
A Clustering-Based Approach for Exploring
Sequences of Compiler Optimizations

Luiz G. A. Martins∗†‡, Ricardo Nobre‡, Alexandre C. B. Delbem†, Eduardo Marques† and João M. P. Cardoso‡
∗Faculty of Computing, Federal University of Uberlândia, Uberlândia, Brazil

Email: gustavo@facom.ufu.br
†Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, Brazil

Email: acbd@icmc.usp.br, emarques@icmc.usp.br
‡Faculty of Engineering, University of Porto / INESC-TEC, Porto, Portugal

Email: ricardo.nobre@fe.up.pt, jmpc@acm.org

Abstract—In this paper we present a clustering-based selection
approach for reducing the number of compilation passes used
in search space during the exploration of optimizations aiming
at increasing the performance of a given function and/or code
fragment. The basic idea is to identify similarities among func-
tions and to use the passes previously explored each time a new
function is being compiled. This subset of compiler optimizations
is then used by a Design Space Exploration (DSE) process. The
identification of similarities is obtained by a data mining method
which is applied to a symbolic code representation that translates
the main structures of the source code to a sequence of symbols
based on transformation rules. Experiments were performed
for evaluating the effectiveness of the proposed approach. The
selection of compiler optimization sequences considering a set
of 49 compilation passes and targeting a Xilinx MicroBlaze
processor was performed aiming at latency improvements for
41 functions from Texas Instruments benchmarks. The results
reveal that the passes selection based on our clustering method
achieves a significant gain on execution time over the full search
space still achieving important performance speedups.

I. INTRODUCTION

In the compilation field, it is a common practice to apply
the same set of optimizations in a fixed order on each function
and/or module of a program when targeting a given architec-
ture/platform. The selection of the sequence of optimizations
can have a significant impact on performance. Moreover, the
effect of the optimizations is influenced by the platform used
and the application [1]. Experimenting with all possible se-
quences of optimizations is not a practical approach. Therefore,
developers typically have used their expertise to engage in
a labor-intensive source code modification process and on
testing multiple alternatives, aiming at achieving satisfactory
compilation sequences for a specific target application. So, it
is fundamental to research Design Space Exploration (DSE)
schemes able to find the optimization sequence that results in
suitable performance for a given function (or code fragment),
considering a target platform (e.g., a microprocessor) and the
set of optimizations supported by the compiler. However, time-
to-market requirements for embedded systems usually impose
restrictions with respect to the DSE execution time.

In this paper, we propose a method based on software
code clustering for choosing a reduced set of compilation
passes potentially able to reduce the latency (number of cycles)
of a function or segment of code. The reduced set is used
as search space in the a DSE process in order to speedup

the exploration process. Our clustering technique is able to
reveal similar patterns among software codes, giving important
insights for determining potential groups of compiler passes.
The identification of these relationships is performed using
a symbolic encoding of the program, named DNA [2], and
using the DAta MIning of COde REpositories (DAMICORE)
methodology proposed in [3]. The usage of the DNA encoding
allows identifying the main code structures, such as loops,
operations and other programming constructs, that may be
related to specific optimizations. First, our approach generates
a distance matrix calculating the Normalized Compression
Distance (NCD) [4] for each pair of DNA code. In a next step,
a phylogenetic reconstruction algorithm, such as Neighbor
Joining (NJ) [5], constructs a tree topology from the distance
matrix. Then, an ambiguity-based clustering algorithm detects
highly correlated groups of functions, extracting potential
clusters hidden in the tree topology. Our approach is based on a
set of reference functions, for which the near-optimal sequence
of compiler optimizations have been previously determined.
Each new function is joined with those reference functions
and clustering is applied. The compiler passes from sequences
associated with the reference functions in the cluster where the
new function belongs to compose the subset of passes (reduced
space), which will be used as input by a DSE strategy.

We conducted experiments in the context of the exploration
of sequences of compiler optimizations for a CoSy [6] based
compiler targeting a Xilinx Microblaze softcore processor. The
experiments have considered 11 functions for the reference
set and 41 for the evaluation. The experimental results show
that when compared to the DSE considering the full set of
compiler engines, our approach reduced the execution time
of the DSE in 14× (458 against 6,502 seconds on average)
with an increase of around 8% in the latencies achieved.
The DSE achieved geometric mean speedups of 1.36 (with
our clustering-based approach) and 1.44 (with the full-set of
compiler engines) over a baseline instance of the compiler.

The rest of this paper is organized as follows. Section II
reviews related work on the topic of determining sequences
of compiler optimizations. Section III depicts our clustering-
based compiler pass selection approach and introduces the
fundamentals of the techniques used for representation and
data mining. Section IV presents experiments performed with
our approach. Finally, Section V presents some conclusions
and briefly describes ongoing and future work.

2436

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

II. RELATED WORK

Compilers for embedded computing systems are more
dependent on code transformations and optimizations as the
used computer architectures have typically more constraints
related to memory size and organization, processor speed,
and may have high-levels of customization such as the ones
allowed by the use of FPGAs [7]. For these systems, a vast
Design Space Exploration (DSE) may exist and the research
of techniques to efficiently and effectively search this space is
a hot topic. Non-trivial compiler sequences are usually needed
to achieve the required results and even state-of-the-art FPGA
compilers (namely the C to HDL compilers) [8] need the user
to manually select most compiler sequences to achieve efficient
results. The identification of compiler sequences for typical
general purpose processors has been addressed in [1], but have
been focused on a limited number of simple optimizations.

The common identification of compiler sequences relies on
developers expertise or in a process called iterative compilation
[9] [10]. Machine-learning techniques, such as Genetic Algo-
rithms (GAs) [11], have been commonly employed to search in
compile time for the best optimization sequences for specific
applications. Randomized search algorithms have been also
used to identify suitable compilation sequences [12]. A system
called COLE was developed in [9]. It uses a multiobjective
evolutionary algorithm based on SPEA2 to automatically find
Pareto optimal optimization settings for GCC. The authors
in [13] compared the proficiency of several machine-learning
algorithms to find the best sequence of optimization passes,
observing that search techniques such as GAs achieve close
to optimal performance. This work was extended in [14]
where they compare the ability of GA-based program and
function-level searches to find the best optimization sequence
for their VPO compiler. The reuse methodology proposed in
[15] uses generic programming to incorporate user-defined
optimizations into the compiler. The method proposed in [16]
uses a form based on the characteristics of the code to identify
a number of loop transformations, such as loop unrolling, loop
skewing, and loop distribution. Models based on a number
of code features have also revealed interesting approaches
and acceptable accuracy to predict the impact of hardware
compilation for a number of benchmarks [17]. Recent research
has proposed novel feature-vector based heuristic techniques
to quickly customize sequences to individual functions during
online JIT (Just In Time) compilation [18] [19] [20].

All previous approaches are focused on the DSE. Both
static and dynamic approaches reveal that the use of models
and cost functions based on certain code features may allow
good metric predictors and may aid to the search of the best
compiler sequences. In other hand, our approach focuses on the
selection of potential compiler passes in order to restrict/reduce
the search space for DSE. Therefore, our work is orthogonal
to theses approaches as the prune of the search space can be
seen as a separate task of the exploration process. Generally,
it can be used as an important initial step of DSE strategies.

Several techniques also have been used to reduce the space
of potential candidate solutions. A statistical analysis of the
effect of compiler options is used in [21] to prune the search
space and find a single optimization sequence for a set of
programs that performs better than the standard settings used
in GCC. In [22], the authors show how machine learning

techniques can be used to limit the search space, increasing
the speed of iterative optimizations. This methodology is able
to indicate, for a given program, the areas of the solution space
where the search should be focused. The main advantage of
this methodology is that it is independent of the solution-space,
the search algorithm and the compiler used. In [23] is presented
PEAK, an automated performance tuning system, that employs
three heuristic algorithms to select good compiler optimization
settings. It performs a previous space prune through the with-
draw of transformations with negative performance effects to
speedup the search. In [10], a GCC-based framework (Milepost
GCC) is used to automatically extract program features and
learn the best optimizations across programs and architectures.
Their framework uses machine-learning techniques to correlate
the new program with the closest one seen earlier to apply a
customized and potentially more effective optimization com-
bination. This approach is close to our proposal. However, our
method does not need any training (i.e., it is an unsupervised
approach). Moreover, it is independent of features extracted
from the source code, although they can be used as input data
during clustering phase to improve the algorithm accuracy. The
idea is that the code patterns extracted by clustering can aid in
the appropriate selection of passes, which can be used in DSE
strategies to conduct/suggest efficient compiler sequences.

In [24] we explore the reduction of the search space using
our clustering-based approach and we show DSE schemes
which achieve similar results than a GA approach within much
less execution time. In this paper we focus on the clustering-
based approach, on its properties and details, and we evaluate
if the improvements achieved by our approach are consequence
of the clustering, the search space reduction or both.

III. CLUSTERING-BASED COMPILER PASS SELECTION

Source code has characteristics that make difficult the
direct use of typical clustering methods, mainly related to their
dependence of the code features for mining [3]. To solve this
problem, we initially translate the source code to a symbolic
representation, referred to as DNA [2], and employ a variation
of the DAMICORE approach, a data mining method proposed
in [3]. Our method is based on clustering techniques and
allows finding patterns among codes with independence of
the code size or programming language, allowing the use of
intermediate representations or other information as input.

Our method starts with a set of reference functions and
their corresponding sequences of compile optimizations. Each
new function to be compiled, is added to the set of reference
functions and the clustering is applied. Then, the distinct passes
used in optimization sequences by the reference functions
in the cluster with the new function is considered in the
design space employed in DSE. The exploration can thus
be performed using any search method implemented in the
compiler environment. Fig. 1 depicts the selection process of
optimization passes based on clustering and using the DNA as
code representation for the functions.

The algorithm of the selection process is presented in
Fig. 2. Its inputs are a repository with the code representation
(RepRef) and the sequence of compiler passes (SeqRef) for
each reference function; the source code of the new function
(Newcode); and the threshold of ambiguity (TAmb). The algo-
rithm output is a reduced compiler passes space (Space).

2437

•••	

Reference	
 Benchmarks	

New	
 Func2on	

(C	
 Code)	

Func2on	
 2	

DNA	
 Sequence	

Engine	
 1	

Engine	
 2	

DNA	

New	

F2	

F7	

•••	

encoding	

engines(F2)	

engines(F7)	

G
roup	

Phylogene2c	

Tree	

Set = engines(f)
f ∈ {F2,F7}

clustering	

Cluster	

Func2on	
 1	

DNA	

Sequence	

Engine	
 1	

Engine	
 2	

Engine	
 3	

Engine	
 4	

Func2on	
 7	

DNA	

Sequence	

Engine	
 1	

Engine	
 2	

Engine	
 3	

Design	
 Space	
 Explora6on	
 (DSE)	

Search	
 Methods	

(GA,	
 Inser9on,	
 etc.)	

Set	
 of
	
 Engin

es	

Fig. 1. Selection of compiler engines based on clustering

/* DNA Encoding */
1: tokens← ast(Newcode)
2: for all x ∈ tokens do
3: RepNew.add(translate(x))
4: end for

/* NCD Computation */
5: Rep← RepRef ∪ {RepNew}
6: sz ← size(Rep)
7: Dist← zeros(sz, sz)
8: for x = 1 to sz − 1 do
9: for y = x+ 1 to sz do

10: dxy ← ncd(Rep(x), Rep(y))
11: dyx ← ncd(Rep(y), Rep(x))
12: Dist(x, y)← Dist(y, x)← (dxy + dyx)÷ 2
13: end for
14: end for

/* Tree Construction */
15: Tree← starTree(Dist)
16: while size(Dist) > 2 do
17: {A,B} ← getBestPairBranches(Dist)
18: R← joinBranches(Tree,A,B)
19: computeNewBranches(Tree,R,A,B)
20: upgrade(Dist)
21: end while

/* Ambiguity-Based Clustering */
22: Cluster ← {}
23: for all x ∈ RepRef do
24: qt← getNodesPath(Tree,RepNew, x)
25: if size(qt) < TAmb then
26: Cluster.add(x, qt)
27: end if
28: end for
29: Cluster.sort(qt))
30: Space← {engines(Cluster.node(1))}
31: for x = 2 to size(Cluster) do
32: Seq ← engines(Cluster.node(x))
33: for all y ∈ Seq do
34: if y /∈ Space then
35: Space.add(y)
36: end if
37: end for
38: end for
39: return Space

Fig. 2. Clustering-based compiler pass selection algorithm.

The selection process is based on four main steps: DNA
encoding, Normalized Compression Distance (NCD) compu-
tation, phylogenetic tree construction through the Neighbor
Joining (NJ) algorithm, and ambiguity-based clustering. The
following subsections describe each of those steps.

A. DNA encoding

Patterns expose similarities among program codes and
they may aid to determine potential sequences of compilation
passes. However, the data mining over source code to identify
such patterns can be a very complex task, since it needs to
deal with many files, numerous lines of code and varying code
structures [2]. Research has been developed in pattern-mining
regarding different contexts [25] [26]. Nevertheless, many of
those efforts rely on high similarity levels that hamper the
identification of code patterns with subtle differences, but that
may share the same optimization passes.

Here, we employ a DNA encoding due to its capability
to highlight main program structures according to the trans-
formation rules specified, allowing to identify approximate
patterns present in the source code. The DNA is a symbolic
representation proposed in [2], where program elements (e.g.,
operators and loops) are encoded in a string of symbols.
The translation is based on transformation rules and produces
lossy code representations. According to the used rules, this
representation may reflect with higher or lower degree the
sequence of tokens that identifies each program fragment.

The encoding steps are presented in Fig. 2, between lines
1 and 4. It involves parsing of the source code and generating
the AST (Abstract Syntax Tree). Each token of the AST is then
translated into a DNA representation by the transformation
rules. Fig. 3 illustrates five hypothetical examples of loop
structures, an example of the transformation rules employed
and the corresponding DNA representations. As described in
[3], this transformation rules emphasize the similarities in the
loop body operations.

Transforma)on	
 Rules:	

for	
 è	
 “H”	

iden,fier	
 è	
 “I”	

+=	
 è	
 “P”	

=	
 è	
 “E”	

0	
 è	
 “Z”	

++	
 è	
 “Q”	

+,*	
 è	
 “A”	

CMP	
 è	
 “C”	

Read([
])	
 è	
 “R”	

Write([
])	
 è	
 “W”	

C	
 Code	
 DNA	
 Representa)on	

1	

int	
 i,	
 o	
 =	
 A;	

for	
 (i=0;	
 i<G;	
 i++)	
 {	

	
 	
 	
 	
 o+=	
 o;	
 }	

IIEHIEZICIQIPI	

2	

int	
 j,	
 p	
 =	
 B;	

for	
 (j=0;	
 j<H;	
 j++)	
 {	

	
 	
 	
 	
 p*=	
 p;	
 }	

IIEHIEZICIQIAEI	

3	

int	
 k,	
 l,	
 q	
 =	
 C;	

for	
 (k=0;	
 k<M;	
 k++)	
 {	
 	

	
 	
 	
 	
 for	
 (l=0;	
 l<N;	
 l++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 q*=	
 q;	
 }	
 }	

IIIEHIEZICIQHIEZICIQIAEI	

4	

int	
 m,	
 n,	
 s	
 =	
 E;	

for	
 (m=0;	
 m<K;	
 m++)	
 {	
 	

	
 	
 	
 	
 for	
 (n=0;	
 n<L;	
 n++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 s+=	
 s;	
 }	
 }	

IIIEHIEZICIQHIEZICIQIPI	

5	

int	
 u,	
 v,	
 x,	
 y	
 =	
 O;	

for	
 (u=0;	
 u<O;	
 u++)	
 {	
 	

	
 	
 	
 	
 for	
 (v=0;	
 v<P;	
 v++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 (x=0;	
 x<Q;	
 x++)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 y*=	
 y;	
 }	
 }	
 }	

IIIIEHIEZICIQHIEZICIQHIEZICIQIAEI	

Transla)on	

Fig. 3. Examples of a DNA encoding (source: [3]).

2438

B. Normalized Compression Distance

The Normalized Compression Distance (NCD) is a
compression-based metric proposed in [4], whose properties
are based on Kolmogorov complexity theory [27]. Differently
from the Kolmogorov method, it executes in a reasonable
computing time. The basic idea is that two objects are con-
sidered close if one can be significantly compressed using the
information in the other. Therefore, the distance NCD(x; y)
for each pair of functions (x and y) is the improvement due to
compressing y using x as reference and compressing y from
scratch, expressed as the ratio between the bit-wise length of
the two compressed versions. It is calculated as follows [4]:

NCD(x; y) =
C(xy)−min(C(x);C(y))

max(C(x);C(y))
(1)

where C(?) is the length of the compressed version of the file
?, xy is the file resulting from the concatenation of x and y.

The NCD metric does not require any knowledge about the
features of the data analyzed for finding relationships. Such
independence enables the NCD-based algorithm to deal with
several types of program data at code level, including (but
not limited to) the source codes and their representations (as
DNA). It also enables one to extract information from codes
at different levels of abstraction [2].

The algorithm computes the distance matrix N ×N from
any code representation, where N is the number of handled
functions. As presented in Fig. 2, the elements of the matrix
are set to zero (line 7) and, for each pair of functions x and y,
the NCD metric is calculated through the arithmetic average
between NCD(x; y) and NCD(y;x) (lines 8 to 14). This
ensures the symmetry of the resulting matrix.

Table I shows the distance matrix achieved created using
the DNA codes of Fig. 3. It shows that codes 2 and 3 are the
most similar according to the NCD metrics, while codes 1 and
5 are the most different.

TABLE I. NCD MATRIX FROM DNA REPRESENTATIONS

DNA 1 2 3 4 5
1 0 0.29 0.36 0.21 0.40
2 0.29 0 0.20 0.34 0.31
3 0.36 0.20 0 0.28 0.25
4 0.21 0.34 0.28 0 0.35
5 0.40 0.31 0.25 0.35 0

C. Neighbor Joining Algorithm

The Neighbor Joining (NJ) [5] is a simple and compu-
tationally efficient method for constructing phylogenetic trees.
This method is based on a minimum evolution principle, which
aims to minimize the global tree length (sum of the length
of all tree branches). Although the iterative minimization of
the tree length does not ensure minimal length is achieved,
the NJ method is competitive in relation to the most recent
methods for this propose [3]. The basic idea is to provide
a tree topology that enables recursively determining clusters
composed by other clusters. Moreover, the algorithm also
indicates the branch lengths of given trees. As NJ does not
depend on any type of a priori knowledge about the problem
domain, it is an interesting algorithm for identification of
hierarchical similarities among software codes [3].

As presented in the algorithm of Fig. 2 and illustrated in
Fig. 4, the tree topology is defined by successively joining pairs
of neighbours. The algorithm input is a distance matrix and its
output is an unrooted tree structure that describes relationships
among objects. This process begins with the adoption of a star-
like tree (line 15), where all objects (leaf nodes) are connected
through a unique internal node. At each iteration, two leaf
nodes are selected, based on their potential to reduce the
overall tree length, and substituted by a new internal node
corresponding to their common ancestor (lines 17 to 19). Thus,
in each junction the number of leaf nodes is decreased, and
the distance matrix is recalculated considering this new node
(line 20). These junctions are performed successively while
the star-like tree consists of more than two nodes.

2	

3	

5	

4	

1	

Final	
 Tree	

2	
 3	

5	

4	
 1	

Ini0al	
 Star-­‐Like	
 Tree	
 5	

3	

2	

4	
 1	

Fig. 4. Phylogenetic tree construction using Neighbor Joining. The numbers
in the leaves identify the code examples in Fig. 3.

D. Ambiguity-based Clustering

Given a phylogenetic tree, it is important to verify the
existence of sub-trees with a high degree of independence
in their phylogeny. Thus, a hierarchical clustering algorithm
is employed to extract potential clusters hidden in the tree
topology.

Unlike the original approach presented in [3], where the
Fast Newman (FN) [28] was used, we adopted a clustering
method inspired on the measures of ambiguity of tree struc-
tures. FN is an algorithm from complex networks which is
focused on discovering clusters in large-scale networks. In the
other hand, an ambiguity-based approach performs better with
small networks. Since we are working with a small set of
reference functions (e.g., 11 in the experiments presented in
this paper) plus the new function in analysis, the ambiguity-
based approach is more appropriate.

Tree ambiguity can be defined from the ambiguity between
two leaf nodes. Leaves i and j of a tree T are ambiguous,
if there are two or more internal nodes (ancestors) between
them in T , i.e., internal nodes in the unique path from i to j.
In other words, both nodes are not tightly similar since they
require more than one intermediate node to counterbalance
their differences in relation to other object (that composes a
third momentum affecting the equilibrium between i and j).
The ambiguity of T (or tree ambiguity) is the result of the
accumulated ambiguities involving all the pairs of leaves of T .
This definition can result in imprecise evaluation of the relia-
bility of a tree. Any tree with three nodes has ambiguity equal
to one. Moreover, any tree with more than one leaf and with
a odd number of leaves has at least ambiguity one. For larger
trees (with at least some hundreds of leaves), this additional
ambiguity may be irrelevant when comparing the reliability of
clustering trees. However, it must be avoided when evaluating
small trees, like those used in our environment.

2439

We bypass this problem using the concept of strong am-
biguity. Basically, two leaf nodes are strongly ambiguous if
there are three or more internal nodes (ancestors) between
them. Our clustering approach employs the strong ambiguity
to separate the functions into groups. Therefore, the target
function is joined to all reference functions separated by a
couple of intermediate nodes. The number of internal nodes
allowed (threshold of ambiguity) can also be modified and,
as consequence, the strength of a relationship to establish a
cluster can be defined according to the target domain. Fig. 5
shows the clustering over the phylogenetic tree built from the
five DNA examples of Fig. 3 and considering the example 5
as the new code to be clustered.

2	

3	

5	

4	

1	

Cluster	

New	
 Code	

1	

2	

3	

Fig. 5. Strong Ambiguity-based Clustering.

In the algorithm of Fig. 2, the ambiguity-based clustering
step begins with an empty cluster (line 22) and for each leaf
node (reference function), the path from it to the new function,
i.e., the number of internal nodes between them, is computed
(line 24). When the path length is less than the threshold of
ambiguity (TAmb), the node is included in the cluster (lines
25 to 27). Path length (line 29) is used to sort the clustered
functions and the compiler passes are included in the search
space according to the order of the functions and the passes
in their corresponding sequences (lines 30 to 38).

IV. EXPERIMENTAL RESULTS

Our experiments were performed on top of an integrated
compilation environment developed in the context of the
REFLECT FP7 project [29]. Moreover, the DSE schemes were
programmed in LARA [29], a domain-specific aspect-oriented
language, able to control and guide LARA-aware compilation
and synthesis toolchains. LARA strategies define specific de-
sign patterns mainly consisting of code transformations and
compiler optimizations that better suit the mapping of an
application to the target architecture. In this paper, we explore
a number of compiler passes provided by a CoSy (COmpiler
SYstem) distribution [6].

The DSE strategies were performed without and with
compiler passes pre-selection (i.e. clusted approach). The DSE
without compiler-passes pre-selection (named Full DSE) was
performed using a total of 49 CoSy passes in search space.
Some included passes (but not limited to): constant propaga-
tion, loop invariant code motion and scalar replacement. More
details about the CoSy passes can be found in [6].

The DSE carried out using the new clustering-based se-
lection approach proposed here was called Reduced DSE. It
was performed using a subset of compilation passes (13 on

average). During the clustering we considered 11 reference
functions: adpcm (coder and decoder), autocorrelation, bubble
sort, dotprod, fdct, fibonacci, maximum value, mininum value
(DSP version), pop count and sobel. This reference group is
an adapted set of the benchmarks used in [3].

In this paper, two DSE strategies were developed using
LARA. The objective was to investigate sequences of opti-
mizations targeting a Xilinx MicroBlaze processor for 41 func-
tions from image [30] and DSP [31] benchmark repositories
of Texas Instruments (TI). These experiments aim to validate
the efficiency and accuracy of the clustering-based compiler
passes reduction approach. These strategies basically differ
with respect to the technique employed in the search of the best
optimization sequence for a given function. A brief description
of each DSE strategy is given as follows.

A. Genetic Algorithm and Random Sampling

A DSE approach based on a standard Genetic Algorithm
(GA) [11] was used to find the optimal sequence of compiler
passes for the 41 functions analyzed. Basically, a GA consists
in generating an initial population of random solutions with
a subsequent iterative evolution of their individuals, based
on evaluation and ranking. Each evolutionary step, called
generation, involves the selection of the parents (pairs of
individuals); the application of the genetic operators (crossover
and mutation); evaluation of children (new solutions generated
by operators); and the reinsertion operator (to decide the
survivors). This iterative process was performed until achiev-
ing the maximum number of generations or 15 subsequent
generations without improvement.

In this paper, all tests used the same GA configuration,
which was empirically chosen. The GA runs over 100 genera-
tions, each one with a population size of 300 individuals. Each
individual (chromosome) is a point in search space (compila-
tion optimization sequence) represented as an array with vari-
able size corresponding to the sequence length. Each position
of the array (gene) may store an optimization pass, indicating
its order of employment in the compiler. During the generation
of the initial population, we applied an uniform distribution to
the sequence length in order to guarantee similar quantities for
all possible sizes (1 up to 16 points). The individuals generated
are thus evaluated and ranked according to their fitness func-
tion. Here, the latencies (number of clock cycles) associated
to the resultant code generated after applying the optimization
sequence represented by individual coding were used as fitness.
In each generation, a uniform crossover operator was defined
with 60% of probability for applying crossover to a pair of
individuals. A simple tournament selection (Tour = 3) was
used for the selection of the parent compilation optimization
sequences. A mutation rate of 40% was applied over the
population of new solutions generated by crossover. Three
types of mutation operators were developed: including a new
pass to a point randomly chosen of the sequence; removing
the pass placed in any point of the sequence; and changing
the order of two passes of the sequence. All operators have the
same probability of occurrence (i.e. the choice between them is
totally random) and each individual suffers a single mutation.
The elitism reinsertion strategy keeps the best optimization
sequences (parents and children) in population at the end of
each generation.

The initial idea was to perform the GA-based DSE using
both full and reduced spaces. However, in our exploratory
experiments we could observe that the generation of initial
population was sufficient to reach the better compiler se-
quences for the reduced search space. In fact, the number
of compiler passes available on pruned space is relatively
small (13 passes on average), thus 300 samples, even randomly
generated, are able to achieve good results from that compiler
passes set. In addition, it is a filtered subset of compiler passes
usually covering only the passes relevant to the program under
analysis. For our experiments, there was no improvement in
latency during evolution and DSE was finalized at the 15th
generation (stopping criterion). Thus, we chose a random
sampling for the reduced space exploration. This process has
exactly the same steps used in the generation of the initial
population of the GA approach.

Fig. 6 presents the best execution speedups achieved for
each benchmark considering the GA-based DSE over full
space, and random sampling DSE over reduced space. As
expected, the GA-based DSE using full compiler passes space
achieved the best values when compared with random sam-
pling. However the speedups achieved by the random sampling
approach using selected passes are close to the ones achieved
by the GA approach. This observation is corroborated through
geometric means of 1.44 and 1.36 for GA-based and random
sampling-based DSE strategies, respectively, i.e., a difference
of about 0.08. This reduction in terms of speedup may be
acceptable given the gains in execution time, as shown in Fig.
7. Considerable improvements were achieved with respect to
the execution time when comparing DSE in full and reduced
spaces. The GA-based exploration over full spaces took on
average 6,502 seconds, whilst the random sampling approach
over selected sequences spaces took about 458 seconds, i.e.,
a gain of 14× on average. In fact, the clustering provides the
reduction of the search space, filtering the potential compiler
passes to improve the speedup of the target function based on
sequences of the reference functions. DSE with the reduced
set requires fewer compilations/simulations than the full DSE,
decreasing significantly the search time.

In order to evaluate the effectiveness of the clustering, we
perform the reduced DSE from each cluster used during the
experiments (6 clusters). The grouped functions and the num-
ber of distinct passes contained in each cluster are presented in
Table II. In addition, we also use a reference cluster composed
by all compiler passes of the optimization sequences associated
with the reference functions, totalizing 20 passes. The passes
used by the functions in each cluster were adopted as search
space by the DSE strategy during the exploration.

TABLE II. CLUSTERS USED IN THE EXPERIMENTS

Clusters Reference Functions # Passes
1 adcpm (coder and decoder), fdct and sobel 17
2 autocorrelation and pop count 4
3 min. value and bubble sort 7
4 min. value, dotprod, max. value and fibonacci 10
5 fdct and sobel 11
6 dotprod 4

Reference all reference functions 20

Fig. 8 presents the geometric means of the speedups
achieved for all 41 TI’s functions considering each cluster.
As can be observed, our approach obtained the best result

between the clusters (1.357), achieving speedups very close
to the reference values (1.364). The DSE using the reference
cluster as search space is able to find the best accessible
speedups.

1.303	

1.154	

1.211	

1.344	
 1.303	

1.264	

1.364	

1.357	

Custer	
 1	

Cluster	
 2	

Cluster	
 3	

Cluster	
 4	

Cluster	
 5	

Cluster	
 6	

Reference	

Used	

Fig. 8. Geometric mean of the speedups according to the cluster used.

Considering each function individually, our clustering-
based approach did not achieve the reference speedup for only
5 (out of 41) functions. Fig. 9 presents the speedups achieved
by DSE for these functions, considering the reduced search
space provided by each cluster. Except for dsp mat tr, our
approach achieved values very close to the reference ones.
For dsp mat tr, the speedup achieved using the reduced space
provided by our clustering-based approach was 1.236. The
clusters more appropriate for dsp mat tr are clusters 1 and 4.
In both cases the results achieve the reference speedup (1.513).

Fig. 9. Speedups for the functions which our clustering-based approach
achieved code with higher latencies than when using the compilation engines
of the reference set.

B. Insertion Algorithm

Insertion algorithm is an iterative greedy algorithm pre-
sented in [32] that starts with the simulation of the target
function without optimizations for obtaining the reference la-
tency. Then, the algorithm traverses the compiler passes space
sequentially, in a predefined order, constructing a solution by
inserting just a compiler pass at a time and verifying the
resultant latency of the optimized code. If an improvement
occurs, the pass is integrated in the current solution. Otherwise,
it is removed and the next pass in the sequence is tested. In
full DSE, the sequence order is arbitrarily defined. In reduced
DSE, the sequence order is defined in relation to the proximity
among the functions in the phylogenetic tree.

2441

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

Full Space (49 passes)
Reduced Space (13 passes on average)
Geometric Mean (Full Space)
Geometric Mean (Reduced Space)

Fig. 6. Speedups obtained using GA-based DSE with full space and Random Sampling-based DSE with pruned space.

0

5

10

15

20

25

Ex
ec

ut
io

n
Ti

m
e

(x
10

00
 s

ec
on

ds
)

Full Space (49 passes)

Reduced Space (13 passes on average)

Average (Full Space)

Average (Reduced Space)

Fig. 7. Execution time of the GA-based DSE with full space and Random Sampling-based DSE with pruned space.

In both approaches (full and reduced DSE), when testing
the inclusion of a new compiler pass in the current solution,
the algorithm must evaluate the pass in all possible positions
of the current solution, aiming at achieving the best sequence.
Since the compiler passes are processed in the same order
they appear in the search space, the approach results can
be influenced by the arrangement used. For minimizing this
problem, it is necessary to traverse the passes space a number
of times. The number of iterations is an input of the algorithm.
The employment of a small number of iterations may increase
the dependence between sequence order and results, limiting
the coverage of the space. On the other hand, a high number
of iterations increase the execution time of DSE. Here, we
adopted 3 iterations for both approaches (full and reduced),
since higher values did not allow better results. The algorithm
also stops when there is no improvement between iterations.

The goal of the DSE executions based on insertion algo-
rithm is to collate the behavior of the exploration in both sce-
narios (full and reduced space) and confirm if the employment
of the passes selection approach really reduces the execution
time. The use of pruned space resulted in speedups close to
those obtained for the full space in almost programs. Full DSE
geometric mean obtained was 1.36 against 1.28 of the Reduced
DSE, representing a difference of 0.08. The biggest difference
occurred with dsp mat tr function. Analyzing the sequences
resulted, we observed that the Full DSE returned a sequence of
6 compiler passes, while the Reduced DSE employed 2 passes,

being only the strength passes present in both sequences.

The DSE using the reduced space was very fast. As
expected, the prune of search space provided a significant
speedup in the DSE execution time (around 7×) in relation
to full space. This is due to the amount of passes used and
the sequences length tested during the execution. The length
of sequences generated from the Reduced DSE is in average
smaller than the sequence-length than Full DSE (3 passes
against 5 passes).

C. Analysis of Results

When we compare the four approaches (GA with full
space, random sampling with reduced space, and insertion
algorithm with full and reduced space), as expected, the full
space GA-based DSE is the best method in terms of achieved
performance (44% of performance improvement), but is also
the most time consuming (6,502 seconds). On the other hand,
the insertion algorithm with reduced space is the faster one
(127 seconds), sacrificing the achieved performance (increase
28%). The other two methods (insertion algorithm with full
space and random sampling based on reduced space) are equiv-
alent in terms of performance (around 36% of improvement),
but the last approach is the fastest (14× against 9×).

V. CONCLUSIONS

The choice of the sequences of compiler passes can have
a significant impact on performance and is platform and

application dependent. Therefore, the adoption of a Design
Space Exploration (DSE) scheme that aids embedded system
developers is of paramount importance. This paper presented a
clustering-based selection approach for reducing the number of
passes used during the exploration of optimization sequences.

The experiments show that our clustering-based approach
is able to search software similarities at code level. Its use
in DSE allows to efficiently explore the design space points
considering distinct compilation sequences and addressing
performance improvements. When compared with the results
achieved by a DSE strategy using a Genetic Algorithm, our
approach using random sampling and insertion algorithms
allowed significant reductions of execution time of the DSE
(around 14× and 51×) still achieving significant performance
improvements (36% and 28%) over the results without opti-
mizations. Considering that a well-setting Genetic Algorithm
(GA) generally results on close to optimal results [13] [20],
it is expected that a GA-based DSE using full space provides
close to optimal sequences of optimizations and the achieved
speedups can thus be used as goals for the other strategies.
In this context, the performance of a random sampling-based
DSE using reduced space achieved results close to a GA-based
approach and spending much less execution time.

Ongoing work is focused on evaluating the impact of the
number and type of reference functions and of the DNA
transformation rules in the clustering. For future work we
intend to explore sequences of compiler optimizations in the
context of hardware accelerators targeting FPGAs.

ACKNOWLEDGMENTS

This work has been partially supported by FCT
(Portuguese Science Foundation) under research grants
SFRH/BD/82606/2011, and FEDER/ON2 and FCT project
NORTE-07-124-FEDER-000062; and FAPEMIG (PEE-00443-
14). LGAM has a scholarship granted by CAPES (process:
0352/13-6) which made possible a 1-year long visiting period
to FEUP and his contribution to the work presented in this
paper. The FEUP authors also acknowledge the CoSy license
and technical support granted by ACE Associated Compiler
Experts bv, The Netherlands.

REFERENCES

[1] L. Almagor, et al., “Finding effective compilation sequences”, ACM conf.
on Languages, Compilers, and Tools for Embedded Systems (LCTES’04),
vol. 39, pp. 231-239, 2004.

[2] A. Sanches and J. M. P. Cardoso, “On Identifying Patterns in Code
Repositories to Assist the Generation of Hardware Templates”, 20th Int.
conf. on Field Programmable Logic and Applications (FPL’10), pp.267-
270, 2010.

[3] A. Sanches, J. M. P. Cardoso and A. C. B. Delbem, “Identifying Merge-
Beneficial Software Kernels for Hardware Implementation”, Int. conf. on
Reconfigurable Computing and FPGAs (Reconfig’2011), pp.74-79, 2011.

[4] A. R. Cilibrasi and A. P. Vitanyi, “Clustering by compression”, IEEE
Trans. Information Theory., vol. 51, no. 4, pp. 1523-1545, 2005.

[5] J. Felsenstein, Inferring phylogenies. Sinauer Associates, Inc, 2003.
[6] “ACE CoSy Compiler Development System”, Available:

http://www.ace.nl/compiler/cosy.html, (accessed in 18/10/2012).
[7] J. M. P. Cardoso, P. Diniz, and M. Weinhardt, “Compiling for Reconfig-

urable Computing: A Survey”, ACM Computing Surveys, vol. 42, no.4,
pp.1-65, 2010.

[8] B. Buyukkurt, et al., “Impact of high-level transformations within the
ROCCC framework”, ACM Trans. on Architecture Code Optimization
(TACO), vol. 7, no. 4, pp.1-36, 2010.

[9] K. Hoste and L. Eeckhout, “Cole: compiler optimization level explo-
ration”, 6th Int. Symp. on Code Generation and Optimization (CGO’08),
pp.165-174, 2008.

[10] G. Fursin, et al., “Milepost GCC: machine learning enabled self-tuning
compiler”, Int. J. of Parallel Programming, vol. 39, pp.296-327, 2011.

[11] D. E. Goldberg, “Genetic Algorithms in Search, Optimization and
Machine Learning”, 1st ed., Addison-Wesley Longman, MA, USA, 1989.

[12] K. D. Cooper, et al., “Exploring the structure of the space of compi-
lation sequences using randomized search algorithms”, The Journal of
Supercomputing, vol. 36, no. 2, pp.135-151, 2006.

[13] P. A. Kulkarni, D. B. Whalley and G. S. Tyson, “Evaluating heuristic
optimization phase order search algorithms”, IEEE Int. Symp. on Code
Generation and Optimization (CGO’07), pp.157-169, 2007.

[14] P. A. Kulkarni, M. R. Jantz, and D. B. Whalley, “Improving both
the performance benefits and speed of optimization phase sequence
searches”, ACM conf. on Languages, Compilers, and Tools for Embedded
Systems (LCTES’10), pp.95-104, 2010.

[15] J. J. Willcock, A. Lumsdaine and D. J. Quinlan, “Reusable, generic
program analyses and transformations”, 8th Int. conf. on Generative
Programming and Component Engineering (GPCE’09), pp.5-14, 2009.

[16] O.S. Dragomir, “K-loops: Loop Transformations for Reconfigurable Ar-
chitectures”, PhD thesis, TU Delft, Faculty of Elektrotechniek, Wiskunde
en Informatica, Delft, Netherlands, 2011.

[17] R. J. Meeuws, C. Galuzzi and K. L. M. Bertels, “High Level Quan-
titative Hardware Prediction Modeling using Statistical methods”, IEEE
Int. conf. on Embedded Computer Systems, pp.140-149, 2011.

[18] J. Cavazos and M. F. P. O’Boyle, “Method-specific dynamic compilation
using logistic regression”, ACM Int. conf. on Object-Oriented Program-
ming Systems, Languages, and Applications, pp.229-240, 2006.

[19] R. Sanchez, et al., “Using machines to learn method-specific com-
pilation strategies”, Int. Symp. on Code Generation and Optimization
(CGO’11), pp. 257-266, 2011.

[20] Michael R. Jantz and Prasad A. Kulkarni, “Performance potential of
optimization phase selection during dynamic JIT compilation”, 9th ACM
Int. conf. on Virtual Execution Environments(VEE’13), pp.131-142, 2013.

[21] M. Haneda, P. M. W. Knijnenburg and H. A. G. Wijshoff, “Optimizing
general purpose compiler optimization”, 2nd conf. on Computing fron-
tiers (CF’05), pp.180-188, 2005.

[22] F. Agakov, et al., “Using Machine Learning to Focus Iterative Opti-
mization”, Int. Symp. on Code Generation and Optimization, (CGO’06),
pp. 295-305, 2006.

[23] Z. Pan and R. Eigenmann, “PEAK: a fast and effective performance
tuning system via compiler optimization orchestration”, ACM Trans. on
Programming Languages and Systems, vol. 30, no. 3, pp.1-17, 2008.

[24] L. G. A. Martins, et al., “Exploration of Compiler Optimization Se-
quences using Clustering-Based Selection”, ACM conf. on Languages,
Compilers, and Tools for Embedded Systems (LCTES’14), 2014.

[25] T. Wheeler, and J. Kececioglu, “Multiple alignment by aligning align-
ments”, 15th ISCB conf. on Intelligent Systems for Molecular Biology,
Bioinformatics, vol. 23, no. 13, pp. i559-i568, 2007.

[26] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and Evaluation of
Code Clone Detection Techniques and Tools: A Qualitative Approach”,
Science of Computer Programming., vol. 74, no. 7, pp. 470-495, 2009.

[27] M. Li and P. M. B. Vitanyi, An introduction to Kolmogorov complexity
and its applications. 2nd ed. Springer-Verlag, 1997.

[28] M. Newman, Networks: An Introduction. Oxford Univ. Press, Inc, 2010.
[29] J. M. P. Cardoso, et al. (eds.), Compilation and Synthesis for Embedded

Reconfigurable Systems: An Aspect-Oriented Approach. Springer, 2013.
[30] Texas Instruments, “TMS320C64x Image/Video Processing Library”,

2003.
[31] Texas Instruments, “TMS320C64x DSP Library: Programmer’s Refer-

ence”, 2003.
[32] Q. Huang, et al., “The Effect of Compiler Optimizations on High-Level

Synthesis for FPGAs”, IEEE 21st Int. Symp. on Field-Programmable
Custom Computing Machines (FCCM’13), pp. 89-96, 2013.

2443

