
Controlled Restart in Differential Evolution Applied to CEC2014
Benchmark Functions

Radka Poláková
Centre of Excellence IT4Innovations,

Institute for Research and
Applications of Fuzzy Modeling,

University of Ostrava,
30. dubna 22, 701 03 Ostrava,

Czech Republic
Email: radka.polakova@osu.cz

Josef Tvrdı́k
Department of Computer Science,

Centre of Excellence IT4Innovations,
Institute for Research and

Applications of Fuzzy Modeling,
University of Ostrava,

30. dubna 22, 701 03 Ostrava,
Czech Republic

Email: josef.tvrdik@osu.cz

Petr Bujok
Department of Computer Science,

University of Ostrava,
30. dubna 22, 701 03 Ostrava,

Czech Republic
Email: petr.bujok@osu.cz

Abstract—A controlled restart in differential evolution (DE)
is proposed. The conditions of restart are derived from the
difference of maximum and minimum values of the objective
function and the estimated maximum distance among the points
in the current population. The restart is applied in a competitive-
adaptation variant of DE. This DE algorithm with the controlled
restart is used in the solution of the benchmark problems defined
for the CEC 2014 competition. Two control parameters of restart
are set up intuitively. The population size, which is the only
control parameter of competitive-adaptation variant of DE, is set
up to the values based on a short preliminary experimentation.

I. INTRODUCTION

Differential evolution (DE) was proposed by Storn and
Price [1], [2] as a simple heuristic for solving continuous
single-objective optimization problems with a real-value ob-
jective function. The search space (domain) Ω is specified
by lower (𝑎𝑗) and upper (𝑏𝑗) bounds of each component 𝑗,
Ω =

∏𝐷
𝑗=1[𝑎𝑗 , 𝑏𝑗], 𝑎𝑗 < 𝑏𝑗 , 𝑗 = 1, 2, . . . , 𝐷 , 𝐷 is the

dimension of the search space. The global minimum point 𝒙∗

satisfying the condition 𝑓(𝒙∗) ≤ 𝑓(𝒙) for ∀𝒙 ∈ Ω is the
solution of the problem.

DE algorithm has become one of the most frequently
evolutionary algorithms applied to the solution of the con-
tinuous global optimization problems in recent years [3].
The algorithm has been also intensively studied and many
modifications have appeared in literature. Recent results of
research in DE are comprehensively summarized by Neri and
Tirronen [4] and by Das and Suganthan [5].

The remaining part of the paper is organized as follows: DE
algorithm is described in Section II. Mechanism of controlled
restart is proposed in Section III. Section IV presents the
adaptive mechanism used in competitive DE and the variant
of competitive DE used in the experiments is also described in
this section. Experimental setting is specified in Section V. The
results of experiments are presented in Section VI including
the time complexity of the algorithm. Conclusions are drawn
in Section VII.

II. DE ALGORITHM

The DE algorithm works with a population of individuals
(NP points in domain Ω) that are considered as candidates of
solution. A parameter NP is called the size of the population.
The population develops iteratively by using evolutionary
operators of selection, mutation, and crossover generation by
generation. Let us denote two subsequent generations by 𝑃 and
𝑄. Applications of evolutionary operators in the old generation
𝑃 create individuals for a new generation 𝑄. After completing
the new generation 𝑄, the generation 𝑄 becomes the old
generation 𝑃 for next iteration. The DE algorithm written in
pseudo-code is shown in Algorithm 1.

Algorithm 1 Differential evolution
1: generate an initial population 𝑃 = (𝒙1,𝒙2, . . . ,𝒙𝑁𝑃),

𝒙𝑖 ∈ 𝛺 distributed uniformly
2: evaluate 𝑓(𝒙𝑖), 𝑖 = 1, 2, . . . , 𝑁𝑃
3: while stopping condition not reached do
4: for 𝑖 = 1 to NP do
5: generate a trial vector 𝒚
6: evaluate 𝑓(𝒚)
7: if 𝑓(𝒚) ≤ 𝑓(𝒙𝑖) then
8: insert 𝒚 into new generation 𝑄
9: else

10: insert 𝒙𝑖 into new generation 𝑄
11: end if
12: end for
13: 𝑃 := 𝑄
14: end while

A new trial point 𝒚 (line 5 in Algorithm 1) is generated
by using mutation and crossover. There are various types
of mutation and crossover. The most popular mutation type
proposed in [1] and called DE/rand/1 generates the mutant
point 𝒖 by adding the weighted difference of two points,

𝒖 = 𝒓1 + 𝐹 (𝒓2 − 𝒓3) , 𝐹 > 0 , (1)

where 𝒓1, 𝒓2, and 𝒓3 are three mutually distinct points ran-
domly taken from population 𝑃 , not coinciding with the
current point 𝒙𝑖, and 𝐹 is an input parameter.

2230

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Kaelo and Ali [6] proposed a slight modification of muta-
tion defined in (1):

𝒖 = 𝒓̇1 + 𝐹 (𝒓̇2 − 𝒓̇3) , (2)

where 𝒓̇1 is the tournament best among 𝒓1, 𝒓2, and 𝒓3, i.e.
𝒓̇1 = argmin𝑖∈{1,2,3} 𝑓(𝒓𝑖), where 𝒓1, 𝒓2, and 𝒓3 are three
mutually distinct points randomly taken from population 𝑃 ,
not coinciding with the current point 𝒙𝑖, like in the case of
the DE/rand/1. The points 𝒓̇2 and 𝒓̇3 are the remaining points
of the three randomly selected points. This type of mutation
is denoted DE/randrl/1 hereafter. Based on the experimental
results in [6], it was found that this DE/randrl/1 mutation
can increase the speed of the search by almost 30 % without
decreasing the reliability of the search when compared to the
DE/rand/1 mutation.

The elements 𝑦𝑗 , 𝑗 = 1, 2, . . . , 𝐷, of the trial point 𝒚 are
built up by the crossover of the current point 𝒙𝑖 and the mutant
point 𝒖. The most frequently used kind of crossover is called
binomial. It uses the following rule of combination of parents’
elements

𝑦𝑗 =

{
𝑢𝑗 if 𝑈𝑗 ≤ CR or 𝑗 = 𝑙
𝑥𝑖𝑗 if 𝑈𝑗 > CR and 𝑗 ∕= 𝑙 ,

(3)

where 𝑙 is a randomly chosen integer from {1, 2, . . . , 𝐷},
𝑈1, 𝑈2, . . . , 𝑈𝐷 are independent random variables uniformly
distributed in [0, 1), and CR ∈ [0, 1] is an input parame-
ter influencing the number of elements to be exchanged by
crossover. The rule given by Eq. (3) ensures that at least
one element of vector 𝒙𝑖 is changed, even if CR = 0. The
DE variants applying binomial crossover according to (3) are
denoted DE/⋅ /⋅ /bin in literature.

The exponential crossover usually denoted DE/⋅ /⋅ /exp
was also proposed by Price and Storn [1]. The exponential
crossover in DE is similar to the two-point crossover in genetic
algorithms. For exponential crossover, the starting position of
crossover (𝑘 = 1) is randomly chosen from {1, 2, . . . , 𝐷},
and 𝐿 consecutive elements (counted in circular manner) are
taken from the mutant vector 𝒖. Probability of replacing the
𝑘-th element in the sequence 1, 2, . . . , 𝐿, 𝐿 ≤ 𝐷 decreases
exponentially with increasing 𝑘.

Let us consider the probability 𝑝𝑚 of replacing the element
of 𝒙𝑖 by the element of the mutant vector 𝒖. The mean value
of replaced elements is then 𝑝𝑚 × 𝐷. The relation between
the 𝑝𝑚 and control parameter CR was studied in detail by
Zaharie [7]. For binomial crossover, the relation between 𝑝𝑚
and control parameter CR is linear,

𝑝𝑚 = CR(1− 1/𝐷) + 1/𝐷, (4)

while for exponential crossover the relationship is strongly
non-linear and the difference from linearity increases with
increasing dimension of the problem. Zaharie’s result for
exponential crossover can be rewritten in the form of polynom
equation

CR𝐷 − 𝐷 𝑝𝑚 CR + 𝐷 𝑝𝑚 − 1 = 0. (5)

The crossover parameter CR satisfies the conditions: CR = 0
for 𝑝𝑚 = 1/𝐷 and CR = 1 for 𝑝𝑚 = 1. It is apparent that
the equation (5) has the only one real root in the open interval
of (0, 1) for 𝑝𝑚 ∈ (1/𝐷, 1). Thus, for given 𝑝𝑚 we are able

to find unique corresponding value of CR from (5). This is
applied in the implementation of competitive DE variant used
in this study.

Differential evolution has a few control parameters only,
namely the size of population NP, mutation strategy, crossover
type, and couple of parameters 𝐹 and CR. However, the
efficiency of differential evolution is very sensitive especially
regarding the setting of 𝐹 and CR values. The most suitable
control-parameter values for a specific problem may be found
by trial-and-error tuning, which requires a lot of time. There
are some recommendations for setting of these parameters but
they are not applicable for all the optimization problems. Due
to these facts, several new adaptive variants of DE have been
recently proposed, some of them [8]–[11] are considered as the
state-of-the-art adaptive variants of DE. However, the research
in the adaptive mechanisms of DE is intensive and many new
variants have appeared recently, e.g. [12]–[20].

III. CONTROLLED RESTART

DE usually converges quickly to the global minimum, es-
pecially in easier optimization problems (separable, unimodal
etc.). However, it is also known that there are optimization
problems when the search at some stage is not able to
amend the population. The search process stagnates and next
continuation of the search is wasting of computational time.
This phenomenon was described and partially explained by
Zelinka and Lampinen in [21]. Such behavior of DE was
also observed in some CEC 2013 test problems [22], where
a minimum function value remained the same for thousands
of generations until the search stopped. It is apparent that the
population in such situation needs a new impuls. Two questions
arise in this context:

∙ What kind of the impuls could be useful?

∙ How to detect this type of stagnation?

An attempt to solve these problems was done in [23],
where the population was enlarged by new points evolved
using information from previous generations. However, it was
found in our preliminary research that the change of a part
of the population is not a sufficient impuls to interrupt the
stagnation, probably due to the fact that new points with higher
values of the objective function are discarded quickly from
the current population and their effect is not strong enough
to leave the attraction region found before. It indicates that a
completion of new initialization of the population (restart of
the search) is needed to enable finding another region with
small function values. When considering the conditions for a
restart and how to detect them automatically, we can infer from
possible reasons of the stagnation: It can be caused by small
diversity of population and/or convergence to a local minimum
where the population is trapped.

We denote 𝑓𝑚𝑖𝑛 and 𝑓𝑚𝑎𝑥 the minimum and maximum
function values in the current population, respectively. A very
small difference 𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 can indicate a trapping at a
local minimum. To recognize a small variability of the current
population is not so easy. The variability of the population can
be measured by a maximum possible distance of points in the
current population defined as follows:

2231

Let 𝒙𝑚𝑖𝑛 be the vector of minimum values of coordinates
and let 𝒙𝑚𝑎𝑥 be the vector of maximum values of coordinates
in the current population. Then the upper limit of the maximum
possible Euclidian distance of points in the current population
can be evaluated by

maxdist =
√
(𝒙𝑚𝑎𝑥 − 𝒙𝑚𝑖𝑛)′ ⋅ (𝒙𝑚𝑎𝑥 − 𝒙𝑚𝑖𝑛). (6)

Then the condition for restart can be formed as

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 < 𝜀𝑓 AND maxdist < 𝜀𝑑, (7)

where 𝜀𝑓 and 𝜀𝑑 are input parameters controlling restart.

Before each restart the solution found is stored in order to
be compared with the solution found later (or before) and the
best solution of all is the solution found by the algorithm with
the controlled restart.

IV. COMPETITIVE DIFFERENTIAL EVOLUTION

Competitive setting of the DE strategies and the control
parameters were originally proposed in [24]. In this self-
adaptive approach, we choose randomly among 𝐻 different
DE strategies or settings of control parameters (𝐹 , CR) with
probabilities 𝑞ℎ, ℎ = 1, 2, . . . , 𝐻 .

These probabilities change according to the success rate of
the settings in preceding steps of the search process. The ℎth
setting is considered successful if it generates a trial point 𝒚
better than its counter-partner 𝒙𝑖 in the old generation 𝑃 , i.e.
𝑓(𝒚) ≤ 𝑓(𝒙𝑖), see line 7 of Algorithm 1. Probability 𝑞ℎ is
evaluated as the relative frequency

𝑞ℎ =
𝑛ℎ + 𝑛0∑𝐻

𝑗=1(𝑛𝑗 + 𝑛0)
, (8)

where 𝑛ℎ is the current count of the ℎth setting’s successes, and
𝑛0 > 0 is a constant. The input parameter 𝑛0 > 1 prevents a
dramatic change in 𝑞ℎ by one random successful use of the ℎth
parameter setting. To avoid degeneration of the search process,
the current values of 𝑞ℎ are reset to their starting values 𝑞ℎ =
1/𝐻 if any probability 𝑞ℎ decreases below the given limit
𝛿 > 0 during the search process. The adaptive variant of DE
is called competitive differential evolution (CDE) hereafter.

Several settings of CDE were compared in different bench-
mark tests [25], [26]. The CDE variant denoted b6e6rl was
found as one of the most efficient among all the tested CDE
variants. The variant uses twelve different DE strategies or
parameter settings. This version of CDE was also compared
with the state-of-the-art adaptive DE algorithms [8]–[11] and
two versions of DE algorithm with composite trial vector
generation strategies and control parameters [12]. The b6e6rl
variant of CDE appeared the most reliable and the second
fastest algorithm among those seven algorithms on the bench-
mark set of six shifted functions at three levels of dimension
(𝐷 = 10, 30, and 100) [27].

The b6e6rl variant of CDE uses two DE strategies, namely
DE/randrl/1/bin and DE/randrl/1/exp, each with six different
settings of (𝐹,CR). The strategies and settings are listed in
Table I. The values of 𝑝1, 𝑝2, and 𝑝3 are set up equidistantly
in the open interval of (1/𝐷, 1). The value of 𝑝2 is in the
middle of (1/𝐷, 1), 𝑝1 is in the middle of (1/𝐷, 𝑝2), and 𝑝3
in the middle of (𝑝2, 1). The values of 𝑝𝑖, 𝑖 = 1, 2, 3, are set up

TABLE I. DE STRATEGIES AND PARAMETER SETTINGS COMPETING IN

b6e6rl VARIANT OF CDE

ℎ mutation crossover 𝐹 CR 𝑝𝑚

1 0.5 0
2 0.5 0.5
3 randrl/1 binomial 0.5 1
4 0.8 0
5 0.8 0.5
6 0.8 1

7 0.5 CR1 𝑝1

8 0.5 CR2 𝑝2

9 randrl/1 exponential 0.5 CR3 𝑝3

10 0.8 CR1 𝑝1

11 0.8 CR2 𝑝2

12 0.8 CR3 𝑝3

automatically with respect to the dimension of the problem at
the start of the algorithm as well as the corresponding values
of CR𝑖 evaluated as roots of the polynom (5).

The values of mutation probability and the corresponding
values of CR applied to the problems of 𝐷 = 10, 30, 50 and
100 are shown in Table II. Mutation according to (2) can cause

TABLE II. VALUES OF MUTATION PROBABILITY AND THE

CORRESPONDING VALUES OF CR FOR EXPONENTIAL CROSSOVER

𝐷 = 10 𝐷 = 30
𝑖 𝑝𝑖 CR𝑖 𝑝𝑖 CR𝑖

1 0.3250 0.7011 0.2750 0.8815
2 0.5500 0.8571 0.5167 0.9488
3 0.7750 0.9418 0.7583 0.9801

𝐷 = 50 𝐷 = 100
𝑖 𝑝𝑖 CR𝑖 𝑝𝑖 CR𝑖

1 0.2650 0.9262 0.2525 0.9611
2 0.5100 0.9688 0.4950 0.9837
3 0.7550 0.9880 0.7475 0.9938

that a new trial point 𝒚 moves out of the domain Ω, which
means the violation of the boundary constraints. In such a case,
the values of 𝑦𝑗 ∕∈ [𝑎𝑗 , 𝑏𝑗] can be corrected by return into Ω
using transformation 𝑦𝑗 ← 2 × 𝑎𝑗 − 𝑦𝑗 or 𝑦𝑗 ← 2 × 𝑏𝑗 − 𝑦𝑗
for the violated components. This technique is frequently used
and also implemented in b6e6rl variant of CDE algorithm.
The parameters controlling the competition of DE strategies
and control-parameter settings are in b6e6rl set up to the
recommended values succeeded in previous applications of the
algorithm [27], i.e. 𝑛0 = 2 and 𝛿 = 1/(𝐻 ∗ 5) = 0.0167.

V. EXPERIMENTAL SETTING

All computations were carried out on a standard PC
with Windows 8, Intel(R) Core(TM)i5-323OM CPU, 2.60GH,
2.60GHz, 8 GB RAM.

The algorithm b6e6rl with controlled restart described
above is implemented in Matlab 2010a and this environment
was used for experiments. Experimental setting follows the
requirements given in the report [28]. 30 minimization prob-
lems are defined in the report, the source code of functions in
C cec14 func.cpp from December 20, 2013 was downloaded

2232

TABLE III. VALUES OF FUNCTION ERRORS FOR b6e6rl WITH

CONTROLLED RESTART, 𝐷 = 10

F Best Worst Median Mean Std
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 34.780 0 1.125 4.979
5 2.78E-08 20.094 20.052 18.453 4.423
6 0 0 0 0 0
7 0 0.047 0.015 0.017 0.013
8 0 0 0 0 0
9 2.464 7.878 4.850 4.895 1.076

10 0 0.062 0 0.001 0.009
11 35.860 330.908 198.482 196.524 79.947
12 0.193 0.452 0.281 0.293 0.056
13 0.037 0.191 0.133 0.128 0.033
14 0.032 0.164 0.111 0.111 0.029
15 0.486 1.145 0.839 0.832 0.157
16 1.045 2.314 1.909 1.872 0.255
17 0 38.800 0.212 1.398 5.576
18 0.006 2.148 0.472 0.621 0.576
19 0.032 0.458 0.115 0.142 0.092
20 2.49E-05 0.422 0.012 0.056 0.083
21 1.08E-05 17.260 0.485 0.787 2.373
22 0.001 0.630 0.055 0.154 0.173
23 329.457 329.457 329.457 329.457 2.18E-10
24 107.915 117.504 112.240 112.212 2.070
25 100 200.590 118.080 120.866 14.863
26 100.037 100.189 100.118 100.117 0.033
27 1.129 400.154 2.107 61.608 124.098
28 356.827 458.317 357.103 363.388 14.726
29 100 223.249 221.759 217.788 20.565
30 462.307 534.998 462.782 467.274 13.998

from the web page [28] and compiled via mex command (mex
cec14 func.cpp).

Search range for all the test functions is [−100, 100]𝐷 .
The tests were carried out at four levels of dimension,
51 repeated runs per the test function and the dimen-
sion of the problem. The random generator was set up by
rand(’state’,sum(100*clock)) statement at the start of each
run. The run was stopped if the prescribed MaxFES was
reached, i.e. when MaxFES = 1× 105 for 𝐷 = 10, MaxFES
= 3 × 105 for 𝐷 = 30, MaxFES= 5 × 105 for 𝐷 = 50, and
MaxFES= 106 for 𝐷 = 100.

Due to adaptive features of the b6e6rl algorithm, the
only control parameter needed to be set is the population
size. It was found in previous experiments with adaptive DE
variants [27] that for a good performance it is sufficient much
smaller population size than NP ≃ 10×𝐷 recommended for
many evolutionary algorithms including standard DE [1]. The
adaptive DE variants performed well with the population size
from 20 to 5×𝐷 in the problems of low dimension and with
NP ≤ 100 in the problems of higher dimension. Thus, the
population size NP was set up to 𝑁𝑃 = 50.

The parameters controlling the condition of the restart, see
(7), were set up as follows:

∙ 𝜀𝑓 = 1× 10−8

∙ 𝜀𝑑 = 1.

The value of 𝜀𝑑 is based on the ratio of measures of sets. The
search space is a measure of 𝜇(Ω) = (

∏𝐷
𝑗=1[𝑏𝑗−𝑎𝑗]), which is

200𝐷 in all the test problems. The measure of the subset of the
search space containing all the points of the current population
is 𝜇(𝑆) and can be approximated by 𝜇(𝑆) ≈ maxdist𝐷.
The setting 𝜀𝑑 = 1 then means the ratio of the measures
𝜇(𝑆)/𝜇(Ω) < 1/200𝐷.

TABLE IV. VALUES OF FUNCTION ERRORS FOR b6e6rl WITH

CONTROLLED RESTART, 𝐷 = 30

F Best Worst Median Mean Std
1 5407.71 149937.4 30051.7 40537.3 34343.6
2 0 0 0 0 0
3 0 0 0 0 0
4 0.002 0.542 0.158 0.162 0.095
5 20.200 20.332 20.273 20.271 0.028
6 0.003 15.040 13.228 12.126 3.441
7 0 1.17E-08 0 2.30E-10 1.64E-09
8 0 0 0 0 0
9 33.254 60.687 42.687 44.102 6.223
10 0 0.083 0.042 0.035 0.025
11 1372.75 2579.87 1995.69 1980.10 220.159
12 0.235 0.421 0.346 0.339 0.047
13 0.207 0.444 0.347 0.336 0.052
14 0.192 0.305 0.241 0.243 0.025
15 4.157 7.046 5.919 5.808 0.720
16 8.701 10.285 9.603 9.539 0.364
17 188.182 9775.64 1505.39 2116.29 1926.73
18 10.479 90.045 24.043 28.702 15.730
19 3.156 8.686 4.185 4.386 0.979
20 3.944 40.377 13.262 15.379 6.534
21 3.089 667.589 207.816 243.108 143.770
22 14.649 271.065 28.549 63.615 66.370
23 315.244 315.244 315.244 315.244 1.20E-09
24 218.525 224.184 222.691 222.881 0.930
25 202.585 204.585 203.224 203.290 0.472
26 100.251 100.491 100.353 100.351 0.048
27 300 401.789 343.953 351.556 44.569
28 685.175 866.624 832.100 820.450 37.267
29 419.235 1113.22 767.443 786.838 112.297
30 485.722 4132.03 1193.05 1318.25 668.521

VI. RESULTS

The report [28] stated the obligatory content and structure
of the experimental results, which is presented below.

TABLE V. COMPUTATIONAL COMPLEXITY

T0 T1 (s) T̂2 (s) (T̂2− T1)/T0

𝐷 = 10 0.1421 1.52 14.42 90.78
𝐷 = 30 0.1421 1.72 15.35 95.92
𝐷 = 50 0.1421 2.13 17.12 105.49
𝐷 = 100 0.1421 3.90 20.08 113.86

A. Function errors

The values of function errors are shown in Tables III, IV,
VI, and VII for 𝐷 = 10, 𝐷 = 30, 𝐷 = 50, and 𝐷 = 100,
respectively. The tables are presented in the structure required
by [28], the values of function error smaller than 1 × 10−8

were replaced by zeros.

2233

TABLE VI. VALUES OF FUNCTION ERRORS FOR b6e6rl WITH

CONTROLLED RESTART, 𝐷 = 50

F Best Worst Median Mean Std
1 137441 885694 333428 371051 179033
2 7.865 23746.7 2814.22 5011.63 5529.22
3 7.213 1639.67 126.845 238.587 343.228
4 0.685 98.103 19.516 49.464 34.620
5 20.319 20.408 20.367 20.366 0.022
6 22.648 31.612 27.336 27.489 2.127
7 1.12E-08 2.64E-08 1.72E-08 1.74E-08 3.63E-09
8 0 1.02E-08 0 2.00E-10 1.43E-09
9 78.270 126.365 100.697 102.090 10.450

10 0 0.087 0.037 0.035 0.018
11 3534.67 5004.79 4439.83 4395.23 314.704
12 0.260 0.424 0.354 0.349 0.033
13 0.317 0.561 0.480 0.469 0.049
14 0.208 0.759 0.274 0.287 0.075
15 9.757 14.959 12.801 12.626 1.180
16 16.218 18.634 17.784 17.766 0.445
17 3559.97 48665.8 15458.8 17529.4 10568.4
18 79.488 5506.14 670.759 1228.90 1312.963
19 9.477 77.125 11.906 13.302 9.228
20 89.248 2818.646 468.506 628.362 567.167
21 2569.74 149837 18104.7 24093.4 23442.16
22 33.013 1247.35 538.201 568.865 207.097
23 344.005 344.005 344.005 344.005 1.31E-09
24 255.608 267.776 263.986 262.030 3.633
25 205.089 210.290 206.853 207.073 1.251
26 100.288 200.081 100.498 118.058 38.338
27 359.385 1102.06 985.922 901.119 202.462
28 1028.12 1452.69 1236.12 1236.01 72.860
29 883.278 1612.83 1349.01 1317.36 202.812
30 8118.28 14199.3 9605.62 9604.60 913.833

B. Algorithm complexity

Algorithm complexity of the algorithm was measured ac-
cording to the guidelines in [28], the results are presented in
Table V, the values of time are in seconds. T0 is the time
needed for computing the program given in [28] carrying
out 1 × 106 times of the prescribed sequence of arithmetic
operations, T1 is the time of 2× 105 evaluations of Function
18 and T̂2 is the average time of five runs of the algorithm
with MaxFES = 2× 105 on Function 18.

C. Parameters

This section is required in [28] in the prescribed structure.

∙ The values of the parameters controlling the compe-
tition remain on their default setting, that is 𝑛0 = 2
and 𝛿 = 1/(𝐻 ∗ 5) = 0.0167.

∙ No dynamic range of parameter value is applied.

∙ Population size NP was set up to 𝑁𝑃 = 50 in all the
experiments.

∙ The parameters controlling the condition of the restart,
see (7), were set up to 𝜀𝑓 = 1 × 10−8 and 𝜀𝑑 = 1.
The restart with a new initialization of the population
is done if

𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 < 1× 10−8 AND maxdist < 1.

TABLE VII. VALUES OF FUNCTION ERRORS FOR b6e6rl WITH

CONTROLLED RESTART, 𝐷 = 100

F Best Worst Median Mean Std
1 701234 2715168 1194116 1307760 406951
2 10.246 103284 7882.61 22166.9 26930.3
3 5.734 4047.682 449.749 693.816 793.275
4 113.184 257.178 176.901 173.789 33.351
5 20.523 20.631 20.594 20.593 0.023
6 66.767 80.079 74.562 73.952 2.984
7 3.42E-08 8.31E-08 5.82E-08 5.68E-08 1.09E-08
8 0 1.78E-08 1.19E-08 1.08E-08 5.06E-09
9 243.954 384.144 322.467 320.655 34.358

10 0.012 0.354 0.050 0.053 0.045
11 10355.8 12671 11864.4 11808.6 480.471
12 0.421 0.568 0.508 0.504 0.032
13 0.405 0.649 0.530 0.523 0.052
14 0.180 0.253 0.219 0.218 0.016
15 31.828 53.597 41.182 40.866 4.470
16 37.213 40.794 39.832 39.701 0.654
17 70031.1 289755 187144 185701 53120.4
18 143.941 4745.07 715.966 940.903 865.470
19 55.457 129.367 94.495 94.720 12.022
20 2548.42 16968.48 6812.02 7725.58 3384.60
21 16485.7 205283.7 88171.4 89216.6 39231.3
22 1212.07 2307.73 1866.80 1881.67 230.866
23 348.235 348.235 348.235 348.235 2.24E-08
24 358.092 367.556 362.846 363.122 2.376
25 231.249 275.206 247.533 248.487 9.051
26 200.123 200.332 200.188 200.195 0.044
27 944.348 2263.27 2044.61 2024.92 190.436
28 2125.93 5237.90 2566.68 3052.01 767.930
29 1177.62 1929.66 1573.51 1605.85 180.403
30 5840.62 10883.6 8719.10 8535.46 1167.04

∙ Computation time needed to the tuning of the param-
eters can be estimated by the 6 × MaxFES function
evaluations per problem. A quick analysis of the
results of tuning took about two hours.

D. Impact of Restart

The impact of restart on the efficiency of the algorithm was
analyzed. The means of counts of restart for the test problems,
where the mean value is positive at least in one dimension of
the problem, are presented in Table VIII. In order to make
reading easier, “-” is used instead of zero. It is obvious that
there are many test problems, where no restart occurs, namely
in the problems of higher dimension.

The impact of the restart on the efficiency of the algorithm
was assessed by Wilcoxon two-sample tests, where the b6e6rl
algorithms with and without restart are compared for the test
problems. Only the problems with average count of restarts
greater than one half are included into the comparison by
Wilcoxon test. The results of the comparison are depicted
in Table IX. The cases when the algorithm with restart is
significantly better are denoted by “+” if the null hypothesis
is rejected at 𝛼 = 0.05, “++” at 𝛼 = 0.01, and “+++” at
𝛼 = 0.001. The cases when the algorithm with restart is
significantly worse are denoted by “- - -” signs. The symbol
“=” means no significant difference. For 𝐷 = 10, the restart
is beneficial in eight benchmark problems, while only in one
problem for 𝐷 = 30. For 𝐷 = 50 and 𝐷 = 100, the restart
is beneficial in three problems but the restart decreases the

2234

performance in one and two problems, respectively. It indicates
that the restart could be helpful but the counts of restart are not
sufficient in some problems while the use of restart causes the
deteriorating of the search in a few problems. A study how to
recognize the proper conditions for the restart should continue.

TABLE VIII. MEANS OF COUNTS OF RESTARTS

F 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 100
1 3.10 - - -
2 3 3 - -
3 4.35 4 - -
4 4.98 0.06 0.45 0.06
6 1.92 - - -
7 0.41 4.57 4 3.18
8 4 4 4 3.65

10 2.94 2 2 2
13 0.10 0.10 0.08 -
14 0.10 0.02 0.08 -
17 1.35 - - -
18 0.29 - 0.04 -
20 0.12 - - -
21 0.92 - - -
23 6.06 5.06 6 3.02
24 - 1.35 3.37 3
25 1.75 2.35 0.92 1.71
26 0.08 0.20 - -
27 0.80 0.31 - -
28 3.22 0.33 0.06 -
29 1.84 - - -
30 1.67 0.37 0.06 -

TABLE IX. COMPARISON OF THE ALGORITHMS WITH AND WITHOUT

CONTROLLED RESTART

F 𝐷 = 10 𝐷 = 30 𝐷 = 50 𝐷 = 100
1 =
2 = =
3 = =
4 +++
6 =
7 = - - - - - -
8 = = = - - -
10 +++ = +++ ++
17 ++
21 =
23 = = = =
24 = +++ +++
25 +++ +++ +++ +++
27 ++
28 +++
29 +++
30 ++

VII. CONCLUSIONS

A new variant of competitive differential evolution with
the controlled restart was proposed and tested on the CEC
2014 benchmark problems. The results show that the algorithm
performs relatively well in the problems of lower dimension or
in the problems with unrotated objective functions. However,
systematical failure was observed in the minimization of
several functions at all four levels of dimension, mostly in
the problems with rotated objective functions.

We can conclude that the possible cause of the algorithm
failure on rotated functions is the lack of such a strategy in
the pool of competing strategies that is able to cope well
with the minimization of rotated functions. Finding a new DE-
strategy pool which makes the algorithm more efficient in the
optimization problems with rotated objective functions is the
topic for further research.

ACKNOWLEDGMENT

This work was supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070) and partially supported by
University of Ostrava from the project SGS15/PřF/2014.

REFERENCES

[1] R. Storn and K. V. Price, “Differential evolution - a simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, pp. 341–359, 1997.

[2] ——, “Differential evolution – a simple and efficient
adaptive scheme for global optimization over continuous
spaces,” Tech. Rep., 1995, TR-95-012. [Online]. Available:
http://www.icsi.berkeley.edu/ storn/litera.html

[3] R. Storn, K. Price, and J. Lampinen, Differential evolution – A practical
approach to global optimization. Berlin, Germany: Springer, 2005.

[4] F. Neri and V. Tirronen, “Recent advances in differential evolution:
a survey and experimental analysis,” Artificial Intelligence Review,
vol. 33, pp. 61–106, 2010.

[5] S. Das and P. N. Suganthan, “Differential evolution: A survey of
the state-of-the-art,” IEEE Transactions on Evolutionary Computation,
vol. 15, pp. 27–54, 2011.

[6] P. Kaelo and M. M. Ali, “A numerical study of some modified
differential evolution algorithms,” European J. Operational Research,
vol. 169, pp. 1176–1184, 2006.

[7] D. Zaharie, “Influence of crossover on the behavior of differential
evolution algorithms,” Applied Soft Computing, vol. 9, pp. 1126–1138,
2009.

[8] J. Brest, S. Greiner, B. Boškovič, M. Mernik, and V. Žumer, “Self-
adapting control parameters in differential evolution: A comparative
study on numerical benchmark problems,” IEEE Transactions on Evo-
lutionary Computation, vol. 10, pp. 646–657, 2006.

[9] A. K. Qin, V. L. Huang, and P. N. Suganthan, “Differential evolution
algorithm with strategy adaptation for global numerical optimization,”
IEEE Transactions on Evolutionary Computation, vol. 13, pp. 398–417,
2009.

[10] R. Mallipeddi, P. N. Suganthan, Q. K. Pan, and M. F. Tasgetiren,
“Differential evolution algorithm with ensemble of parameters and
mutation strategies,” Applied Soft Computing, vol. 11, pp. 1679–1696,
2011.

[11] J. Zhang and A. C. Sanderson, “JADE: Adaptive differential evolution
with optional external archive,” IEEE Transactions on Evolutionary
Computation, vol. 13, pp. 945–958, 2009.

[12] Y. Wang, Z. Cai, and Q. Zhang, “Differential evolution with composite
trial vector generation strategies and control parameters,” IEEE Trans-
actions on Evolutionary Computation, vol. 15, pp. 55–66, 2011.

[13] R. Tanabe and A. Fukunaga, “Evaluating the performance of shade on
cec 2013 benchmark problems,” in IEEE Congress on Evolutionary
Computation 2013 Proceedings, 2013, pp. 1952–1959.

[14] J. Brest, B. Boškovič, A. Zamuda, I. Fister, and E. Mezura-Montes,
“Real parameter single objective optimization using self-adaptive dif-
ferential evolution algorithm with more strategies,” in IEEE Congress
on Evolutionary Computation 2013 Proceedings, 2013, pp. 377–383.

[15] A. Zamuda, J. Brest, and E. Mezura-Montes, “Structured population size
reduction differential evolution with multiple mutation strategies on cec
2013 real parameter optimization,” in IEEE Congress on Evolutionary
Computation 2013 Proceedings, 2013, pp. 1925–1931.

2235

[16] I. Poikolainen and F. Neri, “Differential evolution with concurrent
fitness based local search,” in IEEE Congress on Evolutionary Com-
putation 2013 Proceedings, 2013, pp. 384–391.

[17] S. Biswas, S. Kundu, S. Das, and A. V. Vasilakos, “Teaching and learn-
ing based differential evoltuion with self adaptation for real parameter
optimization,” in IEEE Congress on Evolutionary Computation 2013
Proceedings, 2013, pp. 1115–1122.

[18] L. D. S. Coelho, H. V. H. Ayala, and R. Z. Freire, “Populations variance-
based adaptive differential evolution for real parameter optimization,” in
IEEE Congress on Evolutionary Computation 2013 Proceedings, 2013,
pp. 1672–1677.

[19] F. Caraffini, F. Neri, J. Cheng, G. Zhang, L. Picinali, G. Iacca, and
E. Mininno, “Super-fit multicriteria adaptive differential evolution,” in
IEEE Congress on Evolutionary Computation 2013 Proceedings, 2013,
pp. 1678–1685.

[20] S. M. Elsayed, R. A. Sarker, and T. Ray, “Differential evolution
with automatic parameter configuration for solving the CEC 2013
competition on real-parameter optimization,” in IEEE Congress on
Evolutionary Computation 2013 Proceedings, 2013, pp. 1932–1937.

[21] J. Lampinen and I. Zelinka, “On stagnation of differential evolution
algorithm,” in MENDEL 2000, 6th International Conference on Soft
Computing. Brno: University of Technology, 2000, pp. 76–83.

[22] J. Tvrdı́k and R. Poláková, “Competitive differential evolution applied

to cec 2013 problems,” in IEEE Congress on Evolutionary Computation
2013 Proceedings, 2013, pp. 1651–1657.

[23] S. M. Elsayed and R. A. Sarker, “Differential evolution with automatic
population injection scheme for constrained problems,” in IEEE Sym-
posium on Differential Evolution (SDE) 2013 Proceedings, 2013, pp.
112–118.

[24] J. Tvrdı́k, “Competitive differential evolution,” in MENDEL 2006,
12th International Conference on Soft Computing, R. Matoušek and
P. Ošmera, Eds. Brno: University of Technology, 2006, pp. 7–12.

[25] ——, “Adaptation in differential evolution: A numerical comparison,”
Applied Soft Computing, vol. 9, pp. 1149–1155, 2009.

[26] ——, “Self-adaptive variants of differential evolution with exponential
crossover,” Analele of West University Timisoara, Series Mathematics-
Informatics, vol. 47, pp. 151–168, 2009.

[27] J. Tvrdı́k, R. Poláková, J. Veselský, and P. Bujok, “Adaptive variants
of differential evolution: Towards control-parameter-free optimizers,” in
Handbook of Optimization. Springer, 2012, pp. 423–449.

[28] J. J. Liang, B. Qu, and P. N. Suganthan, “Problem definitions and
evaluation criteria for the CEC 2014 special session and competition
on single objective real-parameter numerical optimization,” Nanyang
Technological University, Singapore, 2013. [Online]. Available:
http://www.ntu.edu.sg/home/epnsugan/

2236

