
Differential Evolution with Combined Variants
for Dynamic Constrained Optimization

Marı́a-Yaneli Ameca-Alducin, Efrén Mezura-Montes and Nicandro Cruz-Ramı́rez
Facultad de Fı́sica e Inteligencia Artificial

Universidad Veracruzana
Sebastian Camacho 5, Col. Centro, CP 91000, Xalapa, Veracruz, Mexico

Email: yaneliameca@gmail.com, {emezura,ncruz}@uv.mx

Abstract—In this work a differential evolution algorithm is
adapted to solve dynamic constrained optimization problems.
The approach is based on a mechanism to detect changes in the
objective function and/or the constraints of the problem so as to
let the algorithm to promote the diversity in the population while
pursuing the new feasible optimum. This is made by combining
two popular differential evolution variants and using a memory
of best solutions found during the search. Moreover, random-
immigrants are added to the population at each generation and
a simple hill-climber-based local search operator is applied to
promote a faster convergence to the new feasible global optimum.
The approach is compared against other recently proposed
algorithms in an also recently proposed benchmark. The results
show that the proposed algorithm provides a very competitive
performance when solving different types of dynamic constrained
optimization problems.

I. INTRODUCTION

Evolutionary algorithms (EAs) have been widely used to
solve constrained optimization problems [1]–[3]. However,
based on a recent review of the state-of-the-art [4], there are
some topics which have been scarcely studied. Among them,
there is the presence of dynamic constraints [5]. This type
of problems are known as Dynamic Constrained Optimization
Problems (DCOPs) [5]–[7]. A DCOP can be seen as a single
search problem in which a set of constrained optimization
problems must be solved during the search process. Given
those conditions, traditional EAs must be adapted to identify
changes in the search space so as to be able to find new optimal
solutions [5].

The specialized literature of EAs shows a significant
amount of research in dynamic unconstrained optimization
problems [8]. However, in presence of dynamic constraints
the research is still scarce. In a recent review on EAs for
solving DCOPs [5] it was shown that most of the EAs for such
optimization problems are genetic algorithms (GAs). More re-
cently, other nature-inspired meta-heuristics have been adapted
to solve DCOPs, as it is the case of the gravitational search
algorithm (GSA), whose operation is based on the attraction
of particles by gravity [6]. Among the mechanisms added to
an EA to solve DCOPs the most popular are the introduction
and/or maintenance of diversity [9]–[11] and solution repair
[5], [7].

The motivation of this work relies on the interest of testing
other EAs in DCOPs and also adding other mechanisms which
may help to improve their performance in dynamic constrained
search spaces. Differential Evolution (DE) is a very popular

EA which has showed a highly competitive performance when
solving unconstrained [12] and constrained [13] numerical op-
timization problems. Moreover, DE has been adapted to solve
dynamic unconstrained optimization problems [14]. However,
to the best of the authors’ knowledge, DE variants have not
been combined to solve DCOP’s. Therefore, in this paper we
propose an adaptation of DE to solve DCOPs by combining
two DE variants and temporal modifications to their parameters
with the aim to promote exploration after converging to a pre-
vious feasible optimum. A simple change detection mechanism
is used to activate the variant modification as well as a memory
to store the best solutions found during the search. Finally, a
simple local search operator is applied at each cycle of the
algorithm to favor convergence to the new feasible optimum
and some solutions generated at random are inserted in the
current population.

The rest of the paper is divided as follows. In Section
II the problem of interest is stated. Section III details the
DE-based algorithm to solve DCOPs. Section IV presents
the experiments and results obtained by the algorithm in a
benchmark recently proposed [5]. Finally, Section V includes
the conclusions and directions regarding future research.

II. PROBLEM STATEMENT

Without loss of generality, a DCOP can be defined as to:
Find ~x which minimizes, at each time t:

min
~x∈Ft⊆[L,U]

f(~x, t) (1)

Subject to:

gi(~x, t) ≤ 0,∀i ∈ 1, . . . ,m (2)

hj(~x, t) = 0,∀j ∈ 1, . . . , p (3)

where t ∈ N+ is the current time,

[L,U] = {~x = (x1, x2, ..., xD)|Li ≤ xi ≤ Ui, i = 1 . . . D}
(4)

is the search space,

Ft = {~x|~x ∈ [L,U], gi(~x, t) ≤ 0, i = 1 . . .m,
hj(~x, t) = 0, j = 1 . . . p} (5)

is called the feasible region for time t. ∀~x ∈ Ft if there exists
a solution ~x∗ ∈ Ft such that f(~x∗, t) ≤ f(~x, t), then ~x∗ is
called a feasible optimal solution and f(~x∗, t) is called the
feasible optima value for time t.

975

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

The main features of a DCOP are taken from one of
the next four cases: i) a static objective function and static
constraints function (i.e. a static constrained optimization pro-
blem), ii) a dynamic objective function and static constraints,
iii) a static objective function and dynamic constraints, and iv)
a dynamic objective function and dynamic constraints.

III. PROPOSED APPROACH

A. Differential Evolution

DE [12] is a quite simple but powerful search algorithm
which works with a population of solutions called vectors.
Two variation operators are applied to the vectors to generate
new ones and a greedy selection between parent and offspring
is adopted for replacement purposes. The population is repre-
sented as shown in Equation 6:

~xi,G, i = 1, . . . , NP (6)

where ~xi,G is vector i at generation G, and NP is the number
of vectors in the population. Each vector ~xi,G (called target
vector) generates one offspring ~ui,G (called trial vector) by us-
ing two variation operators as follows: A mutant vector ~vi,G is
computed by choosing three vectors (~xr0,G, ~xr1,G, and ~xr2,G)
at random from the current population (r0 6= r1 6= r2 6= i)
(see Eq. 7).

~vi,G = ~xr0,G + F (~xr1,G − ~xr2,G) (7)

where F > 0 is a scale factor defined by the user. After that,
the trial (offspring) vector is generated by applying a crossover
operator to the target vector ~xi,G and the mutant vector ~vi,G
as shown in Eq. 8.

ui,j,G =

{
vi,j,G if(randi ≤ Cr) or (j = Jrand)

xi,j,G otherwise
(8)

where CR ∈ [0, 1] defines the similarity between the trial
vector and the mutant vector, randi generates a random
number between 0 and 1, and j ∈ {1, . . . , NP} is the j-th
variable of the D- dimensional search space. jrand ∈ [1−D]
is a random integer number which forces the trial vector to get
at least one value inherited from the mutant vector to prevent
target vectors cloning.

Finally a greedy selection is made between the target and
trial vectors, where the best of them is chosen to remain in the
population for the next generation (see Eq 9).

~xi,G+1 =

{
~ui,G if(f(~ui,G) ≤ f(~xi,G)),
~xi,G otherwise

(9)

The complete pseudocode of DE is presented in Algorithm 1.
This DE variant is known as DE/rand/1/bin. In this work the
DE/best/1/bin is also adopted. The only difference with respect
to DE/rand/1/bin is the following: instead of choosing r0 at
random, this vector is the best one in the current population.
Therefore, the expression in Eq. 7 is changed as the one in
Eq. 10

~vi,G = ~xbest,G + F (~xr1,G − ~xr2,G) (10)

Algorithm 1 Differential Evolution Algorithm (DE/rand/1/bin)
1: G=0
2: Create a randomly-generated initial population ~xi,G ∀i, i =

1, . . . , NP
3: Evaluate f(~xi,G) ∀i, i = 1, . . . , NP
4: for G← 1 to MAX GEN do
5: for i← 1 to NP do
6: Randomly select r0 6= r1 6= r2 6= i
7: Jrand = randint[1, D]
8: for j ← 1 to D do
9: if randj ≤ Cr Or j = Jrand then

10: ui,j,G = xr1,j,G + F (xr2,j,G − xr3,j,G)
11: else
12: ui,j,G = xi,j,G

13: end if
14: end for
15: if f(~ui,G) ≤ f(~xi,G) then
16: ~xi,G+1 = ~ui,G

17: else
18: ~xi,G+1 = ~xi,G

19: end if
20: end for
21: G = G+ 1
22: end for

B. Mechanisms added

In order to deal with a dynamic objective function and/or
the dynamic constraints of a DCOP, the change must be
detected promptly and the behavior of the search must change
as well. After a change in the features of the search space
occurs, exploration must be strongly promoted to keep the
algorithm from converging to those promising regions of the
search space before such change (i.e. the feasible region before
the change). Therefore, to an algorithm for DCOPs it must
be necessary to leave such a region if a change occurs. On
the other hand, as a conflicting goal, a faster convergence to
the new feasible global optimum is required before a new
change might take place. We defined some terms used in
this work: a cycle is the period between each environmental
change, a generation is a complete DE iteration, an iteration
is a complete cycle of the local search method.

From the above mentioned, a suitable transition between
an increased exploration and fast convergence, after an envi-
ronment change, is required to leave the previous promising
feasible region and quickly locate the new one. The constraint-
handling technique adopted, the change detection mechanism,
and also the exploration promotion mechanism as well as the
convergence promotion mechanism are detailed next:

1) Constraint-handling: As it has been reported in the
specialized literature [4], the feasibility rules proposed by Deb
[15] have been successfully added to DE so as to deal with
constrained search spaces. Therefore, in this work such rules
are adopted as the constraint-handling technique. They are the
following:

1) Between 2 feasible vectors, the one with the highest
fitness value is selected.

976

2) If one vector is feasible and the other one is infeasi-
ble, the feasible vector is selected.

3) If both vectors are infeasible, the one with the lowest
sum of constraint violation is selected.

Those rules are applied in the greedy selection made in Eq. 9
and also every time the best vector is selected.

2) Change detection: The change detection is an important
task for an EA dealing with a DCOP [14], [16]. The first
trial vector and the trial vector at the middle of the current
population (based on the loop in step 5 in Algorithm 1) are
evaluated and their objective function values and constraints
values are compared against their previous values. If some
of those values are different, a flag value is changed from
inactive to active. Finally, the best vector so far in the current
population is stored in a memory file. The pseudocode of
this mechanism is detailed in Algorithm 2. It is remarked
that the change detection mechanism operates twice during
a generation because it provides a good trade-off between
detecting a change on time and the number of evaluations
computed in the process.

Algorithm 2 Change detection mechanism
Require: ~xi,t

1: change detected=FALSE
2: Evaluate ~xi,t in the objective function and constraints of

the DCOP at time t
3: if at least one value among the objective function and the

constraints is not the same as those of the last evaluation
of ~xi,t then

4: change detected=TRUE
5: Copy the best vector in the population ~xbest,t to the

memory
6: Reevaluate all vectors in the current population and also

in the memory
7: G using DE/best/1/bin=0
8: NI=IA
9: end if

3) Exploration promotion: After the detection flag
(change detected) is activated, the DE variant is changed
from DE/rand/1/bin (the base variant) to DE/best/1/bin (the
alternative variant) for a number of generations defined by the
user (G using DE/best/1/bin), and the F value is increased to
favor larger movements. Furthermore, the best vector can be
chosen from either the current population or the memory of
best vectors found in previous environments. A previous study
on DE for constrained optimization where these two variants
were combined [13], showed that DE/best/1/bin, coupled with
larger F values, presented a convenient exploration behavior
preceding the usage of DE/rand/1/bin in constrained search
spaces. The research in this paper is inspired on it and presents
its adaptation for DCOPs. The details of this mechanism can
be seen in Algorithm 3

Finally, at the end of each generation, a number of ran-
domly generated vectors called immigrants [17] are inserted
into the current population. The number of immigrants is
modified after a detected change and returns to its original
value after DE/best/1/bin finishes its work.

Algorithm 3 Exploration promotion mechanism
1: if the number of G using DE/best/1/bin is below its limit

then
2: Generate the trial vector ~ui,t for vector ~xi,t using Eqs

10 and 8 {DE/best/1/bin by choosing the best vector
from the memory or the current population}

3: else
4: Generate the trial vector ~ui,t for vector ~xi,t using Eqs

7 and 8 {DE/rand/1/bin}
5: end if

4) Convergence promotion: A simple hill-climber-like lo-
cal search operator [18] is applied to a randomly chosen vector
~xrand,t from the current population. A variable chosen at
random from ~xrand,t = (xrand,1,t, xrand,2,t, . . . , xrand,D,t) is
perturbed by a small random value δ ∈ [0, 1]. Such value is
added and subtracted to the variable. The best vector, based
on the feasibility rules, among the original one and the two
neighbors is chosen as the new starting point. The process is
repeated ILS (Iterations for Local Search) times, a parameter
defined by the user. The final obtained vector replaces the worst
vector in the current population (based on the feasibility rules).
The details of the local search operator are in Algorithm 4.

Algorithm 4 Convergence promotion mechanism
1: Select one vector from the current population at random
~xrandom,t

2: for c← 1 to ILS do
3: δ = random(0, 1)
4: Select one variable xi of ~xrandom,t at random
5: Generate neighbor ~xNi+,t from vector ~xrandom,t by

adding δ to variable xi
6: Generate neighbor ~xNi−,t from vector ~xrandom,t by

subtracting δ to variable xi
7: From ~xrandom,t, ~xNi+,t, and ~xNi−,t select the best

one based on the feasibility rules and make it the new
~xrandom,t.

8: end for
9: Replace the worst vector in the population with the best

vector obtained in the previous loop

C. DDECV algorithm for DCOPs

The complete pseudocode of the so-called Dynamic Differ-
ential Evolution with Combined Variants (DDECV) to solve
DCOPs is presented in Algorithm 5.

IV. EXPERIMENTS AND RESULTS

DDECV was tested on a recently proposed benchmark for
DCOPs [5], which contains eighteen problems with different
features. Due to space restrictions such details are not included
in this paper. However, they can be found in [5] and a summary
is included in Table I.

To promote a fair comparison, the settings for the bench-
mark problems adopted in this work are the same as those
reported in the reference from where the results for comparison
were taken [10], [19] and they are presented in Table II. As it
can be noted in such table, the experiment aims to analyze the

977

TABLE I. MAIN FEATURES OF THE TEST PROBLEMS [5].

Problem Obj. Function Constraints DFR SwO bNAO OICB OISB Path
g24 u Dynamic No Constraints 1 No No No Yes N/A
g24 1 Dynamic Static 2 Yes No Yes No N/A
g24 f Static Static 2 No No Yes No N/A
g24 uf Static No Constraints 1 No No No Yes N/A
g24 2 Dynamic Static 2 Yes No Yes and No Yes and No N/A
g24 2u Dynamic No Constraints 1 No No No Yes N/A
g24 3 Static Dynamic 2-3 No Yes Yes No N/A
g24 3b Dynamic Dynamic 2-3 Yes No Yes No N/A
g24 3f Static Static 1 No No Yes No N/A
g24 4 Dynamic Dynamic 2-3 Yes No Yes No N/A
g24 5 Dynamic Dynamic 2-3 Yes No Yes and No Yes and No N/A
g24 6a Dynamic Static 2 Yes No No Yes Hard
g24 6b Dynamic No Constraints 1 No No No Yes N/A
g24 6c Dynamic Static 2 Yes No No Yes Easy
g24 6d Dynamic Static 2 Yes No No Yes Hard
g24 7 Static Dynamic 2 No No Yes No N/A
g24 8a Dynamic No Constraints 1 No No No No N/A
g24 8b Dynamic Static 2 Yes No Yes No N/A

DFR Number of disconnected feasible regions
SwO Switched global optimum between disconnected regions
bNAO Better newly appear optimum without changing existing ones
OICB Global optimum is in the constraint boundary
OISB Global optimum is in the search boundary
Path Indicate if it is easy or difficult to use mutation to travel between feasible regions
Dynamic The function is dynamic
Static There is no change
∗ In some change periods, the landscape either is a plateau or contains infinite number of optima

and all optima (including the existing optimum) lie in a line parallel to one of the axes

TABLE II. PARAMETER VALUES FOR THE TEST PROBLEMS TAKEN
FROM [5]

Benchmark Number of runs 50
problems Number of changes 12
settings Frequency change 500, 1000, 2000 Evals.

Obj. function severity k 0.5
Constraint severity S 20

TABLE III. DDECV PARAMETER VALUES TUNED WITH THE IRACE
TOOL [20]

Pop size 25
Crossover CR = 0.8399
F before change F = 0.9644
F after change FA = 1.0820
Immigrants before change IB = 5
Immigrates after of change IA = 3
Number of generations DE/best/1/bin operates after change 16
Iterations for local search ILS = 8

effect of the change frequency in the algorithms’ performance.
Three values are considered (500, 1000, and 2000 evaluations).

The parameter values used by DDECV are listed in Table
III. Such values were fine-tuned by using the iRace tool [20].
The only parameter which remained fixed was NP=25 vectors.

The performance of DDECV was measured with the offline
error proposed in [21]. The offline error is the most popular
measure in the specialized literature for DCOPS [5], [6] and
is defined as the average of the sum of errors in each cycle
divided by the sum of the number of cycles. The offline error is

always greater than or equal to zero. This latter value indicates
a perfect performance [8]. This measure is defined as indicated
in Eq. 11:

offline error =
1

n

n∑
j=1

e(j) (11)

where n is the number of cycles so far and e(j) denotes the
best error since the last change gained by the algorithm at
cycle j.

e(j) = |f(x∗, t)− f(x, t)| (12)

where f(x∗, t) denotes the feasible global optima at time t and
f(x, t) is the best solution found at generation G.

DDECV was compared against different approaches re-
cently tested when solving DCOPS in [5], [6]: GAnoElit is
a GA with no elitism, nonlinear ranking selection, arithmetic
crossover and uniform mutation. RIGAnoElit is the same as
GAnoElit but with random immigrants. HyperMnoElit is the
same as GAnoElit but with hypermutation when solutions are
degraded. GAelit is the same as GAnoElit but now with elitism.
RIGAelit is the RIGAnoElit version with elitism. HyperMelit
is the HyperMnoElit version with elitism. GA+Repair is a
GA with a repair mechanism, i.e., if one infeasible solution is
generated, it is combined with elements of feasible solutions in
the population with the aim to get is feasible before reaching
a user-defined limit of attempts. Finally, GSA+Repair is a
novel meta-heuristic where a similar repair mechanism as

978

Algorithm 5 DDECV algorithm
1: G=0
2: Create a randomly-generated initial population ~xi,G ∀i, i =

1, . . . , NP
3: Evaluate each ~xi,G ∀i, i = 1, . . . , NP
4: eval = eval +NP
5: while eval ≤Max eval do
6: for i← 1 to NP do
7: if i = 1 or i = NP/2 then
8: Change detection Mechanism (~xi,G) {Algorithm 2}
9: eval = eval + 1

10: end if
11: Exploration promotion mechanism {Algorithm 3}
12: eval = eval + 1
13: if f(~ui,G) is better than f(~xi,G) based on the feasibility

rules then
14: ~xi,G+1 = ~ui,G

15: else
16: ~xi,G+1 = ~xi,G

17: end if
18: end for
19: if G using DE/best/1/bin reached its limit then
20: NI=IB
21: else
22: G using DE/best/1/bin = G using DE/best/1/bin +1
23: NI=IA
24: end if
25: Add NI immigrants to the current population and evaluate

them
26: eval = eval +NI
27: Convergence promotion mechanism {Algorithm 4}
28: eval = eval + 2 ∗ ILS
29: G = G+ 1
30: end while

the one used in GA+Repair is considered. DDECV was also
compared against versions using just one DE variant (i.e. only
DE/rand/1/bin or DE/best/1/bin, both with local search) but the
results were poor and are not included due to space restrictions.

A. Results

In Table IV the mean and standard deviation values of
the offline error are shown for the six GA-based approaches
[7] and also for DDECV in all eighteen test problems with a
change frequency of 500 cycles. Table V includes the offline
error for the six GA-based approaches and also the values
obtained by the GSA+Repair algorithm [6] with a change
frequency of 1000 cycles. For GSA+Repair no results were
found for other change frequencies. Finally Table VII includes
the offline error for the six GA-based approaches with a change
frequency of 2000 cycles. In the aforementioned tables the best
results are remarked with boldface. The statistical validation
was made with the 95%-confidence Wilcoxon test on the
results obtained by each algorithm. This validation showed
significant differences between DDECV and each one of the
seven compared algorithms when the change frequency was
500 evaluations (Table IV). Regarding the results when the
change frequency was 1000 (Table V), the differences were
significant between DDECV and each compared algorithm
with the exception of GSA+REPAIR. Finally, the differences
were significant when the change frequency was 2000 evalu-
ations (Table VII) in all cases.

TABLE IV. OFFLINE ERROR VALUES OBTAINED BY DDECV AND THE
COMPARED ALGORITHMS WITH A CHANGE FREQUENCY OF 500

EVALUATIONS. DIFFERENCES OBSERVED BETWEEN DDECV AND EACH
COMPARED ALGORITHM ARE SIGNIFICANT BASED ON THE

95%-CONFIDENCE WILCOXON TEST.

Algorithms
Functions

G24-u G24-1 G24-f
GAnoElit 0.436(±0.082) 0.807(±0.096) 0.870(±0.094)

RIGAnoElit 0.297(±0.029) 0.649(±0.062) 0.737(±0.075)
HyperMnoElit 0.299(±0.04) 0.532(±0.056) 0.313(±0.102)

GAelit 0.184(±0.034) 0.641(±0.091) 0.175(±0.044)
RIGAelit 0.235(±0.031) 0.496(±0.074) 0.266(±0.081)

HyperMelit 0.163(±0.028) 0.520(±0.081) 0.209(±0.085)
GA+Repair 0.500(±0.064) 0.264(±0.066) 0.077(±0.024)

DDECV 0.082(±0.011) 0.227(±0.067) 0.075(±0.019)
Algorithm G24-uf G24-2 G24-2u
GAnoElit 0.675(±0.071) 0.470(±0.087) 0.252(±0.066)

RIGAnoElit 0.501(±0.057) 0.346(±0.048) 0.169(±0.028)
HyperMnoElit 0.179(±0.058) 0.357(±0.055) 0.177(±0.039)

GAelit 0.091(±0.028) 0.372(±0.070) 0.132(±0.034)
RIGAelit 0.125(±0.034) 0.325(±0.043) 0.146(±0.039)

HyperMelit 0.091(±0.020) 0.364(±0.052) 0.115(±0.030)
GA+Repair 0.358(±0.109) 0.298(±0.033) 0.354(±0.043)

DDECV 0.010(±0.005) 0.162(±0.032) 0.065(±0.005)
Algorithm G24-3 G24-3b G24-3f
GAnoElit 1.033(±0.147) 0.844(±0.109) 1.385(±0.302)

RIGAnoElit 0.792(±0.101) 0.663(±0.073) 0.899(±0.104)
HyperMnoElit 0.576(±0.087) 0.646(±0.094) 0.343(±0.070)

GAelit 0.375(±0.091) 0.631(±0.116) 0.252(±0.103)
RIGAelit 0.436(±0.056) 0.545(±0.068) 0.264(±0.078)

HyperMelit 0.404(±0.118) 0.557(±0.079) 0.244(±0.122)
GA+Repair 0.063(±0.012) 0.184(±0.035) 0.035(±0.012)

DDECV 0.087(±0.024) 0.225(±0.070) 0.071(±0.025)

Algorithm G24-4 G24-5 G24-6a
GAnoElit 0.878(±0.160) 0.498(±0.097) 0.750(±0.145)

RIGAnoElit 0.688(±0.062) 0.386(±0.066) 0.523(±0.066)
HyperMnoElit 0.626(±0.077) 0.359(±0.044) 0.517(±0.057)

GAelit 0.646(±0.087) 0.367(±0.059) 1.038(±0.184)
RIGAelit 0.542(±0.079) 0.287(±0.035) 0.534(±0.086)

HyperMelit 0.573(±0.075) 0.324(±0.042) 0.694(±0.098)
GA+Repair 0.143(±0.035) 0.196(±0.026) 0.616(±0.106)

DDECV 0.233(±0.081) 0.195(±0.033) 0.267(±0.114)
Algorithm G24-6b G24-6c G24-6d
GAnoElit 0.588(±0.070) 0.605(±0.096) 0.775(±0.125)

RIGAnoElit 0.429(±0.049) 0.471(±0.036) 0.530(±0.081)
HyperMnoElit 0.452(±0.047) 0.485(±0.063) 0.551(±0.053)

GAelit 0.631(±0.073) 0.666(±0.059) 0.664(±0.126)
RIGAelit 0.436(±0.052) 0.443(±0.034) 0.512(±0.062)

HyperMelit 0.535(±0.053) 0.543(±0.050) 0.584(±0.068)
GA+Repair 0.567(±0.059) 0.518(±0.048) 0.475(±0.075)

DDECV 0.145(±0.029) 0.173(±0.048) 0.414(±0.083)
Algorithm G24-7 G24-8a G24-8b
GAnoElit 0.963(±0.129) 0.518(±0.069) 1.006(±0.119)

RIGAnoElit 0.771(±0.065) 0.418(±0.048) 0.882(±0.056)
HyperMnoElit 0.663(±0.083) 0.450(±0.037) 0.805(±0.099)

GAelit 0.441(±0.073) 0.356(±0.04) 0.807(±0.073)
RIGAelit 0.565(±0.073) 0.405(±0.045) 0.758(±0.080)

HyperMelit 0.430(±0.066) 0.355(±0.026) 0.710(±0.09)
GA+Repair 0.134(±0.026) 0.341(±0.051) 0.380(±0.074)

DDECV 0.156(±0.038) 0.292(±0.035) 0.332(±0.108)

979

The results in Table IV indicate that DDECV outperformed
the GA-based approaches in thirteen out of eighteen test
problems. The exceptions were g24-3, g24-3b, g24-3f, g24-
4 and g24-7, where GA+Repair was better.

The results in Table V indicate that DDECV outperformed
the GA-based approaches and the GSA+Repair algorithm in
eight out of eighteen test problems. The test problems where
DDECV was outperformed by GSA+Repair were g24-u g24-
3, g24-3b, g24-3f, g24-4, g24-7, g24-6a, g24-6b, g24-6c, and
G24-6d. However, the statistical test indicated that such differ-
ences were not significant. Therefore, an additional experiment
was made specifically for the frequency change of 1000
evaluations, where the parameters were fine-tuned with the
IRACE tool but just considering this frequency. The parameters
obtained were: NP=25, CR= 0.9724, F= 0.6133, FA= 1.3083,
IB=5, IA= 17, Number of cycles DE/best/1/bin operates after
change=16, and ILS= 8. The results are presented in Table VI.

As it can be seen in Table VI, DDECV improved its
performance by providing the best results in twelve out of
eighteen test problems. The exception were g24-3, g24-3b,
g24-3f, g24-4, g24-6d, and g24-7.

Finally, based on the results of Table VII, DDECV out-
performs the other six compared algorithms in twelve out of
eighteen test problems. GA+Repair was better in the remaining
six (g24-1, g24-3, g24-3b, g24-3f, g24-4 and g24-7).

By observing the overall competitive performance showed
by DDECV in different test problems with three different
change frequencies, it is worth noting that the problems where
DDECV is outperformed by other algorithms, regardless the
change frequency (g24-3, g24-3b, g24-3f, g24-4, g24-7) have
one common feature: the global optimum is in the constraint
boundary. This requires further research to provide DDECV
with an improved ability to sample the boundaries of the
feasible region.

V. CONCLUSIONS AND FUTURE WORK

In this paper, a DE-based algorithm with a combination
of DE/rand/1/bin and DE/best/1/bin (DDECV) was proposed
to solve DCOPs. The feasibility rules were adopted as the
constraint-handling mechanism. Furthermore, three mecha-
nisms were considered to deal with the changes in the
constraints and/or the objective function: (1) a change de-
tection mechanism where two vectors are re-evaluated and
compared against their previous objective/constraints values.
If at least one difference is observed, the best vector in the
current population is stored in a memory, (2) an exploration
promotion mechanism where DE/best/1/bin is used during
some generations and the F value is increased, and (3) a
convergence promotion mechanism based on a Hill-climber
local search operator. Finally, at each cycle of the algorithm
random immigrants are inserted into the current population to
help increasing diversity.

DDECV was used to solve eighteen test problems with
three different change frequencies and its parameters were fine-
tuned by using the iRace tool. DDECV’s performance was
highly competitive mostly in changes after 500 and 2000 eval-
uations and it was competitive when changes were after 1000
evaluations. On the other hand, DDECV was outperformed

TABLE V. OFFLINE ERROR VALUES OBTAINED BY DDECV AND THE
COMPARED ALGORITHMS WITH A CHANGE FREQUENCY OF 1000

EVALUATIONS. DIFFERENCES OBSERVED BETWEEN DDECV AND EACH
COMPARED ALGORITHM ARE SIGNIFICANT BASED ON THE

95%-CONFIDENCE WILCOXON TEST. THE ONLY EXCEPTION IS REMARKED
IN GRAY.

Algorithms
Functions

G24-u G24-1 G24-f
GAnoElit 0.298(±0.051) 0.609(±0.064) 0.676(±0.085)

RIGAnoElit 0.221(±0.025) 0.493(±0.045) 0.546(±0.072)
HyperMnoElit 0.206(±0.035) 0.361(±0.065) 0.226(±0.056)

GAelit 0.106(±0.035) 0.459(±0.057) 0.154(±0.083)
RIGAelit 0.149(±0.025) 0.346(±0.046) 0.178(±0.051)

HyperMelit 0.111(±0.026) 0.384(±0.065) 0.149(±0.053)
GA+Repair 0.468(±0.059) 0.226(±0.024) 0.041(±0.011)

GSA+Repair 0.049(±0.004) 0.132(±0.015) 0.029(±0.012)
DDECV 0.050(±0.006) 0.109(±0.033) 0.029(±0.010)

G24-uf G24-2 G24-2u
GAnoElit 0.464(±0.064) 0.356(±0.049) 0.159(±0.041)

RIGAnoElit 0.342(±0.032) 0.264(±0.035) 0.107(±0.019)
HyperMnoElit 0.124(±0.041) 0.257(±0.045) 0.130(±0.022)

GAelit 0.063(±0.022) 0.288(±0.050) 0.073(±0.017)
RIGAelit 0.069(±0.020) 0.246(±0.037) 0.091(±0.024)

HyperMelit 0.053(±0.012) 0.253(±0.043) 0.068(±0.016)
GA+Repair 0.218(±0.018) 0.281(±0.036) 0.294(±0.029)

GSA+Repair 0.047(±0.009) 0.182(±0.019) 0.196(±0.012)
DDECV 0.004(±0.002) 0.126(±0.030) 0.054(±0.004)

G24-3 G24-3b G24-3f
GAnoElit 0.760(±0.099) 0.657(±0.097) 0.886(±0.179)

RIGAnoElit 0.538(±0.047) 0.500(±0.038) 0.651(±0.055)
HyperMnoElit 0.411(±0.052) 0.459(±0.069) 0.256(±0.057)

GAelit 0.289(±0.049) 0.457(±0.084) 0.158(±0.058)
RIGAelit 0.308(±0.048) 0.386(±0.051) 0.167(±0.048)

HyperMelit 0.243(±0.050) 0.394(±0.088) 0.128(±0.051)
GA+Repair 0.156(±0.008) 0.171(±0.019) 0.025(±0.008)

GSA+Repair 0.028(±0.004) 0.076(±0.009) 0.009(±0.007)
DDECV 0.057(±0.018) 0.134(±0.033) 0.032(±0.011)

G24-4 G24-5 G24-6a
GAnoElit 0.621(±0.101) 0.379(±0.067) 0.529(±0.108)

RIGAnoElit 0.490(±0.053) 0.293(±0.046) 0.366(±0.030)
HyperMnoElit 0.469(±0.057) 0.275(±0.034) 0.383(±0.051)

GAelit 0.453(±0.075) 0.266(±0.029) 0.674(±0.157)
RIGAelit 0.421(±0.047) 0.240(±0.035) 0.333(±0.050)

HyperMelit 0.426(±0.075) 0.248(±0.039) 0.491(±0.071)
GA+Repair 0.211(±0.015) 0.236(±0.024) 0.431(±0.074)

GSA+Repair 0.073(±0.012) 0.153(±0.013) 0.033(±0.003)
DDECV 0.131(±0.032) 0.126(±0.019) 0.215(±0.067)

G24-6b G24-6c G24-6d
GAnoElit 0.448(±0.054) 0.446(±0.041) 0.543(±0.127)

RIGAnoElit 0.331(±0.035) 0.329(±0.039) 0.366(±0.040)
HyperMnoElit 0.340(±0.046) 0.323(±0.037) 0.370(±0.046)

GAelit 0.408(±0.057) 0.441(±0.052) 0.510(±0.075)
RIGAelit 0.309(±0.039) 0.325(±0.029) 0.342(±0.057)

HyperMelit 0.390(±0.039) 0.394(±0.051) 0.456(±0.041)
GA+Repair 0.427(±0.048) 0.390(±0.038) 0.354(±0.038)

GSA+Repair 0.047(±0.003) 0.045(±0.004) 0.037(±0.007)
DDECV 0.108(±0.016) 0.128(±0.025) 0.288(±0.055)

G24-7 G24-8a G24-8b
GAnoElit 0.721(±0.088) 0.426(±0.050) 0.835(±0.068)

RIGAnoElit 0.543(±0.059) 0.346(±0.031) 0.719(±0.071)
HyperMnoElit 0.495(±0.053) 0.374(±0.043) 0.681(±0.072)

GAelit 0.316(±0.053) 0.266(±0.028) 0.662(±0.056)
RIGAelit 0.416(±0.068) 0.304(±0.028) 0.598(±0.064)

HyperMelit 0.315(±0.062) 0.279(±0.028) 0.608(±0.071)
GA+Repair 0.181(±0.017) 0.496(±0.032) 0.391(±0.068)

GSA+Repair 0.018(±0.002) 0.202(±0.041) 0.192(±0.034)
DDECV 0.106(±0.022) 0.141(±0.025) 0.151(±0.058)

980

TABLE VI. OFFLINE ERROR VALUES OBTAINED BY DDECV AND THE
COMPARED ALGORITHMS WITH A CHANGE FREQUENCY OF 1000

EVALUATIONS WITH FINE-TUNED PARAMETERS FOR THIS FREQUENCY.
DIFFERENCES OBSERVED BETWEEN DDECV AND EACH COMPARED

ALGORITHM ARE SIGNIFICANT BASED ON THE 95%-CONFIDENCE
WILCOXON TEST. THE ONLY EXCEPTION IS REMARKED IN GRAY.

Algorithms
Functions

G24-u G24-1 G24-f
GAnoElit 0.298(±0.051) 0.609(±0.064) 0.676(±0.085)

RIGAnoElit 0.221(±0.025) 0.493(±0.045) 0.546(±0.072)
HyperMnoElit 0.206(±0.035) 0.361(±0.065) 0.226(±0.056)

GAelit 0.106(±0.035) 0.459(±0.057) 0.154(±0.083)
RIGAelit 0.149(±0.025) 0.346(±0.046) 0.178(±0.051)

HyperMelit 0.111(±0.026) 0.384(±0.065) 0.149(±0.053)
GA+Repair 0.468(±0.059) 0.226(±0.024) 0.041(±0.011)

GSA+Repair 0.049(±0.004) 0.132(±0.015) 0.029(±0.012)
DDECV 0.017(±0.002) 0.080(±0.020) 0.029(±0.011)

G24-uf G24-2 G24-2u
GAnoElit 0.464(±0.064) 0.356(±0.049) 0.159(±0.041)

RIGAnoElit 0.342(±0.032) 0.264(±0.035) 0.107(±0.019)
HyperMnoElit 0.124(±0.041) 0.257(±0.045) 0.130(±0.022)

GAelit 0.063(±0.022) 0.288(±0.050) 0.073(±0.017)
RIGAelit 0.069(±0.020) 0.246(±0.037) 0.091(±0.024)

HyperMelit 0.053(±0.012) 0.253(±0.043) 0.068(±0.016)
GA+Repair 0.218(±0.018) 0.281(±0.036) 0.294(±0.029)

GSA+Repair 0.047(±0.009) 0.182(±0.019) 0.196(±0.012)
DDECV 0.005(±0.003) 0.047(±0.018) 0.002(±0.003)

G24-3 G24-3b G24-3f
GAnoElit 0.760(±0.099) 0.657(±0.097) 0.886(±0.179)

RIGAnoElit 0.538(±0.047) 0.500(±0.038) 0.651(±0.055)
HyperMnoElit 0.411(±0.052) 0.459(±0.069) 0.256(±0.057)

GAelit 0.289(±0.049) 0.457(±0.084) 0.158(±0.058)
RIGAelit 0.308(±0.048) 0.386(±0.051) 0.167(±0.048)

HyperMelit 0.243(±0.050) 0.394(±0.088) 0.128(±0.051)
GA+Repair 0.156(±0.008) 0.171(±0.019) 0.025(±0.008)

GSA+Repair 0.028(±0.004) 0.076(±0.009) 0.009(±0.007)
DDECV 0.087(±0.018) 0.116(±0.030) 0.029(±0.010)

G24-4 G24-5 G24-6a
GAnoElit 0.621(±0.101) 0.379(±0.067) 0.529(±0.108)

RIGAnoElit 0.490(±0.053) 0.293(±0.046) 0.366(±0.030)
HyperMnoElit 0.469(±0.057) 0.275(±0.034) 0.383(±0.051)

GAelit 0.453(±0.075) 0.266(±0.029) 0.674(±0.157)
RIGAelit 0.421(±0.047) 0.240(±0.035) 0.333(±0.050)

HyperMelit 0.426(±0.075) 0.248(±0.039) 0.491(±0.071)
GA+Repair 0.211(±0.015) 0.236(±0.024) 0.431(±0.074)

GSA+Repair 0.073(±0.012) 0.153(±0.013) 0.033(±0.003)
DDECV 0.112(±0.032) 0.068(±0.017) 0.023(±0.012)

G24-6b G24-6c G24-6d
GAnoElit 0.448(±0.054) 0.446(±0.041) 0.543(±0.127)

RIGAnoElit 0.331(±0.035) 0.329(±0.039) 0.366(±0.040)
HyperMnoElit 0.340(±0.046) 0.323(±0.037) 0.370(±0.046)

GAelit 0.408(±0.057) 0.441(±0.052) 0.510(±0.075)
RIGAelit 0.309(±0.039) 0.325(±0.029) 0.342(±0.057)

HyperMelit 0.390(±0.039) 0.394(±0.051) 0.456(±0.041)
GA+Repair 0.427(±0.048) 0.390(±0.038) 0.354(±0.038)

GSA+Repair 0.047(±0.003) 0.045(±0.004) 0.037(±0.007)
DDECV 0.017(±0.004) 0.022(±0.008) 0.071(±0.014)

G24-7 G24-8a G24-8b
GAnoElit 0.721(±0.088) 0.426(±0.050) 0.835(±0.068)

RIGAnoElit 0.543(±0.059) 0.346(±0.031) 0.719(±0.071)
HyperMnoElit 0.495(±0.053) 0.374(±0.043) 0.681(±0.072)

GAelit 0.316(±0.053) 0.266(±0.028) 0.662(±0.056)
RIGAelit 0.416(±0.068) 0.304(±0.028) 0.598(±0.064)

HyperMelit 0.315(±0.062) 0.279(±0.028) 0.608(±0.071)
GA+Repair 0.181(±0.017) 0.496(±0.032) 0.391(±0.068)

GSA+Repair 0.018(±0.002) 0.202(±0.041) 0.192(±0.034)
DDECV 0.060(±0.017) 0.042(±0.007) 0.042(±0.012)

TABLE VII. OFFLINE ERROR VALUES OBTAINED BY DDECV AND THE
COMPARED ALGORITHMS WITH A CHANGE FREQUENCY OF 2000

EVALUATIONS. DIFFERENCES OBSERVED BETWEEN DDECV AND EACH
COMPARED ALGORITHM ARE SIGNIFICANT BASED ON THE

95%-CONFIDENCE WILCOXON TEST.

Algorithms
Functions

G24-u G24-1 G24-f
GAnoElit 0.230(±0.017) 0.464(±0.064) 0.551(±0.050)

RIGAnoElit 0.144(±0.021) 0.356(±0.037) 0.393(±0.054)
HyperMnoElit 0.156(±0.018) 0.278(±0.049) 0.149(±0.050)

GAelit 0.065(±0.011) 0.332(±0.074) 0.092(±0.052)
RIGAelit 0.110(±0.014) 0.235(±0.038) 0.106(±0.037)

HyperMelit 0.072(±0.015) 0.289(±0.053) 0.084(±0.042)
GA+Repair 0.262(±0.040) 0.055(±0.012) 0.023(±0.006)

DDECV 0.030(±0.008) 0.066(±0.018) 0.016(±0.004)
G24-uf G24-2 G24-2u

GAnoElit 0.373(±0.046) 0.264(±0.043) 0.133(±0.014)
RIGAnoElit 0.263(±0.022) 0.200(±0.028) 0.073(±0.010)

HyperMnoElit 0.099(±0.040) 0.192(±0.019) 0.091(±0.021)
GAelit 0.032(±0.010) 0.183(±0.024) 0.049(±0.008)

RIGAelit 0.047(±0.015) 0.168(±0.023) 0.057(±0.011)
HyperMelit 0.028(±0.008) 0.172(±0.037) 0.044(±0.012)
GA+Repair 0.164(±0.054) 0.147(±0.022) 0.171(±0.040)

DDECV 0.002(±0.001) 0.071(±0.016) 0.031(±0.002)
G24-3 G24-3b G24-3f

GAnoElit 0.508(±0.065) 0.460(±0.042) 0.594(±0.073)
RIGAnoElit 0.418(±0.031) 0.350(±0.048) 0.425(±0.049)

HyperMnoElit 0.313(±0.045) 0.343(±0.036) 0.141(±0.056)
GAelit 0.164(±0.033) 0.320(±0.058) 0.072(±0.032)

RIGAelit 0.208(±0.026) 0.262(±0.024) 0.100(±0.026)
HyperMelit 0.168(±0.029) 0.288(±0.048) 0.082(±0.036)
GA+Repair 0.019(±0.004) 0.044(±0.009) 0.010(±0.003)

DDECV 0.032(±0.008) 0.078(±0.015) 0.017(±0.006)

G24-4 G24-5 G24-6a
GAnoElit 0.466(±0.079) 0.284(±0.043) 0.375(±0.058)

RIGAnoElit 0.364(±0.034) 0.214(±0.024) 0.250(±0.029)
HyperMnoElit 0.357(±0.045) 0.206(±0.029) 0.257(±0.028)

GAelit 0.333(±0.074) 0.196(±0.026) 0.408(±0.050)
RIGAelit 0.309(±0.037) 0.174(±0.022) 0.236(±0.026)

HyperMelit 0.287(±0.067) 0.182(±0.019) 0.287(±0.036)
GA+Repair 0.044(±0.009) 0.111(±0.023) 0.300(±0.054)

DDECV 0.073(±0.014) 0.081(±0.011) 0.103(±0.032)
G24-6b G24-6c G24-6d

GAnoElit 0.309(±0.035) 0.318(±0.038) 0.380(±0.076)
RIGAnoElit 0.229(±0.022) 0.243(±0.029) 0.274(±0.033)

HyperMnoElit 0.231(±0.025) 0.237(±0.024) 0.272(±0.027)
GAelit 0.274(±0.028) 0.282(±0.033) 0.318(±0.059)

RIGAelit 0.210(±0.025) 0.213(±0.027) 0.242(±0.027)
HyperMelit 0.234(±0.019) 0.249(±0.034) 0.281(±0.030)
GA+Repair 0.306(±0.030) 0.287(±0.042) 0.263(±0.024)

DDECV 0.053(±0.008) 0.063(±0.013) 0.139(±0.027)
G24-7 G24-8a G24-8b

GAnoElit 0.530(±0.057) 0.371(±0.032) 0.711(±0.052)
RIGAnoElit 0.398(±0.040) 0.315(±0.023) 0.566(±0.067)

HyperMnoElit 0.369(±0.033) 0.310(±0.025) 0.553(±0.063)
GAelit 0.217(±0.047) 0.232(±0.023) 0.499(±0.048)

RIGAelit 0.303(±0.043) 0.269(±0.017) 0.496(±0.042)
HyperMelit 0.253(±0.036) 0.237(±0.013) 0.463(±0.052)
GA+Repair 0.050(±0.015) 0.247(±0.020) 0.136(±0.035)

DDECV 0.062(±0.014) 0.072(±0.014) 0.078(±0.032)

981

mainly by GA+Repair and GSA+Repair in problems where
the feasible global optimum was located at the boundaries
of the feasible region. Nevertheless, DDECV was able to
improve its results in test problems with a change frequency
of 1000 evaluations by increasing the CR, F and the number
of immigrants after the change.

Part of the future work includes the addition of a repair
mechanism to help DDECV to improve the results in problems
where the optimum is located in the boundaries of the feasible
region. Moreover, other measures will be calculated [5], [8]
and the test problems will be solved by varying the severity
of the changes in the values of the objective function and
constraints. Finally, DDECV will be tested on real-world
applications.

ACKNOWLEDGMENT

The authors acknowledge the valuable help and comments
provided by Prof. Swagatam Das.

REFERENCES

[1] Z. Michalewicz and M. Schoenauer, “Evolutionary Algorithms for
Constrained Parameter Optimization Problems,” Evolutionary Compu-
tation, vol. 4, no. 1, pp. 1–32, 1996.

[2] C. A. Coello Coello, “Theoretical and Numerical Constraint Handling
Techniques used with Evolutionary Algorithms: A Survey of the State
of the Art,” Computer Methods in Applied Mechanics and Engineering,
vol. 191, no. 11-12, pp. 1245–1287, January 2002.

[3] E. Mezura-Montes, Ed., Constraint-Handling in Evolutionary Optimi-
zation, ser. Studies in Computational Intelligence. Springer-Verlag,
2009, vol. 198.

[4] E. Mezura-Montes and C. A. C. Coello, “Constraint-handling in nature-
inspired numerical optimization: Past, present and future,” Swarm and
Evolutionary Computation, vol. 1, no. 4, pp. 173–194, 2011.

[5] T. Nguyen and X. Yao, “Continuous dynamic constrained optimization:
The challenges,” IEEE Transactions on Evolutionary Computation,
vol. 16, no. 6, pp. 769–786, 2012.

[6] K. Pal, C. Saha, S. Das, and C. Coello-Coello, “Dynamic constrained
optimization with offspring repair based gravitational search algorithm,”
in Evolutionary Computation (CEC), 2013 IEEE Congress on, 2013, pp.
2414–2421.

[7] T. T. Nguyen and X. Yao, “Benchmarking and solving dynamic cons-
trained problems,” in Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, 2009, pp. 690–697.

[8] T. Nguyen, S. Yang, and J. Branke, “Evolutionary dynamic
optimization: A survey of the state of the art,” Swarm and Evolutionary
Computation, vol. 6, no. 0, pp. 1 – 24, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S2210650212000363

[9] H. Cobb, “An investigation into the use of hypermutation as an adaptive
operator in genetic algorithms having continuous, time-dependent non-
stationary environments,” Naval Research Lab Washington DC, Tech.
Rep., 1990.

[10] H. Cobb and J. Grefenstette, “Genetic algorithms for tracking changing
environments.” in ICGA, S. Forrest, Ed. Morgan Kaufmann, 1993, pp.
523–530.

[11] H. Singh, A. Isaacs, T. Nguyen, T. Ray, and X. Yao, “Performance of in-
feasibility driven evolutionary algorithm (idea) on constrained dynamic
single objective optimization problems,” in Evolutionary Computation,
2009. CEC ’09. IEEE Congress on, 2009, pp. 3127–3134.

[12] K. Price, R. Storn, and J. Lampinen, Differential Evolution A Practical
Approach to Global Optimization, ser. Natural Computing Series.
Springer-Verlag, 2005. [Online]. Available: http://www.springer.com/
west/home/computer/foundations?SGWID=4-156-22-32104365-0\&\
#38;teaserId=68063\&\#38;CENTER\ ID=69103

[13] E. Mezura-Montes, M. E. Miranda-Varela, and R. del Carmen Gómez-
Ramón, “Differential evolution in constrained numerical optimization.
an empirical study,” Information Sciences, vol. 180, no. 22, pp. 4223–
4262, 2010.

[14] M. du Plessis, “Adaptive multi-population differential evolution for
dynamic environments,” Ph.D. dissertation, Faculty of Engineering,
Built Environment and Information Technology, University of Pretoria,
April 2012.

[15] K. Deb, “An efficient constraint handling method for genetic algo-
rithms,” Computer Methods in Applied Mechanics and Engineering,
vol. 186, no. 24, pp. 311–338, 2000.

[16] H. Richter, “Detecting change in dynamic fitness landscapes,” in Evo-
lutionary Computation, 2009. CEC ’09. IEEE Congress on, 2009, pp.
1613–1620.

[17] Y. Shengxiang, “Memory-based immigrants for genetic algorithms
in dynamic environments,” in Proceedings of the 2005 conference
on Genetic and evolutionary computation, ser. GECCO ’05. New
York, NY, USA: ACM, 2005, pp. 1115–1122. [Online]. Available:
http://doi.acm.org/10.1145/1068009.1068196

[18] S. Hernandez, G. Leguizamon, and E. Mezura-Montes, “A hybrid
version of differential evolution with two differential mutation operators
applied by stages,” in Evolutionary Computation (CEC), 2013 IEEE
Congress on, 2013, pp. 2895–2901.

[19] T. Nguyen and X. Yao, “Detailed experimental results of ga, riga,
hyperm and ga+repair on the g24 set of benchmark problems,” School
Comput. Sci., Univ. Birmingham, Birmingham, U.K., Tech. Rep., 2010,
disponible en: http://www.staff.livjm.ac.uk/enrtngu1/ Papers/DCOP full-
data.pdf.

[20] M. López-Ibáñez and T. Stützle, “Automatically improving the any-
time behaviour of optimisation algorithms,” IRIDIA, Université Libre
de Bruxelles, Belgium, Tech. Rep. TR/IRIDIA/2012-012, May 2012,
published in European Journal of Operations Research [22].

[21] J. Branke and H. Schmeck, “Designing evolutionary algorithms
for dynamic optimization problems,” in Advances in Evolutionary
Computing, ser. Natural Computing Series, A. Ghosh and S. Tsutsui,
Eds. Springer Berlin Heidelberg, 2003, pp. 239–262. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-18965-4 9

[22] A. Radulescu, M. López-Ibáñez, and T. Stützle, “Automatically improv-
ing the anytime behaviour of multiobjective evolutionary algorithms,”
in Evolutionary Multi-Criterion Optimization, ser. Lecture Notes in
Computer Science, R. Purshouse, P. Fleming, C. M. Fonseca, S. Greco,
and J. Shaw, Eds. Springer Berlin Heidelberg, 2013, vol. 7811, pp.
825–840.

982

