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Abstract - CSTR plays a vital role in almost all the chemical 

reactions and is a highly nonlinear system exhibiting stable as 
well as unstable steady states. The variables which characterize 
the quality of the final product in CSTR are often difficult to 
measure in real-time and cannot be directly measured using the 
feedback configuration [1]. So, a virtual feedback control is 
implemented to control the state variables using Extended 
Kalman Filter (EKF) in the feedback path. Since it is hard to 
determine the optimal or near optimal PID parameters using 
classical tuning techniques like Ziegler Nichols method, a highly 
skilled optimization algorithm like Particle Swarm Optimization 
(PSO) and Ant Colony Optimization (ACO) are used. This work 
is based on the optimal tuning of virtual feedback PID control for 
a CSTR system using soft computing algorithm for minimum 
Integral Square Error (ISE) condition. 
 
Keywords – CSTR,  PSO,  PID,  EKF,  ISE. 
 

I.  INTRODUCTION 
    During the past decades, the process control industries have 
made great advances. Numerous control methods such as 
Adaptive Control, Neural Network and Fuzzy Control have 
been studied. Among them, the best known is the 
Proportional-Integral-Derivative (PID) controller which has 
been widely used in the industry because of its simple 
structure and robust performance under wide range of 
operating conditions. Unfortunately, it has been quite difficult 
to tune properly the gains of PID controller because many 
industrial plants are often burdened with problems such as 
higher order of the system, time delay and nonlinearities 
associated with the system. Also, it is hard to determine the 
optimal or near optimal PID parameters using classical tuning 
methods. For these reasons, it is highly desirable to increase 
the capabilities of PID controllers by adding many new 
features. Many Artificial Intelligence (AI) techniques have 
been employed to improve the controller performance for a 
wide range of plants while retaining their basic characteristics. 
Artificial Intelligence techniques such as Neural Network, 
Fuzzy Logic have been widely applied to proper tuning of PID 
controller parameters. 
    Particle Swarm Optimization (PSO) [9], first introduced by 
Kennedy and Eberhart, is one of the modern heuristic 
algorithms. It can generate high quality solution within short 
calculation time and show stable convergence characteristics 
than other stochastic methods. 
   Ant colony optimization (ACO) system is a competing meta-
heuristic for large-scale and difficult combinatorial 
optimization problems. It is based on the ant system – first 

defined by Colorni and Maniezzo (1991), Dorigo (1992) and 
Dorigo, Maniezzo, and Colorni (1996) in early 1990s – that 
imitates the foraging behavior of the real ants. The main idea 
of ant colony optimization is that a population of artificial ants 
repeatedly builds and improves solutions to a given instance of 
a combinatorial optimization problem. The main idea behind 
ant colony optimization is that when the ants search for food, 
they initially explore the area surrounding their nest randomly. 
When one finds a food source, it evaluates it, take some food 
and goes back to the nest. As they move back, they deposit on 
the ground a chemical substance called pheromone, which is 
detectable by other ants. The amount of pheromone that is 
deposited varies depending on the quantity and quality of the 
food, and leads other ants to that food source. By the use of 
this property, the ants can find the shortest path between their 
nest and the source (Socha & Dorigo, 2009). 
    In this paper, PSO and ACO are an excellent optimization 
methodology and is a promising approach for optimal tuning 
of PID controller parameters. Here, the soft computing 
techniques are done for optimal tuning of PID controller 
parameters for Continuous Stirred Tank Reactor (CSTR) 
system. 

II. MATHEMATICAL MODEL OF CSTR 
    A perfectly mixed Continuously Stirred Tank Reactor 
(CSTR) is shown in Figure 1. It is a single, first order 
exothermic irreversible reaction A→B in which a fluid stream 
is continuously fed to the reactor [2]. Since the fluid is 
perfectly mixed, the exit stream has the same concentration 
and temperature as the reactor fluid. The jacket surrounding 
the reactor also has feed and exit streams. The jacket is 
assumed to have a uniform lower temperature than the reactor 
[3]. Energy then passes through the reactor walls from the 
reactor into the jacket removing the heat generated by 
reaction.  
    There are many examples of this type of reactors used in 
industries. The industrial reactors typically have more 
complicated kinetics, but the characteristic behaviour is 
similar [4]. 
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Figure 1. Continuous Stirred Tank Reactor with cooling Jacket 

 

A. Steady State Solution 
By applying material balance and energy equations, the 

resulting mathematical model may be obtained. The steady-
state solution is obtained when ݀ܥ஺/݀ݐ ൌ 0 and ݀ܶ/݀ݐ ൌ 0, 
that is 
 ଵ݂ሺܥ஺, ܶሻ ൌ 0 ൌ ௤௏ ൫ܥ஺௙ െ ஺൯ܥ െ ݇௢݁݌ݔ ቀିᇞாோ் ቁ  ஺                            (1)ܥ
 ଶ݂ሺܥ஺, ܶሻ ൌ 0 ൌ ௤௏ ൫ ௙ܶ െ ܶ൯ ൅ ൬ିᇞுఘ஼೛ ൰ ݇௢݁݌ݔ ቀିᇞாோ் ቁ ஺ܥ െఘ೎஼೛೎ఘ஼೛௏ ௖ݍ  ൜1 െ exp ൬ ି௛஺௤೎ఘ஼೛൰ൠ ሺ ௖ܶ௙ െ  ܶሻ           (2) 
 
The linear model of the system is obtained by taking the 
Jacobian form of equations (1) and (2) 
 ሶܺ ൌ ቎ି௤௩ െ ݇௦ െ݇௦ሖ ஺ି∆ுఘ஼೛ܥ ݇௦ ି௤௩ ൅ ሺି∆ுሻఘ஼೛ ஺݇௦ሖܥ െ ఘ೎஼೛೎ఘ஼೛௏ ൜1 െ exp ൬ ି௛஺௤೎ఘ஼೛൰ൠ቏ ቂܥ஺ܶቃ   
  

 ൅ ൦ ௣௖ܥ௖ߩ0 ௣ܸ൘ܥߩ ቊ1 ൅ 2exp ൬ ୦A୯ౙρC౦൰ଶ  ቋ൪ ሾݍ௖ሿ 
 ሶܻ ൌ ሾ0 1ሿ ቂܥ஺ܶቃ  
where, ݇௦ ൌ ݇଴݁݌ݔ ቀିாோ்ቁ and ݇௦′ ൌ  ߲݇௦ ߲ܶൗ ൌ  ݇௦  ቂܧ ܴܶଶൗ ቃ 
B. Steady state operating data for CSTR 

The specifications of CSTR taken in this work [2] are given 
below in table 1. 
 

Table 1 Steady state operating data 

Process variable Normal operating 
condition 

Measured Product 
Concentration     (CA ) 0.08235 mol/lit 

Reactor Temperature (T) 
 441.81 K 

Volumetric Flow rate (q) 
 100 L/min 

Reactor Volume (V) 
 100 L 

Feed Concentration (CAf ) 
 1 mol/lit 

Feed Temperature (Tf) 
 350 K 

Coolant Temperature (Tcf ) 350 K 

Coolant Flow rate(qc) 100 L/min 
Heat of Reaction (ΔH) 2e5 cal/mol 

Reaction rate constant(k0) 7.2e10 min-1 
Activation energy 

term(E/R) 9980 K 

Heat transfer term (hA) 7e5 cal/(min.K) 
Liquid Density(ρ, ρc) 1000 g/L 

Specific Heat capacity ( 
Cp, Cpc) 

1 cal/(g.K) 

III. TUNING ALGORITHMS 
Tuning of a controller refers to the methods of determining 

the parameters of a PID controller for the given system. The 
design methods differ with respect to the knowledge of the 
process dynamics that is required [5]. A PID controller is 
described by three parameters; ܭ௣, τ௜  and τௗ; there are many 
different methods to find the suitable parameters of the 
controller. The methods differ in complexity, flexibility and 
the amount of process knowledge used. Three tuning 
algorithms have been discussed below are used in this work. 
 

A. Ziegler Nichols Tuning 
In 1942, Ziegler and Nichols [6], described simple 

mathematical procedures, for tuning the PID controllers. Both 
the techniques make a priori assumption on the system model, 
but do not require the system model to be specifically known. 
Ziegler-Nichols formulae for specifying the controllers are 
based on the plant step response. 
 
1) Open Loop Response 

The open-loop method is typical for a first-order system with 
transportation delay. The response is characterized by 2 
parameters, L the time-delay and T the time-constant. These 
are found by drawing a tangent to the step response at its point 
of inflection and noting its intersections with the time axis and 
steady-state value.  
 
2) Closed Loop Response 

The closed-loop method targets plant that can be rendered 
unstable under proportional control. The technique is designed 
to result in a closed loop system with 25% overshoot.  
  

B. Genetic Algorithm [GA] 
Genetic Algorithm[7] is a search technique to determine 

approximate solutions to optimization and search problems. 
The problem consists in finding out the solution that fits the 
best from all the possible solutions. GA handles a population 
of possible solutions. Each solution is represented through a 
chromosome, which is just an abstract representation. A set of 
reproduction operators has to be determined. Reproduction 
operators are applied directly on the chromosomes, and are 
used to perform mutations and recombinations over solutions 
of the problem. It can be extremely difficult to find a 
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representation, which respects the structure of the search space 
and reproduction operators, which are coherent and relevant 
according to the properties of the problems. Selection is 
supposed to be able to compare each individual in the 
population. 

Selection is done by using a fitness function [8]. Each 
chromosome has an associated value corresponding to the 
fitness of the solution it represents. The fitness should 
correspond to an evaluation of how good the candidate 
solution is. The optimal solution is the one, which maximizes 
the fitness function. Genetic Algorithm deals with the 
problems that maximize the fitness function. But, if the 
problem consists in minimizing a cost function, the adaptation 
is quite easy. Either the cost function can be transformed into 
a fitness function, for example by inverting it; or the selection 
can be adapted in such way that they consider individuals with 
low evaluation functions as better. Once the reproduction and 
the fitness function have been properly defined, a Genetic 
Algorithm is evolved according to the same basic structure. It 
starts by generating an initial population of chromosomes [7]. 
Generally, the initial population is generated randomly. 

C. Particle Swarm Optimization 
Particle swarm optimization (PSO) is a population based 

stochastic optimization [9] technique developed by Dr. 
Eberhart and Dr. Kennedy in 1995, inspired by social behavior 
of bird flocking or fish schooling. PSO shares many 
similarities with evolutionary computation techniques such as 
Genetic Algorithms (GA). The system is initialized with a 
population of random solutions and searches for optima by 
updating generations. However, unlike GA, PSO has no 
evolution operators such as crossover and mutation. In PSO, 
the potential solutions called particles, fly through the problem 
space by following the current optimum particles. 
 

In the past several years, PSO [10] has been successfully 
applied in many research and application areas. It is 
demonstrated that PSO gets better results in a faster, cheaper 
way compared with other methods. Another reason that PSO 
is attractive is that there are few parameters to adjust. One 
version, with slight variations, works well in a wide variety of 
applications. Particle swarm optimization has been used for 
approaches that can be used across a wide range of 
applications, as well as for specific applications focused on a 
specific requirement. 

1) Operations in PSO 
In D-dimensional search space [5], the position of the ݅௧௛ 

particle can be represented by a ܦ-dimensional vector ݔ௜ ൌ ሺݔ௜ଵ, … , ,௜ௗݔ … ,  ௜஽ሻ. The velocity of the particle can beݔ
represented by another ܦ-dimensional vector ݒ௜ ൌ ሺݒ௜ଵ, … , ,௜ௗݒ … ,  ௜஽ሻ. The best position previously visitedݒ
by the ݅௧௛ particle is denoted as ݌௜ ൌ ሺ݌௜ଵ, … , ,௜ௗ݌ … ,  ௚݌ ௜஽ሻ and݌
as the index of the particle visited the previous position in the 
swarm, then ݌௚ becomes the best solution found so far, and the 
velocity of the particle and its new position will be determined 
according to the following two equations with inertia weight ݓ added to it. 
௜ௗݒ  ൌ ௜ௗݒݓ  ൅ ܿଵݎሺ݌௜ௗ െ ௜ௗሻݔ ൅ ܿଶܴሺ݌௚ௗ െ  ௜ௗሻ                         (3)ݔ

௜ௗݔ  ൌ ௜ௗݔ  ൅  ௜ௗ                                                                        (4)ݒ
 
where ܿଵ and ܿଶ are positive constants, and ݎ and ܴ are two 
random functions in the range ሾ0,1ሿ. ݔ௜ ൌ ሺݔ௜ଵ, … , ,௜ௗݔ … ,  ௜஽ሻݔ
represents the location of ݅௧௛ particle and ݌௜ ൌ ሺ݌௜ଵ, … , ,௜ௗ݌ … ,  ௜஽ሻ represents the previous best position݌
(the position giving the best fitness value) of the ݅௧௛ particle. 
The symbol ݃ represents the index of the best particle among 
all the particles in the population. ݒ௜ ൌ ሺݒ௜ଵ, … , ,௜ௗݒ … ,  ௜஽ሻݒ
represents the rate of change of position (velocity) for the ݅௧௛ 
particle [10]. The parameter ݓ in the equation (12) is the 
inertia weight that increases the overall performance of PSO. 
Larger value of ݓ can increase the ability for global search 
while lower value of ݓ implies higher ability for local search. 
 
2) Optimal Tuning of PID controllers using PSO 

The value of fitness function defined by the optimization 
algorithm would be minimal. Performance characteristic of 
evaluation function would include over-shoot, rise-time and 
settling-time. Evaluation function computes the evaluation 
value of each particle in the swarm according to the control 
objective. The steps involved in designing PSO algorithm is 
given below. The block diagram representation of tuning the 
PID controllers of the CSTR system using Particle Swarm 
Optimization is shown in the Figure 2. The soft sensor used 
here is Extended Kalman Filter (EKF) which aids in the 
virtual feedback control. 
 

Figure 2. Block Diagram of PID parameters using PSO 
 

The sequence of steps to study the PSO for the CSTR system 
is given below: 
STEP 1: Specify the lower and upper bounds of the three ܭ௣,  ௗ. Initialize randomly the particles of the swarmܭ ݀݊ܽ ௜ܭ
including swarm size, iteration, acceleration constant, inertia 
weight factor, the position matrix ݔ௜ and the velocity matrix ݒ௜ 
and so on. 
STEP 2: Calculate the evaluation value of each particle using 
the evaluation function given. 
STEP 3: Compare each particle's new fitness value with its 
personal best position's fitness value, and update the personal 
best position ݌௕௘௦௧. 
STEP 4: Search for the best position among all particles' 
personal best position, and denote the best position as ݃௕௘௦௧. 
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STEP 5: Update the velocity ݒ௜ of each particle according to 
equation (3), and update the particle position matrix according 
to equation (4). 
STEP 6: Update control parameter.  
STEP 7: If the number of iterations reaches the maximum, 
then stop. The latest ݃௕௘௦௧ is regarded as the optimal PID 
controller parameter. Otherwise, go to step 2. 

D. Ant Colony Optimization 
For a CO (constrained optimization) the designed model P=(S, 
F, Ω) consists of 

• An objective function to be minimized 
• A solution space S defined over a limited set of 

discrete decision variables and a set Ω of constraints 
between the variables; 

The solution space S is defined in this fashion: 
Specified is a set of n discrete variables Xi using values vi

j �Di 
={ vi

1,……. vi
|Di | }, i=1,2,…….,n. Areasonable solution is a 

wide-ranging assignment with each decision variable assigned 
with domain value to gratify set of constraints. P shall be 
termed as unconstrained optimization problem. When Ω is 
empty thus allowing each decision variable taking any value 
from its domain individualistically of the value of the other 
decision variables. For a CO problem, the solution is s* � S*. 
The framework for ACO agreeing to Dorigo and Blum (2005) 
shall be formulated as follows 
Initialize pheromone values (τ): In the beginning of the 
algorithm the pheromone values are all initialized to a constant 
value c>0. 
Constant solution (τ): The elementary ingredient of any ACO 
algorithm is a constructive heuristic for the probabilistically 
building solutions. A constructive heuristic assembles 
solutions as orders of elements from the finite set of solution 
components �.  A solutions construction starts with an vacant 
partial solutions p=<>.the process of constructing solutions can 
be considered as a walk on the purported construction graph 
gc=( � ,£), which is a fully linked graph whose vertices are the 
solution components in � and whose edges are the elements 
of £.  In most ACO algorithms the probabilities for taking the 
next solution component likewise called the transition 
probabilities are defined as  P൫ܿ௜௝หS௣൯  ൌ     ቂτ೔ೕቃ.ቂ�ቀ௖೔ೕቁቃβ

෎ ൣτ೔೗൧.ൣ�൫௖೔೗൯൧ β N
೎ೖ೗

 all ܿ௜௝                              (5) ݎ݋݂

Pseudo code for basic framework of ACO algorithm 
1. Input:An occurrence P of an unconstrained 

optimization problem model P=(S, f)  
2. Intiliaze:Pheromone Values (τ) 
3. Sbs←NULL 
4. While Termination conditons not met do 

a. Єiter← Ø 
b. For j=1,2,….,nado 

1. S←Constant solution (τ) 
2. If s is a valid solution then 
3. S ← Local Search(s) {optional} 

 
 
 

4. If(f(s)<f(sbs)) or (sbs=NULL), then sbs← s 
5. Єiter←Єiter�{s} 

6. End if 
                               End for  

5. Apply pheromone update (τ, Єiter,sbs) as below 

τ௜௝ ՚ ሺ1 െ ∂ሻ. τ௜௝ ൅ ∂
Є௨௣ௗ ෍ Fሺsሻ.

ሼ௦ ఢЄೠ೛೏|௖೔ೕఢ ௦ሽ  

    Where, i=1,2,….n, j=1,……..,|Di|, Єiter←arg max 
{F(s)|s�Єiter}. Єiteris the set of solutions constructed in the 
current iteration andsbsis the best so far solution. The 
evaporation rate        ∂� [0,1] has the function of uniformly decreasing all the 
pheromone values to avoid a too rapid convergence 
(forgetting) towards a sub optimal solution. 

6. End while 
7. Output: The best so far solution, sbs→[KP,KI,KD]. 

 
     [KP,KI,KD] correspond to best so far solution gains of the 
proportional, integral and derivative component of PID 
controller and Smith PID. 

IV. SIMULATION RESULTS 

A.  Mathematical Model of CSTR 
The mathematical model of CSTR is obtained by solving the 

differential equations. The response of the temperature and 
concentration of the reactant for the step change in coolant 
flow rate is obtained. 

 

1) Influence of Coolant Flow-rate 
Both the concentration and the temperature of the reactant in 

a CSTR are influenced by its coolant flow-rate around the 
CSTR. These are shown in the following figures below. 
 

 
Figure 3. Variation in coolant flow rate 

 

 
Figure 4. Open loop response of the concentration in CSTR 
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Figure 5. Open loop response of the temperature in CSTR 

 

B. Estimation using Kalman Filter as a Virtual Feedback 
Controller 

Simulation of CSTR and the estimation using Extended 
Kalman Filter as a soft-sensor [3] is carried out in open-loop 
condition.  

Under normal operating conditions, the simulation is carried 
to show the true and estimated state responses of both 
concentration and temperature for a constant coolant flow-rate 
is shown below. 
 

 
Figure 6. Evolution of true and estimated reactor concentration with constant 

coolant flow-rate 
 

 
Figure 7. Evolution of true and estimated reactor temperature with constant 

coolant flow-rate 
 

C. Results of PSO Algorithm 
The optimized PID tuning parameters of the CSTR system is 

obtained using Ziegler – Nichols Tuning, Genetic Algorithm 
and Particle Swarm Optimization. The results from all the 3 
tuning techniques are compared against each other. 
 

1) Standard Operating Conditions 
The standard operating conditions were considered for all 

the iterations as they have offered improved repeatability. The 
parameters of a PSO algorithm are given below. It is to be 
noted that for obtaining optimum PID parameters, the swarm 
iteration alone is varied. 
 

 Weight / Inertia of the system – 0.5. 
 Acceleration constants, c1 and c2 – 1.5. 
 Swarm population – 100. 
 Dimension of the search-space – 3 ሺܭ௣, ,௜ܭ  .ௗሻܭ

2) Robustness of PSO Algorithm 
Since varying the swarm iteration is considered as the only 

tuning factor, we compare the results of PID controller for 
various iterations in PSO and conclude which among these 
gives the best fitness function. We have considered 50, 100, 
150 and 200 iterations. 

From the table 2, it is seen that the tuning parameters 
obtained for 200 iterations shows far better results than the 
others. The optimized PID parameters are listed in the Table 2 
below. 
 

Table 2. Optimized PID tuning parameters of PSO for different iterations 
No of 

Iterations 50 ࢊࡷ ࢏ࡷ ࢖ࡷ 0.2896 0.01177 0.6638100 0.3260 0.02488 0.7497 150 0.3297 0.02548 0.7936 200 0.4140 0.02714 0.8487 
 

3) Calculation of fitness function 
A particular point in the search-space is the best point for 

which the fitness function attains an optimum value. In this 
case, four components are taken to define the fitness function. 
The fitness function is a function of steady-state error, peak 
overshoot, rise time and settling time. However, the 
contribution of these component functions towards the original 
fitness function is determined by a scaling factor. Scaling 
factor (β) is chosen as 1 in this application. 
 
The chosen fitness function is expressed as  
ܨ  ൌ ሺ1 െ expሺβሻሻሺܯ௉ ൅ ௌௌሻܧ  ൅ ሺexpሺെβሻሻሺ ௦ܶ െ  ௥ܶሻ               (6) 
 
where,  

 Fitness Function – ܨ 
 ௉ – Peak Overshootܯ 
 ௌௌ – Steady State Errorܧ 
 ௦ܶ – Settling Time 
 ௥ܶ – Rise Time 
 β - Scaling Factor 

The fitness function calculated for different values of 
iteration are shown below in table 3. 
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Table 3. Fitness Function calculated for different iterations 

No of Iteration Fitness Function 50 7.1221100 5.7467150 5.2415 200 4.9916 
4) Performance Index 

Performance Index [11] is a quantitative measure of the 
performance of the system. A system is considered as an 
optimal system when its parameters are adjusted so that the 
index reaches an extreme value, commonly a minimum value. 
A suitable performance index is the Integral Square Error 
(ISE), which is defined as 
 ISE ൌ ׬  eሺtሻଶT଴ . dt                                                                    (7) 
 

ISE is more suitable to minimize large amount of errors. The 
squared error is mathematically more convenient for analytical 
and computational purposes. 
 

Other performance criteria include evaluation of rise-time, 
settling-time and peak overshoot. Rise time is the time taken 
for the response to rise from 0 to 100% for the first time. 
Settling time is defined as the time taken by the response to 
reach and stay within specified error limit. Peak Overshoot is 
the ratio of maximum peak value measured from maximum 
value to the final value. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
Table 4. Comparison of Performance Indices 

Performance 
Index ZNT GA PSO ACO 

ISE 2.844 2.011 1.706 1.925 
Rise Time (s) 20.06 28.56 50.47 41.29 

Settling Time (s) 164.32 89.34 79.38 83.67 
Peak Overshoot 

(%) 28.20 12.58 2.74 6.81 

                              
5) Comparative results of GA, ZNT and PSO 

A single loop PID tuning of a CSTR system is done using 
three standard tuning techniques like Ziegler-Nichols Tuning, 
Genetic Algorithm and Particle Swarm Optimization. The step 
response of the three discussed methods is shown in the 
below. 
 

The desired PID tuning parameters from these three methods 
has been tabulated below. 

 
Table 5. Tuning parameters obtained for GA, ZNT and PSO 

Tuning 
Algorithm ࢊࡷ ࢏ࡷ ࢖ࡷ 

ZNT 0.9903 0.0877 0.4288 

GA 0.8861 0.0587 0.6271 

PSO 0.4140 0.02714 0.8487 

ACO 0.6640 0.0411 0.7142 

 
 

Time 

Figure 8. Step Response curve comparing results of ZNT, PSO and ACO 
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V. CONCLUSION 
In this work, the PID controller tuning was done using a 

standard tuning algorithm (Ziegler-Nichols Tuning), an 
evolutionary computation algorithm (Genetic Algorithm) and 
a more advanced swarm intelligence approach (Particle 
Swarm Optimization) and (Ant Colony Optimization). By 
comparing all the three methods, it is found that PSO 
algorithm was the best implemented. Also, the PID controller 
parameters obtained from PSO algorithm gives better tuning 
result than the other 3 methods. This was also validated by 
checking for the robustness of PSO algorithm and it was 
concluded that the system exhibited best performance index 
for 200 iterations. 

Though PSO algorithm is much advanced and simpler than 
other artificial intelligence based approach, it has its own 
short-comings. In this application, PSO algorithm was taken 
and applied for single set of data (ܭ௣,  ௗሻ. Generallyܭ  ݀݊ܽ ௜ܭ
this can be seen as a limitation in terms of not being able to 
analyse multiple sets of data. Also these GA, ACO and PSO 
algorithms are giving better results, the best is yet to come. 
Right now with these probability and randomness based 
technologies, it cannot be claimed that the whole optimization 
domain can be traced. Moreover, there is a possibility that the 
algorithm could be trapped in the local optima. So it can be 
concluded that a much advanced algorithm could be 
developed in the future ironing out all the glitches from the 
existing algorithm. 
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