
 
 

 

 

  

Abstract—HIV-1 infects a variety of cell types such as 
macrophages, T-cells and dendritic cells by expressing different 
chemokine receptors. R5 HIV-1 viruses use the CCR5 
co-receptor for entry, X4 viruses use the CXCR4 co-receptor, 
and several viral strains make use of both co-receptors (a 
so-called “dual tropic” or R5X4 virus). Both X4 and R5X4 
viruses are associated with late stage rapid progression to AIDS. 
It remains difficult to identify viral co-receptor type in advance 
of treatment, especially the R5X4 variety. In this paper we 
extended previous work to classify HIV-1 tropism using evolved 
neural networks and a larger set of HIV-1 sequences and 
features to improve overall classification accuracy.  

I. INTRODUCTION 
pproximately 34 million people worldwide are infected 
with HIV-1 and more than 1,100,000 people live with 

HIV infection in the United States [1]. While combined 
antiretroviral therapy (cART) has been effective in increasing 
the lifespan of those infected with HIV-1, it does not cure or 
clear individuals from viral infection [2-3]. Patients can 
become resistant to cART, and side effects such as metabolic 
disease or neurological disorders, can be fatal [4-6]. 
HIV-1-infected patients require close monitoring of viral 
load, along with tests that identify specific viral genetic 
mutations associated with drug resistance [7]. One class of 
drugs, called entry inhibitors (EIs), does not target the virus 
directly; instead they target receptors on the cell surface of 
specific immune cells (Figure 1). The chemokine co-receptor 
CCR5 (R5) is the major co-receptor for macrophage-tropic 
virus strains, and plays a crucial role in the sexual 
transmission of HIV-1 [8]. T-cell tropic viruses use the 
co-receptor CXCR4 (X4) to enter target cells, and usually, but 
not always, emerge late in disease progression. Some primary 
HIV-1 isolates are dual-tropic (R5X4) and can use both 
co-receptors [8]. Many studies have discussed the importance 
of viral tropism in disease progression for HIV-infected 
individuals [9-12] and extensive reviews of different viral 
phenotypes are available in the literature [13-16].  

Artificial neural networks (ANNs) have been applied to 
HIV co-receptor prediction with limited success [17-21]. 
 

G.B. Fogel and E. Liu are with Natural Selection, Inc., San Diego, CA 
92121 USA (phone: 858-455-6449; fax: 858 455-1560; email: 
gfogel@natural-selection.com). 

M. Salemi  is with the University of Florida, Department of  Pathology 
and Laboratory Medicine, Gainesville, FL 32610 USA (email: 
salemi@pathology.ufl.edu) 

S.L. Lamers is with BioInfoExperts, LLC, Thibodaux, LA 70302 USA 
(email: susannagene@bellsouth.net). 

M.S. McGrath is with the University of California at San Francisco, 
Department of Laboratory Medicine, Pathology, and Medicine and the AIDS 
and Cancer Specimen Resource,  San Francisco, CA 94143 USA (email: 
mmcgrath@hemeonc.ucsf.edu)  

This work was supported by the U.S. National Institutes of Health under 
Grant R01 MH100984.  

Most of these applications have used backpropagation for 
neural network training. For example Resch et al. [17] 
predicted HIV-1 co-receptor usage for X4 viruses from 
envelope V3 loop sequences using neural networks trained 
via Bayesian regulation modification of backpropagation. 
These efforts demonstrated the merit of the approach, 
however the mean reliability of correctly classifying X4 
viruses was ~69% and considered insufficient for use in 
clinical settings despite 80% sensitivity and 89% specificity 
of the best ANN. Further, no classifier had been developed at 
that time to identify R5X4 strains from genotypic information 
alone.  
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Fig. 1. Co-receptors, virus phenotypes and entry inhibitors.  1) HIV 
enters immune cells by binding co-receptors R5 or X4 on the cell 
surface. Three viral phenotypes of HIV are known: those that bind R5 
receptors, those that bind X4 receptors and dual tropic (R5X4) viruses 
can bind both receptors. Complex genetic sequences on the virus 
surface determine which cellular co-receptor a virus will bind. 2) Once 
a cell is infected, combined antiretroviral therapy (cART) can reduce 
competent replication of virus; however, it can also interfere with other 
cellular functions. 3) EIs block virus binding to specific receptors and 
do not penetrate cells. Thus, this is an attractive alternative/ 
complement to cART; however, in order to use entry inhibitors, an 
individual must be assayed to determine which co-receptors their virus 
populations are using because of the risk of altering viral fitness to a 
more aggressive phenotype (see discussion below). 
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Although backpropagation is a common strategy for ANN 
optimization, convergence is only guaranteed to a locally 
optimal solution. A different approach to ANN optimization 
makes use of evolutionary computation to discover weight 
assignments or evolve the ANN architecture itself. Natural 
evolution provides inspiration for an approach that mimics 
random variation and selection to search the space of possible 
classifiers in a global sense. Evolved neural networks (ENNs) 
[22-25] have been applied on a wide variety of biochemical 
data mining problems [26-29]. 

Previously we presented the first use of ENNs to classify 
HIV-I co-receptor use [29]. That research was based on a 
small set of 149 HIV-1 V3 loop sequences (77 R5, 31 R5X4, 
and 41 X4 sequences) from a variety of HIV subtypes. Using 
multiple sequence alignment and removal of invariant 
positions, 9 features were calculated for each of 35 sequence 
positions (a total of 317 features) plus an additional 2 features 
V3-domain-level features were calculated. The feature space 
was reduced further to 248 to eliminate uninformative 
features. Fully connected feed-forward ENNs were used to 
map the input vectors for each sequence to co-receptor usage 
classification using increasingly largely feature sets as input. 
Given the small sample sizes, leave-one-out cross validation 
was used to minimize the resulting mean squared error of 
classification. This process was repeated for various inputs 
from 2 to 30, using two hidden nodes, and 1 output node in all 
cases. This process allowed us not only to evolve useful 
classifiers but identify feature combinations that were 
important for the classification process. ENNs were trained to 
classify R5 sequences from X4 sequences, and additional 
ENNs were trained to classify R5X4 sequences from either 
R5 or X4 sequences. The results of this approach led to a 
mean classification accuracy of 88.9% for R5 vs. X4 and 
mean classification accuracy of 75.5% for R5X4 vs. R5 or 
X4. These results for the first time provided the ability to 
classify dual-tropic viruses with reasonable accuracy. 

In this paper we extended this approach using ENNs on a 
far larger sequence database, with additional features, to 
derive classifiers for four separate decisions (R5 vs. X4, R5 
vs. R5X4, X4 vs. R5X4, and R5 vs. R5X4 vs. X4). Section II 
below reviews the methods used to develop the data, Section 
III outlines the methods used for ENN training and 
evaluation, Section IV reviews the results of the approach, 
and Section V provides some conclusions and future work. 

II. DATA PREPARATION 

A. V3 loop sequences 
HIV subtype B sequences (3,452 R5, 197 X4, and 545 R5X4) 
were downloaded from the HIV database at Los Alamos 
(http://www.hiv.lanl.gov/content/index) and translated into 
amino acid sequences. These sequences were then aligned 
computationally using ClustalW within the MEGA sequence 
analysis package [30]. The alignment was then manually 
curated to correct obvious alignment errors. Duplicate 
sequences were removed. A representative alignment of just 
three of these sequences (one for each tropism) is shown in 
Figure 2. 
 

 
     1   *    *    *    *    *    *    *   40     

R5   CERPNNNTR-RS-IQI---GPGRAWFEAEDIIGDIRKAHC 
X4   CTRPNNNTR-KR-IRIQ-RGPGRAFVTIGK-IGNMRQAHC 
R5X4  CIRPNNNTR-RS-IPI---GPGRAFYATGDIIGDIRQAYC 

B. Feature generation 
In light of the sequence dataset resulting from II.A above, 

for each of the 40 alignment positions, features for model 
development (Table I) were calculated. While some of these 
were position dependent (e.g., glycosylation at specific 
positions), the remainder of the features were calculated for 
all positions and separately again for just the 5’ end of the 
alignment (positions 9-14), for the 3’ end of the alignment 
(positions 22-28) and lastly for a second region at the 3’ end 
of the alignment (positions 31-37). These regional 
calculations were with respect to known associations of 
particular regions with HIV tropism in the literature. 

The features in Table I were selected using the available 

TABLE I 
FEATURES FOR MODEL DEVELOPMENT 

Molecular weight Beta Levitt 
Beta Chou and 
Fasman 

Bulkiness Antiparallel beta Beta sheet 
Polarity AA Comp Coil 
Recognition factors Relative mutability Beta-sheet Levett 
Hydrophobicity 
Sweet Number of codons Beta strand 
Kyte and Doolittle Polarity Parallel beta 

Abraham and Leo Refractivity 
AA Comp Swiss 
Prot 

Bull and Breese Eisenberg Volume 
Guy Hopp and Woods Charge 
Miyazawa Manavalan HP Scale 
Roseman Black and Mould Surface Area 

Wolfenden Fauchere 
pKa alpha 
carboxylate 

Wilson Janin pKa - amine 
Cowan Rao and Argos pl at 25C 
Aboderin Tanford Exchange 
HPLC/TFA Welling Charge polarity 

Meek Parker 
Hydrophobicity 
Membership Class 

Mol fraction of 
buried res 

Cowan and 
Whittaker 

Mass Membership 
class 

Chothia Browne 
Surface Exposure 
Membership Class 

Grantham Transmembrane 
2D propensity 
Membership Class 

Average Flex Retention 
AA Comp Swiss 
Prot 

Chou and Fasman 
%accessible 
residues 

Charge Conversion 
Table 

Alpha helix Rose 
Glycosylation 
Position 6 through 8 

Beta Sheet Avg Area buried 
Glycosylation 
Position 5,7,9 

Alpha Levitt 
Alpha Chou and 
Fasman 

Charge at position 
12 

Charge at position 
30 

Total sequence 
glycosylation  

Total sequence 
charge 

 

Fig. 2. Representative alignment. All 4194 sequences were aligned. 
Gaps were inserted as required to maximize the alignment. In the 
above excerpt, asterisks indicate every fifth position in the 
alignment.  Dashes represent gapped positions.  
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literature about tropism as a guide and also through resources 
such as those found via ExPASy ProtParam 
(www.expasy.org/protparam) [31]. This process resulted in 
~3000 possible feature-positions that could be provided as 
input to a model for classification.  

C. Feature processing 
Using all features, linear regression was used to remove 

uncorrelated features and determine which features are most 
useful in separating the tropism classes independently for 
each of four decisions (R5 vs. R5X4, R5 vs. X4, R5X4 vs. 
X4, and R5 vs. R5X4 vs. X4). The top features identified over 
all tropism decisions were: overall V3 loop charge, charge at 
position 12, charge conversion table, Janin, Eisenberg, 
Volume, Refractivity, Tanford, Wolfenden, Cowen, Abraham 
and Leo, average area buried, bulkiness, Chothia, beta sheet). 
Although specific tropism decisions had slightly different 
orderings of the top features, these 15 were common across 
most tropism decisions and therefore considered useful for 
rapid model development. 

III. EVOLVED NEURAL NETWORK TRAINING AND 
EVALUATION 

For classifier development, feed-forward, fully-connected, 
ANNs with 15 inputs, 3 hidden nodes, and 1 output node, 
were evolved using a population of 100 parents and 100 
offspring ANNs. Tournament selection with 4 opponent 
ANNs was used for selection. All hidden nodes used a 
sigmoid activation function, with initial sigma 0.1, initial 
weights 0.0 with inputs normalized to [0.1,0.9]. For the 
purpose of evolving ANNs, each ANN was coded as a 
real-valued vector of the weights and biases associated with 
the ANN in accordance with prior work [22-24]. Fitness was 
measured by taking the mean squared error (MSE) of the 
ANN prediction relative to the actual value as a measure of 
predictive accuracy for each sample using the equation: 

 

∑
=

−
= N

k
kk OPN

MSE

1

2)(

1
   (1) 

 
where P is the predicted activity for the kth sample, O is the 
observed activity for the kth sample, and N is the number of 
patterns in the training set. MSE was minimized using 
evolutionary computation. Optimization proceeded on the 
training data for 10,000 generations, monitoring both training 
and testing MSE to determine the number of generations that 
minimized both training and testing MSE without increased 
MSE on the testing samples. Once identified, ANNs were 
re-evolved for that number of generations, with the best ENN 
used to process the remaining held-out validation set for final 
evaluation. Convergence plots of the learning over the 
training examples provided a means to determine the most 
appropriate number of generations of evolution without 
overtraining. Each best evolved neural network was then 
processed using a threshold to determine tropism class above 
or below the threshold. For R5 vs. R5X4 this threshold was 
0.3, for R5 vs. X4 the threshold was 0.25, for  R5X4 vs. X4 

the threshold was 0.52, and for R5 vs. R5X4  vs. X4 the 
thresholds were 0.7 and 1.10 respectively. 

IV. RESULTS 
Convergence plots showing neural network optimization over 
generations of simulated evolution are shown in Figures 3 
through 6 as average MSE on training and testing samples for 
the three shuffles of the data for each tropism class. In each 
case MSE decreases on the training data asymptotically as 
expected, while testing shows a similar decrease and then 
plateaus or even increases again in later generations 
indicating possible overtraining. Using this data, the number 
of generations with lowest MSE for both training and testing 
was obtained, and neural networks were then re-evolved for 
that number of generations, with the best-evolved neural 
network used to process the held-out validation data. 

.195
.2

.205
.21

.215
.22

.225
.23

.235
.24

.245
.25

Y 
Va

ria
bl

es

0 1000 2000 3000 4000 5000
Generations

Avg Testing MSE
Avg Training MSE

 
Fig. 3. Mean convergence for training and testing MSE over the three 
random shuffles of R5 vs. R5X4. 

.04

.05

.06

.07

.08

.09

.1

Y 
Va

ria
bl

es

0 1000 2000 3000 4000 5000
Generations

Avg Testing MSE
Avg Training MSE

 
Fig. 4. Mean convergence for training and testing MSE over the three 
random shuffles of R5 vs. X4. 
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Fig. 5. Mean convergence for training and testing MSE over the three 
random shuffles of R5X4 vs. X4. 
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Fig. 6. Mean convergence for training and testing MSE over the three 
random shuffles of R5 vs. R5X4 vs. X4. 

 
Results for each classification decision (R5 vs. R5X4, R5 

vs. X4, X4 vs. R5X4, R5 vs. R5X4 vs. X4) are provided in 
Tables II through V respectively. Each table provides mean 
performance over all three random shuffles of the training, 
testing, and validation data. Performance on the decision of 
R5 vs. X4 was superior, and improved upon previous 
research, as did the accuracies of R5 vs. R5X4 and X4 vs. 
R5X4. The three-class decision of R5 vs. R5X4 vs. X4 was 
much harder for the neural networks to learn. Curiously the 
off diagonal errors were non-symmetrical. For instance when 
the actual tropism was R5, the neural networks almost never 
misclassified the sequence as being X4. Rather they 
misclassified as being R5X4. Similarly when the actual 
tropism was X4, the neural networks almost never 
misclassified the sequence as R5. Rather, they misclassified 
as R5X4. However, when the actual sequence was dual tropic 
(R5X4), the neural networks were twice as likely to 
misclassify the sequence as X4 than R5. 

 
 
 

TABLE II 
R5 VS. R5X4 

 
Mean Training 
Performance 

(n=2398) 

Actual 
R5 

(n=2060) 
R5X4

(n=338) 
Predicted R5 1662/2060=80.7% 63/338=18.8% 

R5X4 399/2060=19.3% 274/338=81.2% 
 
Mean Testing 
Performance 

(n=1199) 

Actual 
R5 

(n=1039) 
R5X4

(n=160) 
Predicted R5 809/1039=77.9% 34/160=21.2% 

R5X4 229/1039=22.1% 126/160=78.8% 
 

Mean Validation 
Performance 

(n=400) 

Actual 
R5 

(n=353) 
R5X4

(n=47) 
Predicted R5 283/353=80.2% 11/47=24.1% 

R5X4 70/353=19.8% 36/47=75.9% 

V. DISCUSSION 
The accurate assessment of co-receptor usage is important 

in several aspects of HIV research including studies about 
viral transmission, evolution, adaptation, viral reservoirs in 
specific tissues, and other in vitro and in vivo studies. 
Statistical and computational approaches to distinguish these 
tropism classes have their own history, generally with the 
realization that dual-tropic R5X4 viruses are most difficult to 
classify. However R5X4 viruses are important to monitor in 
light of their association with rapid disease progression.  
 
 

TABLE III 
R5 VS. X4 

 
Mean Training 
Performance 

(n=2189) 

Actual
R5 

(n=2070) 
X4

(n=119) 
Predicted R5 2033/2070=98.2% 8/119=6.4% 

X4 37/2070=1.8% 112/119=94.4% 
 
Mean Testing 
Performance 

(n=1095) 

Actual
R5 

(n=1040) 
X4

(n=56) 
Predicted R5 1003/1040=96.4% 6/56=10.1% 

X4 36/1040=3.5% 50/56=89.9% 
 

Mean Validation 
Performance 

(n=365) 

Actual
R5 

(n=343) 
X4

(n=22) 
Predicted R5 337/343=98.3% 3/22=15.2% 

X4 6/343=1.7% 19/22=84.8% 
 
 

TABLE IV 
R5X4 VS. X4 

 
Mean Training 
Performance 

(n=445) 

Actual
R5X4 

(n=329) 
X4

(n=116) 
Predicted R5X4 236/329=71.8% 31/116=27.0% 

X4 93/329=28.2% 83/116=71.6% 
 
Mean Testing 
Performance 

(n=223) 

Actual
R5X4 

(n=164) 
X4

(n=60) 
Predicted R5X4 115/164=70.0% 18/60=30.0% 

X4 49/164=30.0% 42/60=70.0% 
 

Mean Validation 
Performance 

(n=74) 

Actual
R5X4 

(n=52) 
X4

(n=22) 
Predicted R5X4 43/52=82.1% 5/22=24.2% 

X4 9/52=17.9% 17/22=75.8% 
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TABLE V 
R5 VS. X4 VS. R5X4  

 
Mean Training 
Performance 

(n=2517) 

Actual 
R5 

(n=2071) 
R5X4 

(n=333) 
X4

(n=113) 
Predicted R5  1401/2071=

67.6% 
48/333= 

14.5% 
2/113= 

1.5% 
R5X4 661/2071= 

31.9% 
167/333= 

50.1% 
31/113= 

27.2% 
X4 10/2071= 

0.5% 
118/333= 

35.4% 
80/113= 

71.3% 
 

Mean Testing 
Performance 

(n=1258) 

Actual 
R5 

(n=1036) 
R5X4 

(n=160) 
X4

(n=62) 
Predicted R5  701/1036= 

67.7% 
24/160= 

15.2% 
1/62= 
1.1% 

R5X4 331/1036= 
31.9% 

89/160= 
55.9% 

16/62= 
25.1% 

X4 4/1036= 
0.4% 

46/160= 
28.8% 

46/62= 
73.8% 

 
Mean 

Validation 
Performance 

(n=419) 

Actual 
R5 

(n=345) 
R5X4 

(n=52) 
X4

(n=22) 

Predicted R5  244/345= 
70.7% 

11/52= 
20.5% 

1/22= 
6.1% 

R5X4 09/345= 
28.3% 

31/52= 
59.6% 

4/22= 
19.7% 

X4 3/345= 
1.0% 

10/52= 
19.9% 

16/22= 
74.2% 

  
As previously described, entry inhibitors bind specific 

chemokine receptors on cell surfaces and reduce the entry of 
viruses into required immune cells necessary for HIV 
replication. Many entry inhibitors targeting different cell 
receptors are under evaluation [32].  For example, Maraviroc 
targets the R5 co-receptor [33], AMD070 targets the X4 
co-receptor [34] and Ibalizumab binds both X4 and R5 
co-receptors [35]. Because R5 viruses are commonly 
transmitted and present during prolonged antiretroviral 
treatment [36], R5 inhibitors may be beneficial towards 
keeping viral loads low [38]. On the other hand, X4 viruses 
are associated with progression to AIDS; therefore, treatment 
with an R5 inhibitor while X4 viruses are present allows for 
the unwanted opportunity for growth and evolution of more 
aggressive viral populations in the infected individual [38]. 
For this reason, virus populations must be carefully 
monitored for co-receptor usage during treatment with an R5 
antagonist. Alternatively, treatment with an X4 antagonist 
would be useless if the viral population was predominantly 
R5; however, such a drug may be useful in prolonging life in 
a patient with a mixed (R5X4) viral population. Ibalizumab 

binds both receptors and, like many other entry inhibitors is 
still under evaluation [35,38].  

Signature pattern analysis, clustering, and phylogenetic 
analysis are commonly used to define viral subpopulations, 
however these approaches only assess nucleic or amino acid 
variation within a properly aligned set of sequences without 
considering other biological features present within the 
underlying data. Early viral tropism studies identified two 
charged amino acids positions in the envelope V3 domain that 
have been used to estimate tropism [39]; however, this 
method is unreliable for X4 viruses and largely ineffective in 
identifying dual-tropic (R5X4) viruses. Several 
bioinformatics prediction systems have been developed and 
are available via the Internet: WetCat [40], WebPSSM [41], 
geno2pheno [42]. These algorithms are used primarily by 
academia due to the high cost of biological assays. The 
algorithms are trained on genotypic information and known 
corresponding phenotype. So far, two cohorts have been 
analyzed with such genotypic approaches, resulting in 
frequencies of R5 virus strains that are within the range of 
those reported with biological assays [43]. However, all three 
of these systems are less reliable for X4 sequence 
identification and lack the ability to identify R5X4 with 
reasonable accuracy.  

In this study, 15 of the features from Table 1 were 
ultimately used for classification in the ENNs. As in previous 
studies, various charged positions along the alignment were 
found important in tropism decisions. Importantly, while the 
system can help predict viral phenotypes, it can also provide 
insight to viral features that could be used in further studies 
aimed at reducing co-receptor binding. Seven interesting 
hydrophobicity scales were important for viral phenotype 
decisions, for example, the Janin scale [44] measures the free 
energy of transfer from the inside to the outside of globular 
proteins and the Tanford scale [45] measures the contribution 
of hydrophobic interactions to the stability of protein 
confirmation. Structural scales included the normalized 
frequency for beta-sheet formation, bulkiness and average 
area buried.  
 Frequently, HIV-associated studies are aimed at 
identifying subsets of viral sequences associated particular 
pathologies, for example, the identification of a brain-specific 
or lymphoma-specific virus has been researched [46-51]. The 
HIV Nef protein has been implicated in various HIV disease 
pathologies [52-53]. To support these efforts, An ENN 
analysis of Nef sequences isolated from tissue biopsies, such 
as brain and tumor sequences, could resolve if specific Nef 
proteins are not only associated with these tissues, but also 
pinpoint detailed features of Nef that contribute to the specific 
pathology.   

VI. CONCLUSIONS 
In this paper we have extended our previous efforts using 

evolved neural networks for tropism classification using 
biological and positional features of HIV-1 sequences to 
classify co-receptor phenotype. The current effort was 
derived from a substantial increase in the amount of sequence 
information available for modeling, the number of subtype-B 
HIV sequences with known co-receptor usage, and new 
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scales that describe amino acid physico-chemical properties. 
The result was an improved accuracy for all decisions using 
validation data. A similar approach can be used to sample 
other sequence populations associated with disease 
pathogenesis.   

In the future, we plan on additional experiments to evolve 
the input layer to allow evolution to accept any of the ~3000 
possible features as input, sub-selecting to smaller feature sets 
that may increase overall accuracy. Further, we intend to 
allow the entire architecture to evolve, including the number 
of hidden nodes and connections as these were chosen to be 3 
and fully-connected arbitrarily, simply as a first pass on this 
dataset to see if performance could be improved over 
previous effort. In addition it should be recognized that the 
data set is largely unbalanced, with R5 sequences 
representing a large percentage of the available data. This 
imbalance may affect neural network performance, and future 
research will focus on repeating this analysis using balanced 
data sets for comparison. 
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