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Abstract—In energy systems, the transition from traditional,
centralized architecture and controllable generation to an ever
more decentralized and volatile generation due to an increasing
use of renewable energy sources arises new challenges for the
management and balancing of the electricity grid. These can be
met through energy management systems (EMS) that enable flex-
ible consumption and production of energy on the demand side
of the grid. The EMS for smart buildings that is used within this
paper allows for the integration of a multitude of devices through
an architectural approach which is similar to “plug-and-play”.
These devices can then be optimized to a flexible load shape by
an Evolutionary Algorithm (EA). The differentiated optimization
capabilities of the devices require adequate encoding schemes.
Such schemes are the major contribution of this paper. The
aptitude of these encodings is shown and validated through the
simulation of smart buildings with different configurations, both
concerning quantitative and qualitative benefits to be achieved
according to energy systems’ transition and users’ objectives.

I. INTRODUCTION

Nowadays, societies heavily rely on permanent availability of
different energy carriers. Additionally, the world-wide energy
supply is in a phase of transition, which is not a uniform
process all over the world, though the common similarity is
the intensification of power generation from renewable energy
sources. For instance, the German “Energiewende” (“energy
transition”) causes an increasing share of power generation
from renewable sources and a steady reduction of nuclear
based power generation, due to the phase-out of nuclear power
generation scheduled by 2023. Ambitious targets are set to
this transition: 35 % of electricity consumption in Germany
shall be covered from renewable energy sources by 2020 and
at least 80 % by 2050 [1].

Techniques that allow for flexible load shapes on the demand-
side are a promising possibility to cope with the induced
problems in grids and markets [2]. Buildings, both commercial
and private, may contribute enormously to the flexibility
of electricity consumption and production by using energy
management systems (EMS) [3]. The heterogeneous structure
and capabilities of these target scenarios with diverse setups of
devices for energy consumption, storage, and generation call
for a flexible approach towards configuration and optimization
of an EMS.

The EMS used in this paper utilizes an architecture similar
to the concept of “plug-and-play” to optimize shiftable or
interruptible loads and flexible production. in different environ-
ments. Therefore, it provides different mechanisms that enable
a flexible and ad-hoc integration of components.

Major contributions of this paper are the description and test-
ing of encoding schemes for different types of devices. These
schemes allow for a global, abstracted and generic optimization
of the energy management problem. The optimization problem
varies due to different environments, available devices, and
user preferences. This results in varying search and solution
spaces for the optimization algorithm at the run-time of the
EMS and calls for a self-adaptive approach to the optimizer’s
configuration. First qualitative benefits of adapted parameters
are presented in this paper.

In the following Section II, the energy management scenario
in a smart building is described. Section III then introduces the
EMS with its architecture and self-adaptive approach the paper
is based upon. The encodings, enabling the EMS to integrate
different types of components, are depicted in Section IV. These
encoding schemes are validated in different experimental setups,
which are described and discussed in Section V. The paper
closes with a summary of findings and a further outlook to
future work.

II. ENERGY MANAGEMENT SCENARIO

In this paper, the scenario for energy management focuses on
EMS in modern smart buildings as visualized in Fig. 1. These
buildings can be equipped with both energy consuming devices
and decentralized energy resources like combined heat and
power plants (CHP) and photovoltaic systems (PV). Moreover,
storage systems for different energy carriers like hot water and
electricity can be installed: Hot water storage tanks enable the
operation of the CHP whenever capacity is left in the tank and
battery storages enable partial independence from the electricity
grid. Additionally, electric vehicles (EV), which can these days
be found in more and more private, public and commercial
buildings, may be connected to the building and thus their
charging process is optimized by the EMS.
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EMS

Fig. 1. Smart building scenario with EMS

The different devices installed in smart buildings offer distinct
capabilities in terms of influencing their electrical load shape
and the overall energy profile of the building. In case of the
decentralized energy resources, this could be done by the
decision to either feed power back into the electricity grid or
to charge a battery storage. Other devices, such as household
appliances or EVs, can be delayed in their operating or charging
time. This causes a shift of the electrical load.

The maximum delay is usually defined by the user, ipso facto,
there is some point of time in the future when the appliance has
to have finished its operation. The maximum possible delay is
called temporal Degree of Freedom (tDoF ). Appliances with
tDoF include dishwashers, washing machines, and tumble
dryers with time preselection. Some of these appliances may
also be interrupted or paused at certain defined points during
their operation cycle. The EMS then optimizes the delays,
interruptions and, if available in the scenario, the generation
times and/or amounts with respect to constraints, the users’
preferences and the optimization objectives.

Household appliances may also offer alternative load profiles
for the same application, i.e., a certain program. For instance,
appliances may internally shift or lengthen their energy
consumption by extending the duration of heating phases.
Additionally, the so called hybrid or bivalent appliances are
able to utilize energy from different energy carriers alternatively.
To name one example, a hybrid washing machine could use
cold water and heat it up with its own electrical boiler or,
alternatively, use hot water which is provided by a gas-fired
central heating system. This offers the possibility to use gas
instead of electricity and vice versa. Thus, these potentials
are called energy-related Degree of Freedom (eDoF ). Another
example is the charging process of EVs at power levels that
can be controlled by the EMS.

Accordingly, energy management of these devices has
to consider different energy carriers as well as constraints
and objectives: Electricity in terms of active power and
reactive power, natural gas consumption, hot and chilled water
consumption, emissions of greenhouse gases, user-defined
objectives, physical constraints of the devices, and external
signals, such as time and load variable energy tariffs. Therefore,
the respective optimization algorithm is also confronted with
the coordination of these energy flows, taking into account
internal and external limitations. This challenges the flexibility,
adaptivity and robustness of the EMS which is used to optimize
the resulting energy management problem.

Local
Energy
Mgmt.
Units

Global Energy Management Unit

Real 
Environment

Objectives
Interactions
Habits

External 
Signals

COM-
Manager

COM-
Manager

Observer Controller

Load Optimization

O CO C
Specific Local 
Management

Situation Analysis and Storage

Aggregation

Prediction Learning Mechanisms

Specific Local 
Management

Communication Layer

Drivers and Hardware Abstraction Layer

Fig. 2. Organic Smart Home – structural overview

III. ORGANIC SMART HOME

The Organic Smart Home (OSH) [4], the EMS used
in this paper, is based on the generic Observer/Controller
Architecture [5]. This architectural approach enables controlled
self-organization in complex technical systems, such as modern
smart buildings with energy consuming and producing devices.

The OSH (see Fig. 2) uses Observer/Controller-units (O/C-
units), i.e., pairs of observers and controllers, to measure
and influence the sensors and actuators available in the smart
building’s devices. This enables an adequate manipulation of the
system’s overall behavior through aggregation, prediction, and
learning mechanisms. The hierarchically structured architecture
of the OSH makes use of one local O/C-unit for each device
taking part in the energy management. These local units
encapsulate the knowledge about capabilities and limitations
of their component, making it transparent for the global
energy management situated in the global O/C-unit. There,
the system and its behavior are monitored, analyzed, predicted,
and optimized on a global level.

To enable a flexible load shape according to the situation on
energy markets and in the local grid, external entities, e.g., grid
operators or utilities, can communicate time-dependent price
signals or load limit signals to the OSH via defined interfaces,
called COM-Managers. These signals for electricity can then be
considered as globally influencing factors in the optimization
process, together with tariffs of other energy carriers.

The energy management problem varies with the availability
and presence of devices, their local limitations as well as
possible eDoFs, objectives as well as tDoFs set by the user,
and communicated external signals. Hence, the OSH utilizes
a sub-problem based approach to optimization. This means,
the energy management problem is not set up a priori in a
closed form, but built up from problem parts at the run-time
of the EMS. The problem parts are generated in the local
O/C-units and communicated to the global O/C-unit. There,
an EA operates on bit strings as described in [6] and pursues
the actual optimization process. Therefore, the problem parts
should be encoded in a homogeneous manner using suitable
encoding schemes. That allows for an abstracted optimization.
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IV. ENCODINGS FOR SCHEDULING

Given the possibilities of the OSH together with the energy
management scenario, the overall issue of the optimization
process is to coordinate energy flows in a smart building
according to the objectives of the users and compliant to
external circumstances, e.g., situation in the electricity grid
that are communicated through the load limit signals. These
globally effective factors are taken into account by the global
load optimization, which uses an EA that is based on a refined
version of the generic Genetic Algorithm from the Java-based
framework for multiobjective optimization using metaheuristics
(jMetal) [7], [8]. The operators and parameter values that have
been used in this paper can be found in Section V.

The observance of technical limitations and constraints
of devices integrated into the EMS are achieved by the
encodings of the problem parts in the dedicated local O/C-units.
Therefore, the DoFs, which may be the tDoFs or eDoFs
mentioned before, are encoded in different ways. The encodings
enable a precise scheduling of the devices’ operating times or
modes of operation, and thus energy usage. To allow for the
desired abstracted and generic “plug-and-play”-optimization,
all encodings are bit string representations. Consequently, they
can be combined to a comprehensive bit string representing
the energy management problem at stake, providing good
performance and solution quality as depicted in [9].

A. Encoding of delayable devices

Delayable devices have a tDoF , which is specified by the
user’s preferences by providing a latest finishing time fj for the
device j. Thus, it enables the optimizer to shift the starting time
within a predefined period, beginning at the release time rj ,
when the problem part is formulated in the dedicated O/C-unit:

tDoFj = fj − rj − dj

fj latest time by which the device j must have finished
rj release time of device j

dj duration of the planned operating time of device j

The delay until the time-shifted starting time is a gray-encoded
bit string as shown in Fig. 3, enabling a planning accuracy
to second basis and overcoming the Hamming Cliff [10]. The
function gray() returns a gray-encoded bit string of a given
integer value. The bit string bj,1 in gray-encoding has a variable
length lj,1, which depends on the duration tDoFj in seconds:

lj,1 = �log2 tDoFj�

The actual bit string bj,1 may now be defined as follows:

bj,1 = gray(�2lj,1 / tDoFj� · pj,1)

The duration of the delay pj,1 is then interpreted by the device’s
dedicated O/C-unit as follows:

pj,1 = gray−1(bj,1) / �2lj,1 · tDoFj�

encoded 1st pause 
(before 1st phase) 

0 1 0 0 0 1 

t (time) 
rj 

P 
(power) 

fj - dj 
tDoF 

1st pause (pj,1) 

fj 

dj 

Fig. 3. Encoding scheme of a delayable load

encoded 1st pause 
(before 1st phase)

encoded 2nd pause 
(between phases)

0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 0

encoded 3rd pause 
(after 2nd phase)

t (time)
rj

P
(power)

fj - djtDoF

1st phase
2nd pause 

(pj,2)
3rd pause 

(pj,3)

fj

1st pause 
(pj,1)

2nd phase

bj,1 bj,3bj,2

Fig. 4. Encoding scheme of an interruptible load

B. Encoding of interruptible devices

Nevertheless, the first encoding is not sufficient when
considering devices which may not only be delayed but also
interrupted at certain predefined points in their operation cycle.
This second encoding is illustrated in Fig. 4. Instead of encoding
only a single pause, this encoding utilizes multiple pauses to
define the initial delay and the pauses in between the phases
of operation, which are predefined by the points when the
operation cycle is interruptible. If there are n phases, due to
n− 1 points of interruption, the encoding defines n+ 1 sub-
strings for pauses. The length lj of the total bit string bj is
now calculated as follows:

lj = (n+ 1) · �log2 tDoFj�

Every sub-string bj,k for a pause k with k = 1, ..., n+ 1 has
therefore the length lj,k = �log2 dj�. The duration of the delays
for the pause k of device j can be interpreted as follows:

pj,k =
gray−1(bj,k) / �2lj ·tDoFj�∑n+1

i=1
gray−1(bj,i) / �2lj ·tDoFj�

The interpretation of the bit string of an appliance, which can
be interrupted once in its operation cycle, is illustrated in Fig. 5:
The ratio of the value of a single bj,k to the sum of all bj,k
determines the allocation of the tDoF to pause k ∈ {1, 2, 3}.
Through this encoding, two different search behaviors with
fixed parameters in the EA are possible: If the values of both
bj,1 and bj,2 are small and bj,3 remains fixed, minor changes to
bj,1 or bj,2 cause tremendous changes in their respective share
of the tDoF and therefore exploration. Correspondingly, high
values of bj,1 and bj,2 cause exploitation, because changes of
their values then cause small changes to their share of tDoF .
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P1

P2

Pk = Value of gray-encoded bit string bj,k for pause k

Duration of 1st pause = tDoF * P1 / (P1 + P2 + P3)
Duration of 2nd pause = tDoF * P2 / (P1 + P2 + P3)
Duration of 3rd pause = tDoF * P3 / (P1 + P2 + P3)

now

P (power)

latest ending time

tDoF

1st

pause
2nd

pause
3rd

pause

[P3 fixed]

exploitation

exploration

Fig. 5. Interpretation of the encoding scheme of an interruptible load
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P
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0 1

encoded 1st pause 
(before 1st phase)

encoded 2nd pause 
(between phases)

0 1 0 0 0 1 1 1 0 1 1 1

alternative 
load profiles

(eDoF)

selected 
load profile

hybrid 
profiles

normal 
profiles

Fig. 6. Interpretation of the encoding scheme of a load with alternative load
profiles (e.g., appliances with hybrid profiles using different energy carriers)

C. Encoding of devices with alternative profiles

Some of the devices used in buildings have alternative
profiles of their energy consumption. This may either be due
to simply different operation cycles for the same program, as
e.g, the possibility to reduce peak loads of a heating phase by
lengthening this phase, or due to the capability of the devices to
use different energy carriers. As mentioned before, devices with
the latter capability are often called hybrid or bivalent devices
with respect to their energy consumption. The possibility to use
different energy carriers for energy-intensive processes offers
tremendous opportunities to shift the energy consumption from
one energy carrier to another exploiting the eDoF .

The alternative profiles using different energy carriers or
operation cycles are enumerated, encoded, and then added as
additional sub-string to the previously presented encoding (see
Fig. 6). In case of ij,max alternative profiles 0, ..., imax−1 for
device j, the bit string bj,i for profile selection has to be of
length li:

li = �log2 ij,max�

The selected profile ij is then calculated as follows:

ij = �|bj,i| ∗ ij,max/2
li�

This enables the inclusion of the profile selection into the
optimization process. As a matter of fact, this scheme of
encoding can be applied to both the encoding delayable devices
and interruptible devices.

tstart
t

C
H

P 
on

m timeslots encoded with k = 3*m bits

tend
101 010 111 111000101 111 000001 100 010 110 001 101

Fig. 7. Interpretation of the encoding of a CHP

On Off
{111}

{000}
{0,1}3 \ {111}{0,1}3 \ {000}

Fig. 8. Automaton of the encoding scheme of a CHP

D. Encoding of a controllable CHP

While most CHPs are managed with respect to thermal
demand only (referred to as non-controllable), which is
meaning that their electricity generation is not coordinated with
the load in the household, the controllable CHP is able to split
up its operating times into sequences, so it can be coordinated
with the operating times of other devices. It is therefore encoded
differently as depicted in Fig. 7. The finite optimization horizon,
which is typically several hours, is segmented into np time
periods of a defined duration, while every period is encoded
with a sequence of 3 bits. This leads to a bit string bc of a
length lc:

lc = 3 · np
bc = [0, 1]lc

Every triad of bits in the bit string is then interpreted as the
input of an automaton (see Fig. 8). If the bit string is equal
to ’111’ the CHP is switched on, whereas it is switched off
if the string is equal to ’000’. Other bit strings let the CHP
remain in its current state, no matter whether it is on or off.

This encoding automatically favors longer continuous operat-
ing times, which are typically less wear for CHPs. This effect
may be strengthened by increasing the number of bits per time
slot and therefore the weighting of the transition remaining in
the current state. Regardless of the number of bits per time
slot, whether it is, e.g., three or five, the CHP can still be
optimized in time slots of, e.g., five minutes, and a horizon of
three hours, without causing more than a few hundred bits.

V. EXPERIMENTAL SETUPS AND RESULTS

The capabilities of the encodings have been tested in
extensive simulations, with some of the results presented in the
following. The simulations used a time-variable electricity price
and a fixed load-limitation signal, which causes a doubling of
the electricity price during the phases it is violated (see Tab.
II). The following results have been obtained as average results
of the month January with different setups of the devices in
Tab. III and the setup of jMetal-gGA as shown in Tab. I. The
overall optimization objective was the reduction of average
electricity costs that originate from electricity consumption and
natural gas usage for electricity generation in the CHP.
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TABLE I
SETUP OF EA IN JMETAL

Parameter Value

Population Size 20
Number of Generations 50

Crossover Operator SinglePointCrossover
Crossover Probability 0.7

Mutation Operator BitFlipMutation
Mutation Probability 0.1

TABLE II
ELECTRICITY AND LOAD-LIMITATION SIGNAL

Maximum Price 39.24 Cent/kWh
Average Price 24.47 Cent/kWh

Minimum Price 3.56 Cent/kWh
Standard Deviation 5.91 Cent/kWh

Accuracy 1 hour

Load limitation 3000 Watt

TABLE III
DEVICES USED IN SIMULATIONS

Name Device Type

D1N Hob Non-delayable
D2N Dishwasher Non-delayable
D2D Dishwasher Delayable
D3N Oven Non-delayable
D4N Dryer Non-delayable
D4D Dryer Delayable
D4I Dryer Interruptible
D5N Washing machine Non-delayable
D5D Washing machine Delayable
D5H Washing machine Hybrid, non-delayable

CHP0 CHP Non-controllable
CHP1 CHP Controllable

TABLE IV
CONFIGURATIONS OF HOUSEHOLDS IN SIMULATIONS

Configuration Devices

H0 D1N, D2N, D3N, D4N, D5N, CHP0
H1 D1N, D2N, D3N, D4N, D5N, CHP1
H2 D1N, D2D, D3N, D4D, D5D, CHP1
H3 D1N, D2D, D3N, D4I, D5D, CHP1
H4 D1N, D2D, D3N, D4D, D5H

TABLE V
RESULTS OF SIMULATION A WITH DIFFERENT HOUSEHOLD

CONFIGURATIONS

Configuration Average
Electricity Costs

Compared
to H1

Average Self-
consumption

Rate

H1 28.63 ct/kWh – 17.1 %
H2 26.78 ct/kWh -6.5 % 20.4 %
H3 26.49 ct/kWh -7.5 % 21.1 %
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A. Non-delayable, delayable and interruptible devices

There are three different setups of households, H1 – H3,
which have been used to simulate and compare the encodings
of delayable and interruptible devices and show their potential
in optimizing a household environment (see Tab. IV). The
optimization potentials rise with the capabilities of the devices
to be coordinated with the electricity generation of the CHP,
resulting in lower average electricity costs as shown in Tab. V.

As described in Section IV-B, the encoding of the interrupt-
ible devices should allow for both exploitative and explorative
search behavior. With a fixed value of the third pause, two
exemplary optimization processes with the same parameter
settings in the EA show both behaviors for the best individuals.
Their evolution paths are depicted in Fig. 9.

B. Hybrid device with alternative load profiles

For testing purposes of encodings for devices with alternative
load profiles, a hybrid washing machine with natural gas based
heating capability was integrated into the OSH. The validity
of the encoding scheme suggested in the paper at hand is
qualitatively shown in Fig. 10. There, the optimization process
takes advantage of a relatively low natural gas price and is
thus minimizing the costs for the respective period by limiting
the electricity consumption of the washing machine. In periods
with lower electricity prices, for example in times of generation
surplus in the grid, the electrical heating is preferred.

2365



-6000

-4000

-2000

0

2000

1 361 721 1081 1441 1801 2161 2521 2881 3241 3601 3961 4321 4681 5041

Po
w

er
 [W

] 

Time [s] 

Electrical Load Electricity Generation Resulting Load Shape

(a) H0, unoptimized

-6000

-4000

-2000

0

2000

1 361 721 1081 1441 1801 2161 2521 2881 3241 3601 3961 4321 4681 5041

Po
w

er
 [W

] 

Time [s] 

Electrical Load Electricity Generation Resulting Load Shape

(b) H2, optimized with default parameters

-6000

-4000

-2000

0

2000

1 361 721 1081 1441 1801 2161 2521 2881 3241 3601 3961 4321 4681 5041

Po
w

er
 [W

] 

Time [s] 

Electrical Load Electricity Generation Resulting Load Shape

(c) H2, optimized with calibrated parameters

Fig. 11. Simulation results of configuration H0 without optimization and of
configuration H2 with different parameter settings

TABLE VI
RESULTS OF SIMULATION C WITH DIFFERENT HOUSEHOLD

CONFIGURATIONS

Configuration Average
Electricity Costs

Compared
to H0

Average Self-
consumption

Rate

H0 29.99 ct/kWh – 14.6 %
H1 28.63 ct/kWh -4.5 % 17.1 %

C. Non-controllable and controllable CHP

The coordination potentials of a controllable CHP, integrated
into the OSH through the proposed encoding, are shown by the
qualitative depictions in Fig. 11 of one exemplary day in the
results of configuration H2. In Fig. 11(a), the non-controllable
CHP just satisfies the hot water demand, producing electricity
only as a by-product. It happens only by accident that some
of the devices’ operating times are concurrent. The integration
of a controllable CHP into the optimization process leads to
coordinated electricity consumption and generation as shown
in Fig. 11(b). An even better coordination can be achieved
by calibrating the parameters of the EA. This can be seen in
Fig. 11(c), where the same number of evaluations in the EA
leads to superior results.

Quantitative results of the integration of a controllable CHP
as the only delayable component in a smart building are shown
in Tab. VI, also referring to the increase in the self-consumption
rate of the building. This self-consumption is beneficial to the
local grid, because less feed-in to the grid results in less voltage
and congestion problems.

VI. CONCLUSION AND OUTLOOK

This paper presented encodings for delayable respectively
interruptible devices, such as household appliances, and control-
lable CHPs with attached thermal storage. These encodings are
used in the EA of the OSH, an EMS for smart buildings which
optimizes the energy consumption with respect to variable
tariffs, load limit signals, and the user’s behavior.

The encodings have been validated in simulations with
different scenarios. It has been shown that energy management
in households and small business environments that uses the
presented encodings may contribute successfully to the future
smart grid by providing optimized, flexible electricity consump-
tion and generation, as well as increased self-consumption of
the locally generated electricity.

Further encodings for devices considered in this paper
and other devices, such as PV systems with battery storage,
electrical cars, adsorption chillers, and water heaters, will be
published soon. Some have already been integrated into the
OSH and are in evaluation using simulations and real-world
environments: the Energy Smart Home Lab at the Karlsruhe
Institute of Technology (KIT) and the FZI House of Living
Labs at the FZI Research Center for Information Technology .
This will enable further verifications of the simulation results
presented in this paper by real-world data, which is obtained
in trial phases and practical energy management in buildings.
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