and
viable loading methods are also applicable.

III. METHODOLOGY

This study designs special genetic operators for GA to
resolve the MLPDP. GA encodes candidate solutions into
chromosomes, forming a population and enabling the search
for global optima in the solution space. To simulate the evo-
lution in Nature, the algorithm iteratively improves candidate
solutions following the principle of “Survival of the Fittest”.
In GA, crossover and mutation are variation operators infusing
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Figure 1. Example route for the MLPDP. The figures inside circles and
the numbers on arcs denote di and transportation time between two vertices,
respectively. The commodities held by each pickup node are denoted with
distinct color, and the colors in a delivery node indicate the sources of the
goods obtained as well as respective proportions to the request.

diversity into the population, where a pair of chromosomes is
chosen for crossover operator to recombine the parental infor-
mation, and the mutation then slightly changes the offspring
in order to escape from local optima. The fitness function
evaluates solution quality and assists selection operator in
distinguishing fitter individuals for the given problem. GA
follows the procedure of parent selection, crossover, and
mutation; afterward, the offspring with (or without) the parent
population compete to survive into next generation according
to the fitness value. The evolutionary process repeats till the
termination criterion is satisfied.

To explore the solution space in the course of evolution, the
proposed GA represents visiting tours by order-based chro-
mosome. The order-based representation reflects permutation
of nodes, which guarantees to visit each node exactly once
and forms the candidate solutions to the MLPDP. Instead of
summing up the latency experienced by each delivery node,
we propose a reversely weighting technique, which derives
the weights of the traveled edges so that the total latency is
decomposed and, particularly, the feature of supply along the
route emerges. The edge aggregate crossover is accordingly in-
troduced to inherit useful parental information for the MLPDP,
taking advantage of the characteristics obtained from fitness
evaluation. The following subsections describe the proposed
GA in detail.

A. Fitness Evaluation and Constraint Handling

Fitness evaluation determines the quality of candidate solu-
tions and directs the evolutionary process toward the optima.
This study adopts the objective function (2) that totals the
latency of each request from delivery node; namely,

Algorithm 1 Reversely weighting technique.
function f(π)

δ ← 0
stack← ∅
feasible← true
i← n
loop

if feasible then
if d(i) < 0 then

push (v(i), d(i)) to stack
δ ← δ + 1

else
s← d(i)
loop

if stack.size() �= 0 then

pop (vj , d
′) from stack

δ ← δ − min{s,|d′|}
|dj |

s← s+ d′

else
s← 0
feasible← false
δ ← 1

end if
until s ≤ 0
if s < 0 then

push (vj , s) to stack

end if
end if

end if
�(i−1,i) ← δ · c(i−1,i)

i← i− 1

until i = 0

return
∑n

i=1 �(i−1,i)

f(π) =
∑

vi∈V −

∑
vj∈V +

σj,i
|di| · tj→i.

The double summation engages O(n2) of time complexity on
fitness evaluation. Restated, as tracing the visiting order, vehi-
cle arrival time of all nodes are recorded, and each pickup node
along with the number of commodities it holds is kept in a
stack for subsequent implementation of LIFO loading method.
In the meantime, delivery nodes pop the stock in the stack to
obtain goods, determining the proportion of supplies to the cor-
responding requests. Furthermore, transportation time is cal-
culated by subtracting vehicle arrival time of the supplier from
that of the delivery customer receiving its freight. For example,
route π = (v0, v4, v5, v3, v1, v2) in Fig. 1 results in a sequence
of arrival time as (0, 5, 11, 14, 18, 27). The vehicle discharges
freight collected from v3, v5 and v4; hence v1 experiences
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(a) Supply flow of π.

i v(i) v(i−1) δ c(i−1,i) �(i−1,i) stack

5 v2 v1 1.0 9 9.0 (v2,−5)
4 v1 v3 2.0 4 8.0 (v2,−5), (v1,−10)
3 v3 v5 1.2 3 3.6 (v2,−5), (v1,−2)
2 v5 v4 1.1 6 6.6 (v2,−5), (v1,−1)
1 v4 v0 0.0 5 0.0 ∅∑n

i=1 �(i−1,i) 27.2
(b) Procedure of reversely weighting technique. Total latency of π: 27.2.

Figure 2. Fitness evaluation of example route π = (v0, v4, v5, v3, v1, v2) with reversely weighting technique (cf. Fig. 1): (a) Supply flow of π. The flows
with distinct colors specify their respective sources of commodities, and the fractions decompose the weights on traveled edges, where the numerator and
denominator indicate the supplies from pickup node (σj,i) and the demand of the delivery customer receiving the particular freight (|di|), respectively. (b)
Procedure of reversely weighting technique. The data with boldface denotes the latest record in stack.

latency amounted to 8
10 ·(18−14)+ 1

10 ·(18−11)+ 1
10 ·(18−5).

As providing v2 with the remaining commodities in the stack,
the total latency of the tour increases by 5

5 · (27 − 5). Note
that the number of nodes and the stack size determine the time
complexity of this evaluation process, which is O(n2) in worst
case.

However, direct fitness evaluation dilutes the composition
of total latency since the delay on each visited edge is
obscure. This study therefore proposes the reversely weighting
technique to analyze the weight on edge with the same
time complexity. In addition, the proposed evaluation process
can simultaneously examine vehicle load along the route to
assist in handling constraint violation. The reversely weighting
technique not only offers genetic information but facilitates
the violation measure, which are adopted by variation and
selection operators in GA.

1) Reversely Weighting Technique: The reversely weighting
technique accumulates the proportion of supplies and weights
each edge in reverse order. In the MLPDP, the commodities
required assemble before visiting a delivery node to satisfy the
request. This property implies that one weight is appended to
the edges on the visiting path between the specific delivery
node and its latest supplier according to the objective function.
This study therefore traces the route reversely to perceive node
type and weight each visited edge based on the aforementioned
observation. Specifically, the reversely weighting technique
adopts a variable δ, which is initialized to zero and increases
by one when stepping on delivery node. In addition, each
individual request is stacked before fully satisfied by preceding
pickup nodes, and δ decreases as reaching pickup node to
reflect the contribution of the supply to delivery customers.
Notably, the value of δ at that time indicates the weight of
passing edge. Algorithm 1 presents the procedure of reversely
weighting technique, where the double loops enable reverse
visits and stack manipulation, taking O(n2) of time complex-

ity in worst case.
To further utilize the weights on edges, the proposed re-

versely weighting technique maintains an edge table for each
chromosome in the course of fitness evaluation. Figure 2
takes the aforementioned route π = (v0, v4, v5, v3, v1, v2) for
example and illustrates the evaluation procedure as well as
edge table generation. In Fig. 2a, we decompose the weights
on the traveled edges for investigation into the variation of
δ. Specifically, δ increases by one in the first two steps, i.e.,
i = 5 and 4, to reflect the assemblage of supply flows before
delivery nodes v2 and v1; then 8

10 and 1
10 are subtracted from δ

according to Algorithm 1 when i shifts to 3 and 2, respectively,
trimming the flows after passing through the corresponding
sources v3 and v5 as shown in Fig. 2a. Lastly, v4 serves the
remaining requests of both delivery customers, leaving edge
(v0, v4) zero weight. In addition, each node along with its
predecessor and the corresponding share of the total latency
(�(i−1,i)) is kept in the edge table. Note that the pseudo-code of
reversely weighting technique deals with exceptions triggered
by infeasible solutions so as to generate edge table for future
reference.

2) Constraint Handling Method: The MLPDP seeks a route
with lowest total latency to transport commodities from pickup
nodes to delivery nodes subject to vehicle capacity and non-
negative load. In the course of search process, the operators
in GA may produce infeasible solutions that exceed capac-
ity limitation or hold insufficient freight for some delivery
requests during the visits. The reversely weighting technique
examines vehicle load while evaluating visiting tour in reverse
order. Figure 3 illustrates the vehicle load variation of example
route π = (v0, v4, v5, v3, v1, v2). This example reveals the
fact that the variation measured in reverse order mirrors
the load variation of actual visiting direction. According to
this observation, the proposed fitness evaluation determines
feasibility through negative λ(i), which coincides with the real
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Figure 3. Vehicle load variation of example route π =
(v0, v4, v5, v3, v1, v2). The arrows indicate evaluation direction; the
dotted and solid vectors represent vehicle load as visiting particular v(i) in
forward and reverse order, respectively. Additionally, the solid line plots the
negative quantity of the load variation measured in reverse order. Note that
in this example, v(6) corresponds to depot v0.

load variation if shifted to one step forward.
Furthermore, this study adopts the constraint handling

method proposed by Deb [15] to guide the search process
toward low-latency feasible solution. The selection operators
in GA consider feasible solutions better than infeasible ones;
moreover, the comparison among feasible individuals is based
on fitness function f(π), while the quality of infeasible solu-
tions is determined by violation measure g(π). In this study,
we employ the violation measure designed by Ting and Liao
[16]. Formally,

g(π) = λexc + |λneg|
with

λexc = maxiε{1,...,n}(λ(i),Q)−Q
λneg = miniε{1,...,n}(λ(i),0)

where λexc indicates the maximal amount of exceeding load
and λneg denotes the extreme shortage of commodities on
board. Note that both f(π) and g(π) are to be minimized
during the evolution process. Through this constraint handling
method, the selection operators enable low-latency feasible
solutions to have higher probability to generate offspring and
survive until subsequent generations, leading to the optimal
visiting tour.

B. Edge Aggregate Crossover

The conventional order-based crossover operators such
as order crossover, cycle crossover, and partially mapped
crossover guarantee to visit each node exactly once [17].
In addition to permutation attribute preservation, this study
attempts to inherit useful genetic information from parents
to improve the performance of GA for the MLPDP. The
proposed crossover is called edge aggregate crossover (EAC).
The EAC takes advantage of the edge table generated by
reversely weighting technique to construct offspring. Since the

Figure 4. An example MLPDP. The figures inside circles and the numbers
on arcs denote di and transportation time between two vertices, respectively.

edge table records the composition of total latency experienced
through the duration of the visits, the EAC can choose edges
for offspring according to probable effects occurred in parents.
Specifically, the proposed EAC begins with a randomly se-
lected delivery node and determines the route in reverse order
owing to the direction of fitness evaluation. To retain parental
features, the edge of either parent with lower �(i−1,i) is
involved. Nevertheless, both choices may destroy permutation
attribute; the EAC then follows the visiting order of a certain
parent with probability of 0.5 or greedily chooses the edge
consuming least transportation time among those connecting
to unvisited nodes. Figure 5a shows a pair of parents and
their respective edge tables on the MLPDP instance in Fig. 4.
Notably, the chromosome representation excludes depot v0 to
reduce the solution space. Figure 5b describes the procedure of
the proposed EAC, where we randomly select a node from one
of the parents since edges (v3, v1) and (v5, v1) have the same
share in total latency of p1 and p2, respectively. Moreover, in
steps 3 and 5, the EAC attaches the worse candidate due to fea-
sibility of representation. The EAC introduces new edges into
the population in some cases and enables offspring to possess
features of both parents, e.g., c1 = (v0, v4, v2, v5, v3, v1).

IV. EXPERIMENTAL RESULTS

This study conducts a series of experiments to examine the
effectiveness of the proposed edge aggregate crossover (EAC)
in comparison to conventional order-based recombinations,
i.e., order crossover (OX), cycle crossover (CX) and partially
mapped crossover (PMX). Table I summarizes the parameter
setting of GA in the experiments. The empirical study uses the
benchmark introduced in [16] and conducts experiments on In-
tel i7-920 machines. Each experiment includes 30 independent
runs due to the stochastic nature of GA. All problem instances
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p1 v4 v5 v3 v1 v2 v(i) v(i−1) �(i−1,i) p2 v3 v4 v2 v5 v1 v(i) v(i−1) �(i−1,i)

v1 v3 8.0 v1 v5 8.0
v2 v1 9.0 v2 v4 11.4
v3 v5 3.6 v3 v0 0.0
v4 v0 0.0 v4 v3 0.8
v5 v4 6.6 v5 v2 0.9

(a) Selected parents and their respective edge tables.

step candidate1 candidate2 action current state
1 V − random (v1)

2 v3 (8.0) v5 (8.0) random (v3, v1)

3 v5 (3.6) v0 (0.0) candidate1 (v5, v3, v1)

4 v4 (6.6) v2 (0.9) candidate2 (v2, v5, v3, v1)

5 v1 (9.0) v4 (11.4) candidate2 c1 v4 v2 v5 v3 v1

(b) Procedure of edge aggregate crossover.

Figure 5. Example for edge aggregate crossover: (a) Selected parents p1 and p2 with respective edge tables. (b) Procedure of edge aggregate crossover.
Columns candidate1 and candidate2 are predecessors of the latest attached node in p1 and p2, respectively; furthermore, the number inside parentheses
presents the �(i−1,i) obtained from the corresponding parent.

Table I
PARAMETER SETTING OF GA.

Parameter Value

Representation Order-based
Initialization Random
Population size 500
Parent selection Binary tournament
Crossover EAC, OX, CX, and PMX (pc = 1.0)
Mutation Swap (pm = 1.0)
Survival selection (μ+ λ)
Termination 20000 generations

are set to
∑n

i=0 di = 0 for the equilibrium of total supply and
total demand. The name of instance consists of the original
benchmark name and the vehicle capacity, e.g., n60mosBq146
indicating instance n60mosB with vehicle capacity 146.

First, we investigate the average total latency obtained
from GA with different crossover operators. According to
Table II, the proposed EAC achieves lowest latency on all
tested instances. The EAC overwhelmingly outperforms CX
with statistical significance. The insignificant difference in
solution quality between EAC and OX as well as PMX on
n20mosAq44 and n20mosBq40 could be caused by small
search space. In general, the superiority of the proposed EAC
over conventional recombinations increases as the number
of nodes grows. Figures 6a and 6b illustrate the anytime
behavior of GA using EAC and OX on n40mosBq85 and
n60mosBq146, respectively. The OX is compared in that it
obtains lower latency on most problem instances among the
three conventional order-based recombinations. The results
reflect that OX suffers from premature convergence and is
trapped into local optima; by contrast, the proposed EAC keeps
search potential and reaches quality visiting routes.

To examine the scalability of the EAC on resolving the
MLPDP, this study further employs test bench containing
more nodes and compares the performance of EAC with that

Table III
AVERAGE TOTAL LATENCY OF ROUTE OVER 30 TRIALS (AVE.) AND

SAMPLE STANDARD DEVIATION (STD.) OBTAINED FROM GA WITH EDGE
AGGREGATE CROSSOVER (EAC) AND ORDER CROSSOVER (OX). THE
p-VALUE SHOWS THE RESULTS OF ONE-TAILED t-TEST BETWEEN EAC

AND OX. BOLDFACE INDICATES THE LOWEST AVERAGE TOTAL LATENCY
AND THE p-VALUE LESS THAN SIGNIFICANCE LEVEL (α = 0.05).

Instance EAC OX

ave. std. ave. std. p-value

n100mosAq218 9365.10 3.48E+02 12299.10 7.85E+02 1.11E-21
n100mosBq243 9630.72 5.65E+02 12401.25 9.37E+02 1.22E-18
n200mosAq460 14882.01 8.99E+02 19059.39 1.09E+03 3.81E-23
n200mosBq499 17650.52 1.27E+03 21875.05 1.24E+03 3.58E-19
n300mosAq721 24321.75 2.17E+03 27539.76 1.19E+03 3.44E-09
n300mosBq743 25198.44 1.99E+03 28250.29 1.59E+03 9.84E-09

of representative recombination, i.e., OX. The termination
criterion of GA is extended to a million generations due to
the increase of problem scale. In Table III, the proposed EAC
significantly excels OX in solution quality on all instances.
Additionally, OX still encounters premature convergence in
Fig. 6c and 6d, yielding more delay during transportation.
The smooth convergence of GA with EAC in Fig. 6d reveals
that the best chromosomes generated by OX and EAC may
reach similar solution quality in early stage of evolution
on some problem instances. The proposed EAC, however,
significantly surpasses OX in subsequent generations. These
outcomes verify the effectiveness of extracting and inheriting
genetic information in the proposed EAC for the MLPDP.

V. CONCLUSIONS

This study proposes the minimum latency pickup and de-
livery problem (MLPDP), which seeks a low-latency route to
transport commodities from pickup nodes to delivery nodes.
The MLPDP is applicable to time-sensitive services such as
conveyance of perishable goods in farm fresh distribution.
Moreover, it considers the quality of a visiting tour from
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Table II
AVERAGE TOTAL LATENCY OF ROUTE OVER 30 TRIALS (AVE.) AND SAMPLE STANDARD DEVIATION (STD.) OBTAINED FROM GA WITH DIFFERENT
RECOMBINATION OPERATORS, I.E., EDGE AGGREGATE CROSSOVER (EAC), ORDER CROSSOVER (OX), CYCLE CROSSOVER (CX), AND PARTIALLY

MAPPED CROSSOVER (PMX). THE p-VALUE SHOWS THE RESULTS OF ONE-TAILED t-TEST BETWEEN EAC AND THE PARTICULAR CROSSOVER.
BOLDFACE INDICATES THE LOWEST AVERAGE TOTAL LATENCY AMONG THE TESTED OPERATORS AND THE p-VALUE LESS THAN SIGNIFICANCE LEVEL

(α = 0.05).

Instance EAC OX CX PMX

ave. std. ave. std. p-value ave. std. p-value ave. std. p-value

n20mosAq44 3313.21 9.87E+01 3307.36 9.39E+01 4.08E-01 3376.90 1.65E+02 3.78E-02 3355.81 1.63E+02 1.13E-01
n20mosBq40 2855.61 0.00E+00 2868.55 2.19E+01 1.63E-01 2927.43 2.09E+02 3.49E-02 2897.21 1.85E+02 1.14E-01
n30mosAq70 5771.77 2.18E+02 6006.62 2.83E+02 2.93E-04 6444.23 2.83E+02 7.28E-11 6317.04 3.40E+02 8.01E-10
n30mosBq62 4385.07 6.57E+01 4671.12 1.87E+02 1.22E-09 5004.64 3.05E+02 1.61E-12 4836.24 2.04E+02 9.23E-14
n40mosAq93 4738.03 1.47E+02 5264.73 3.30E+02 3.73E-10 5687.88 4.96E+02 5.03E-12 5641.98 4.40E+02 6.55E-13
n40mosBq85 5209.32 3.32E+02 5931.35 4.48E+02 1.62E-09 6490.59 5.17E+02 9.02E-16 6408.78 5.25E+02 1.48E-14
n50mosAq99 3915.71 9.98E+01 4614.86 4.03E+02 3.19E-11 5159.13 4.53E+02 5.26E-16 4941.35 5.15E+02 2.90E-12
n50mosBq122 6712.44 2.18E+02 8160.30 7.34E+02 2.01E-12 8663.25 6.69E+02 2.66E-17 8159.81 6.33E+02 3.08E-14
n60mosAq126 5838.74 3.01E+02 7235.31 6.35E+02 2.84E-15 8293.36 7.05E+02 1.80E-20 7676.47 6.47E+02 1.26E-17
n60mosBq146 6662.92 3.25E+02 8732.93 7.07E+02 5.42E-18 9203.83 7.44E+02 2.96E-20 8582.71 8.81E+02 1.07E-13
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Figure 6. Anytime behavior of EAC and OX.
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the viewpoint of customer satisfaction rather than service
provider; that is, the objective is to minimize the total latency
encountered during freight transportation between demanders
and the corresponding suppliers. A general-purpose problem
formulation is presented for any specified latency function
and loading method. This study takes the composition of the
freight into account and considers the average time elapsed
aboard of goods received as the latency of a delivery node.
In addition, LIFO loading method is employed to simulate
rear-loaded vehicle in practice. The proposed fitness evaluation
adopts the reversely weighting technique, which decomposes
the objective into the weighted edge cost rather than the
latency experienced by each delivery node and achieves time
complexity O(n2). To tackle the MLPDP, we design the
edge aggregate crossover (EAC), which constructs offspring
according to genetic information on parental routes acquired
from fitness evaluation.

A series of experiments is conducted to verify the effective-
ness of the proposed EAC on resolving the MLPDP. Statistical
test results reveal that EAC leads to significantly lower total
latency than conventional order-based crossover, i.e., order
crossover, cycle crossover, and partially mapped crossover.
Moreover, the anytime behavior suggests that the EAC infuses
diversity into population while retaining useful features of
parents and thus enables escape from local optima. These
preferable outcomes validate the effectiveness and advantages
of the proposed EAC and reversely weighting technique.

Future work for the MLPDP includes several directions,
for example, amelioration of the proposed EAC, heuristic en-
hancement on latency reduction, development of local search,
and attempt at other constraint handling methods.
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