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Abstract—Activity recognition from smartphone sensor inputs
is of great importance to enhance user experience. Our study
aims to investigate the applicability of Genetic Programming
(GP) approach on this complex real world problem. Traditional
methods often require substantial human efforts to define good
features. Moreover the optimal features for one type of activity
may not be suitable for another. In comparison, our GP approach
does not require such feature extraction process, hence, more
suitable for complex activities where good features are difficult
to be pre-defined. To facilitate this study we therefore propose a
benchmark of activity data collected from various smartphone
sensors, as currently there is no existing publicly available
database for activity recognition. In this study, a GP-based
approach is applied to nine types of activity recognition tasks
by directly taking raw data instead of features. The effectiveness
of this approach can be seen by the promising results. In addition
our benchmark data provides a platform for other machine
learning algorithms to evaluate their performance on activity
recognition.

I. INTRODUCTION

Activity recognition refers to detecting human behaviours
often from time series stream input. Machine vision and body
sensor networks are two traditional ways for activity recogni-
tion. However, both of these approaches have drawbacks. To
identify one’s behaviours from videos, the subject needs to
be extracted from the backgrounds, distinguished from other
people, and tracked. Each step before the actual recognition is
a difficult problem on its own. Furthermore, dealing with high
dimensional video data in real time may impact on accurate
recognising of human. In comparison, body sensor networks
can be much less sensitive to the surroundings. However sensor
networks are less practical in real world scenarios as it is in-
convenient for human wearing wired sensor-equipped devices
around the body all day, not mentioning the interference from
domestic appliances. Mobile phones with multi-modal sensors
and reasonable computational capability open an opportunity
to a light-weight, affordable but still effective alternative for
Activity Recognition.

Recognising human activities is usually formulated as a
time series classification problem which associates a vector
of extracted features from a fixed time period with a certain
activity label. To construct an useful feature set, carefully
studying the activity is often a necessary step. Firstly the length
of the time series pattern has to be identified. This length is
used in windowing process which takes meaningful segments
out of an input stream. Secondly a set of feature values need
to be extracted to facilitate the separation between interesting
patterns and all the rest of time series. Such processes are
usually time consuming, and often require priori knowledge.

Moreover, the effectiveness of a features set is determined by
the nature of time series patterns and therefore not transferable
from problem to problem. For example, frequency domain
features will be more suitable for periodical activities such
as running and walking. However, they may not be suitable
for static activities such as sitting and standing. Therefore
a classifier requiring no manual feature extraction process
can be more problem independent. We propose a Genetic
Programming based method that takes raw data as input and
conducts feature extraction and activity recognition in one step.

Another issue associated with mobile phone based Activ-
ity Recognition is that no established benchmark dataset is
available. Different groups maintain their own data sets and
report the performance based on these data. Such data sets are
often gathered under different environments, using different
protocols. The collection processes are also usually tailor-made
for specific research purposes. So even if the classification
tasks are the same, fairly assessing different approaches is
still difficult. A unified platform for evaluating various action
recognition methodologies would be desirable. Moreover, as
experimental setups can be expensive and time consuming, a
reusable data set will be beneficial to the research community.
This data set should be collected in naturalistic environment
rather than a constrained lab because people may not behave as
normal when being monitored in a lab setting. Also, situations
frequently occurring in real-world such as turning a corner,
uneven ground and bumping into another person may not be
captured under laboratory environments.

To address these issues, in this paper we present a GP
method and the study on a dataset collected from mobile
phones placed on different positions on a range of subjects.
This dataset is consisted of most common daily activities
data collected under naturalistic environment, including: sit-
ting, standing, walking, running, lying down, going upstairs
and going downstairs. A benchmark study that using GP to
detect each of the 7 activities from raw, multi-channel sensory
data is carried out. In a broader sense, going upstairs and
going downstairs can be considered as walking. Consequently,
combining these two with walking on plain ground as one
class is sensible. GP is applied on two additional tasks: one is
detecting all these three walk gaits and the other is to identify
static status of the subjects. The experimental results show that
GP can achieve consistently good performance for individual
validation, i.e. training and testing on the subject. On activities
of standing, running, being still and walking (3 gaits), the
GP programs are tolerant to the variabilities across arbitrary
subjects to some extent. Other three classical machine learning
algorithms(J48 [23], Naı̈ve Bayes [12] and SVM [13]) were
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used for comparison.

II. RELATED WORK

1) Vision Based Activity Recognition: The KTH data [26]
and the Weizmann dataset [5] are the two earliest well-known
datasets for vision-based activity recognition. Low-resolution
videos are taken under lab environment with a static and clear
background. Moreover, camera motions are totally not involved
and all the activities are performed following the scripts. On
both datasets, over 95% accuracy has been achieved by state-
of-art techniques.

Recently, researchers have turned to more realistic videos.
Laptev et al. [15] proposed Hollywood-1 datasets including
video fragments from different movies. This dataset is further
extended to Hollywood-2 dataset by adding more activities
and videos [19]. These two datasets still pose a challenge
to all existing techniques. Sport videos are another source of
activity dataset [21]. In these datasets, the videos are all of
high quality and taken from some particular viewpoints. The
least constrained data set by now is constructed in 2009 [17]
which consists of a big collection Youtube videos.

Although substantial efforts have been made to improve the
performance, recognising human behaviours based on camera
input remains an unsolved problem. The challenges include
cluttered background, moving cameras, poor illumination,
varying appearance of subjects and frequent occlusions.

2) Body Sensor Based Activity Recognition: Body-wore
sensors are not affected by the surroundings and lighting
conditions. They are more suitable than cameras when multiple
people appear within a close proximity. Past works on wearable
sensor system first relied on one sensor only [2], [20], [24] and
then became more interested in multimodal sensors [1], [22],
[30]. Sensors can also be placed on daily-used objects such as
doors, cabinets and micro-ovens to obtain further contextual
information [9].

In 2004, Bao and Intille [2] collected inertial data from
20 subjects by five bi-axial accelerometers placed tightly on
limbs and hip. The major part of the data is obtained without
any supervision or monitoring in a natural environment and
the rest in a controlled laboratory. All the subjects recorded
the start time and the end time of each activity themselves
in a dairy. As it takes time for the subjects to make notes,
some records can not be well aligned to the activity labels.
To minimise mislabelling, the records within 10s to start/end
points have been discarded. Overall, the accuracy rate reported
by this study is 84%. Intille et al. [11] designed and operated a
laboratory called PlaceLab for subjects to live in and do their
daily activities. To build such a lab is time consuming and
expensive. At the same time, the artificial environment makes
the research less applicable in real world.

Another well-known public dataset is OPPORTUNITY
activity recognition dataset [25]. A total of 72 sensors are inte-
grated in the controlled environment by placing on objects and
humans. This research mainly interested in the recognition of
both locomotion(sit, stand,walk and lie) and gestures. Additive
and rotative noises are added to the test sets to simulate real-
world scenarios.

Overall, in wearable sensor network system, subjects are
required to take multiple devices on different parts of the body,
which hinders normal activities. This obstructive configuration
makes these techniques less practical to long-term and large-
scale real-world applications. In addition, the data are usually
collected in a non-naturalistic environment, which makes the
assessment less realistic.

3) Mobile-based Activity Recognition: One may argue that
the information gathered from a single position can not be
sufficient for accurate activity recognition. However, the ex-
perimental results show that reasonable results can be achieved
even when only one accelerometer is used [3], [7], [14],
[18]. The performance can be further improved by employing
sensors of multiple types. Lester et al. [16] demonstrated by
using extra audio and barometric pressure sensor the accuracy
can be improved by 30 ∼ 50% approximately. Moreover, GPS
is useful to decide travel modes of users [27] by implying their
velocity.

The sensor readings can be very different when a mobile
phone is placed at different body positions. For example,
the time series recorded in pant pocket appears periodical
patterns but the one recorded in the backpack shows patterns of
vibration [18]. One straightforward way to address this issue is
always using a pre-defined placement [14]. Recently, more re-
searches are devoted to investigate how different mobile phone
placements affect on the performance, including constructing
placement-independent features [18], dynamically determining
phone placement in run time [16] and finding a placement that
is optimal for all activities[4] .

Like other time series classification tasks, features play a
very important role in mobile phone based activity recognition.
Firstly a suitable window size should be defined to extract
meaningful time series segments from streams. Then a set of
features are to be constructed based on these segments. The
window size and the features are usually learnt from intuitions,
empirical experience and domain knowledge [3], [14], [16],
[18], [27], [28]. However, whether a feature set is proper is
dependent on specific activity to be recognized [8]. There is no
universally useful feature set for all activity recognition task.
Our GP method avoids the feature extract process and hence
can be problem independent.

III. DATA COLLECTION

A. Hardware

Three Android smart phones are used in this data col-
lection: Samsung Galaxy S4 GT-I9505, Sony Xperia C6903
and HTC One. All these mobile devices have 3-axis inertial
sensors: accelerometer, gyroscope and magnetic sensor. All the
details are shown in Table I. We use a sample rate of 30Hz
which is less frequent than the maximum sample rate of all
sensors.

B. Data Collection Protocols

The data collection is a naturalistic process as all the
subjects are allowed to do activities in public places or at home
rather than a built up laboratory. A researcher stays a distance
within the subjects to observe their activities. This researcher
may give instruments such as “please sit down on the couch
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TABLE I. CONFIGURATION OF PHONES

Phone Sensor Type Maximum Sample Rate (HZ)

Samsung Galaxy S4 GT-I9505
Accelerometer STMicroelectronics K330 Accelerometer 100

Gyroscope STMicroelectronics K330 Gyroscope 100
Magnetic Field Yamaha YAS532 100

Sony Xperia C6903
Accelerometer BOSCH BMA255 200

Gyroscope BOSCH BMG160 200
Magnetic Field BOSCH AK8963 50

HTC One
Accelerometer BOSCH BMA250 100

Gyroscope ST Group R3GD20 83
Magnetic Field AKM AK8963 100

for a rest” or “please go the level 4 by stairs” to enable each
session covers more activities.

The subjects are told that standard behaviours are preferred
but not mandatory. They are allowed to conduct any activities
freely, such as standing still or turning around, sitting upright
or relaxed, walking fast or slowly. All activities can be inter-
rupted as they are taken in real-world scenario. For example,
a subject gives the way to others or opens a door. So even
for the same activity that is conducted by the same subject,
the variations can be substantial. This generates great realistic
difficulties for recognition.

A web server is used for continuously storing time series
data, marking labels and synchronizing data with labels. These
sensory data are stored in mobile devices and sent to the server
through wireless connection. This eliminates the possibility of
data loss caused by unstable internet connection. The other
function of the server is providing an user interface to correctly
record the labels (see details in Section III-B1). Data and
the corresponding labels are then combined for supervised
learning. Figure 1 demonstrates the infrastructure of data
collection, each phone for data collection is connected to the
server individually and so is the portable device for labelling.
They are all synchronised using the server time.

Fig. 1. The infrastructure for Data Collection

1) Labelling: The subjects control the start and the end
of whole recording by a phone application. It starts to record
sensory readings when the “Start” button is pressed. This pro-
cess can be terminated by pressing “End” Button. However, the
subjects do not label those data themselves, because self-report
can be error-prone. It is also inconvenient and aggravating for
the subjects because taking pens around and making notes time
to time can severely disrupt their activities. In addition, the
labels near the start and end points would not be accurate
and need manual adjustment [2], which makes the data less

realistic. Another labelling method is to take videos and check
the labels frame by frame. This method costs much time and
human efforts and therefore is not suitable for large scale
data set collection. In this study, a researcher is responsible
for observing the subjects and marking the ground truth. The
researcher can access the server by a given web URL and
record the on and the off of every activity. Any activities not
falling in any target categories will go to “Others”.

2) Synchronization: The smart phones can be synchronized
to the server time by the application mentioned in Section
III-B1. By pressing “Set time” Button, the phones will first
record the current device time Tm and then send a http request
to acquire current server time Ts. As the duration of internet
connection Dc can be easily obtained, the difference of time
system between the phone and the server will be |ts − tm +
Dc|. The timestamps will then be adjusted according to this
difference and sent back to the server together with sensor
data.

The sensor data is sampled over regular time intervals while
the according labels could be marked at any time points during
the recording. So even after the synchronization, the start time
and the end time of an activity label may not be perfectly
matched to all timestamps in the sensor data recording. Hence,
closest match is used here.

C. Data Set

This data set is acquired from 5 healthy subjects of both
genders, all around 28 years old. For each subject three
sessions are taken, each session is around 10 minutes. In
total, there are about 2.5 hours of recording. For each subject,
two sessions are randomly chosen for training and the rest
one for testing. Three mobile placements are available: A.
Coat Pocket, B. Front Pant Pocket and C. Back Pant Pocket,
recorded by Samsung, Sony and HTC respectively. All the
placements refer to the right side of the body. Table II shows
the gender, the environment of the data collection and the
placements of mobile phones. The subjects are allowed to
only use the preferred placements. The data is collected in
various environments: in domestic houses or some public
places. Subject 4 is recorded under an environment unfamiliar
to her.

TABLE II. THE INFORMATION OF SUBJECTS AND DATA COLLECTION

Subject Gender Environment Phone Placements
1 male domestic house A,B
2 female office buildings A,B
3 male office buildings A, B, C
4 female office buildings A, B, C
5 female office buildings A, B, C
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IV. GP-BASED ACTIVITY RECOGNISER

Genetic Programming based method is the main learning
paradigm for this task. With proper computational model
language, GP is capable to operate on a collection of raw
data points and construct features automatically. The key for
GP to evolving good solutions is an effective set of functions
and terminals. In this study, we present a GP representation
specifically designed for time series classification.

A. Function Set and Terminal Set

The function set contains four basic arithmetic operations
and three functional operations that are introduced for multiple
channel time series classification:

Function Temporal Diff(double input) takes one param-
eter as the input. The output of this function is the difference
between the current data point and its previous reading. Despite
being a simple operator, this function shows both the intensity
and the direction of temporal changes.

Function Window(double input, int temporal index,
int temporal operation) stimulates a sliding window which
segments short time series pieces from the data stream. The
first parameter reads numeric values and reserves most recent
12 readings. The value of 12 is learnt from empirical studies.
The second parameter does a closer search for relevant time
points by selecting only a subset of them. The third parameter
decides the characteristic that are taken out from raw readings.
The last two parameters come from special terminals (Tempo-
ral Index and Temporal Operation respectively) whose values
are tuned throughout the evolutionary process. Terminal Tem-
poral Index ranges from 1 to 212−1. Arbitrary points within
a segment can be selected by the equivalent binary string
of this integer value. Terminal Temporal Operation selects
one of four available operations: AVG(average), STD(standard
deviation), DIF(the sum of difference between consecutive
points) and SKEWNESS(skewness). This function and ‘’Tem-
poral Diff” function are essentially searching for useful fea-
tures along time axis.

Function Multi Channel(int channel index, int chan-
nel operation) works similar as function “Window”, but on
channels rather than time points. The two terminals for this
function are Channel Index and Channel Operation. Termi-
nal Channel Index is an integer between 1 and 2M − 1
(M is the number of channels). It functions similarly to
Temporal Index. Terminal Channel Operation indicates an
operation for its parent “Function Multi Channel”. It has 4
optional values: MED(medium),AVG(average), STD(standard
derivation) and RANGE(the distance between the maximum
and minimum values.

Only one terminal called Terminal Channel[X] is general
to multiple functions. It reads the latest value of the Channel
No. X. More details of our GP representation can be found in
[29].

B. Fitness Function

In this study GP is applied to a range of binary clas-
sifications, distinguishing one activity (marked as positives)
from all others (marked as negatives). So the data can be
highly unbalanced. We use Area Under Curve(AUC [6]) rather

than accuracy for evaluation during training phase, against the
possible negative affect caused by skewed data distribution.
The threshold corresponding to the top left corner of AUC
curve is used in test as boundary between the positive class
and the negative class.

C. GP configuration

The GP runtime parameters are shown in Table III, the
population size is set to 1000 due to the complexity of the
problem. The other parameters follow a standard GP setting
(shown in Table III).

TABLE III. GP CONFIGURATION

Population Size 1000
Generation 50
Minimum Depth 2
Maximum Depth 8
Mutation Rate 0.05
Crossover Rate 0.85
Elitism Rate 0.1

V. RESULTS

The proposed GP method is applied on a range of binary
time series classification tasks as mentioned previously includ-
ing sitting, standing, walking, running, lying, going upstairs
and going downstairs. GP has to find a classifier to distinguish
each activity from all the other classes. Aside from this, two
tasks including the recognition of being still and walking (3
gaits) are conducted additionally. Being still refers to a subject
stays relatively stationary even compared to some of the
“inactive” activities, i.e. sitting,standing and lying. In walking
(3 gaits), we include going upstairs and going downstairs with
normal walking as one class. We expect these recognition can
be handled by GP as the intensity of acceleration for these
activities may form patterns distinguishable enough for GP to
build accurate classifiers.

For each task GP runs for 10 times to compensate the
variations across runs. We report the best of the 10 runs on test
data as the final output. Three traditional algorithms are used
for comparison: J48, Naive Bayes and SVM, all from the Weka
machine learning system [10]. They all use default parameter
settings. These three classifiers are provided four features, that
is, for each channel the average, standard deviation, maximum
value and minimum value of a sliding window (size 12). The
window size is also used by GP to ensure they gain the same
amount of information.

Table IV shows the test accuracy, True Positive rate (TP)
and True Negative rate (TN) when 3 traditional classifiers
and GP are trained and tested at the front pant pocket for
each subject. GP is highlighted if GP achieves better or at
least comparable results with its comparisons. Otherwise, the
best performer is highlighted instead. We can see that GP can
obtain good performance in task of detecting sitting, standing,
running, lying and being still. For these 5 activities, the test
accuracy is above 95%, with reasonable accurate recognitions
of the positives. The detection rate decreases when three walk
gaits are treated separately, only around 85% of instances can
be correctly recognised. The overall performance increased
around 5%-10% when they were considered as one class.
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Compared to GP, the traditional algorithms occasionally work
similarly or slightly better than GP. However, none of those
three algorithms can achieve consistently good results over all
activities across various subjects. For example, the results of
using SVM to detect walking and walking (3 gaits) are very
promising. It outperforms GP for all subject expect for subject
2. While in detecting going upstairs and going downstairs,
SVM fails to recognise most of positive instances. The high
accuracies are only caused by unbalanced data. The low TP
rate reveals that those classifiers did not actually capture any
patterns. Decision tree and Naı̈ve Bayes perform even worse.
Overall, GP is superior than the others. Note that traditional
classifiers are provided with manually extract features while
GP works on raw data.

GP obtained the similar performance (shown in Table V)
as Table IV at back pant pocket. One interesting observa-
tion is that overall the recognition performance on going
upstairs is better than the other two walking gaits. It may
be because going upstairs involves more energetic movements
on thighs and therefore induces distinguishable patterns i.e.
greater rotations and higher accelerations on the phones. Also,
detecting walking in gaits seems easier to GP than any of its
three subclasses. It is sensible as the differences between the
subclasses are more subtle and consequently the patterns are
more difficult to capture.

It is slightly different when phone being placed at coat
pocket. As Table VI shown, recognition of sitting does not
maintain the consistent good performance as at the other two
placements. It is even worse when the subjects lying down, for
Subject 3 and Subject 4 nearly no positives can be identified. A
possible reason is that the coat can be unzipped and unbuttoned
so the pocket can swing around and move unconstrained inside
of pocket. When a subject lying down, the phone may remain
in the status from the last movement. The orientations, angles
and the relatively position to the subject become unpredictable.
For example, a subject can be on top of the phone or the other
way around. In future work we will conduct statical tests verify
these analysis. Furthermore, going upstairs does not perform
well. A possible reason can be that movement from the leg
can hardly be sensed from the coat pocket. In spite of that,
GP still shows a higher success rate.

The test file of Subject 5 does not include any sitting
instances. A hyphen is placed in the tables for clarification.
However, it should be noted that nearly all negatives have been
successfully classified.

Table VII shows how GP programs that are trained based
on Subject 1 can work well on all other subjects. For Subject
1 with phone placed at front pant pocket, the results are dupli-
cated from Table IV. No results for coat pocket are presented
here as Subject 1 did not use that placement in data collection.
We can see that in detecting activity of standing, running,
being still and walking (3 gaits), GP can find programs that are
relatively generic to different people. It is unexpected to see
that among three static activities standing, sitting and lying,
only standing appears in this case. The reason can be that
when people are standing the thighs are vertical while it is
almost horizontal when sitting or lying. Hence standing is more
differentiable than the other two activities. The performance
of traditional methods is even much worse in comparison. In
Table VII, a (') symbol appearing after the accuracy value

indicates that one of three traditional classifiers is comparable
with or better than GP (the classifiers should also be reusable of
which the accuracy, TP and TN above 80%). In other detection
tasks, they could be slightly better than GP but the classifiers
remain unusable. In most of failure cases, no positive instances
can be detected. Such outcome shows that GP method is more
generalizable and suitable in finding features suitable across
different subjects. The other 4 tables demonstrating the cross-
person results share similar content with Table VII so they are
not presented here.

Table VIII presents the cross-placement results for each
subject. We can see from that the evolved classifier only
achieve the some reusability on some tasks, for example
recognising running and staying still. The three traditional
methods achieve better or comparable results on these two
tasks. However, they are less effective than GP on detecting
standing and going upstairs. Note that GP is compared to
the best of three classifiers. Still, a considerable number of
traditional classifiers resulted in very poor true positive rate
(< 5%).

VI. CONCLUSION AND FUTURE WORK

Activity Recognition is a research topic with increasing
importance. In comparison with the tradition machine vision
based and body sensor network approaches, the ubiquitous
smart phones bring a novel way that is non-obstructive and
effective for human activity recognition. However it also pose
a new challenge as the signals are often collected at only
one place on a person and there are significant variation
in phone’s position. Moreover a phone usually have more
freedom in movement inside owner’s pocket, which introduces
more uncertainty.

Based on our study we argue that a GP-based method
is more suitable for this complex recognition problem as it
requires no manual feature exaction and can be applied on real
world stream data set various recognition tasks. In comparison
with three traditional classifiers with manually constructed
features on these tasks, GP is more successful to find accurate
classifiers for each subject over all tasks. The evolved programs
are also more general as they can be applied on subjects that
have not be seen during the training. We conclude that with a
proper representation i.e. a set of functions and terminals, GP
can effectively extract time series features and achieve good
recognition performance.

Moreover, this study provides a publicly available activity
data set which can serve as an evaluation benchmark for
measuring the performance of activity recognition methods.
The data collection employs a natural protocol and allows
great diversity among different sessions of the same subject.
The data set can become a unified testbed for researchers to
evaluate their algorithms and conduct fair comparisons.

In the near future we will expand the data collection
to include more subjects and more activities. In addition
we will extend the GP methodology itself to include more
effective function and terminal sets, especial functions which
can better identify the duration of an activity. Methods to
improve cross-subject and cross-position performance will also
be investigated to improve the usability of our GP method for
complex real world activity recognition.
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TABLE IV. TEST RESULTS: ACCURACIES, TRUE POSITIVE AND TRUE NEGATIVE RATES (%) OF INDIVIDUAL TRAINING AND TESTING FOR EACH
SUBJECT WITH THE PHONE PLACED AT FRONT PANT POCKET

Sitting Standing Walking
J48 NBayes SVM GP J48 NBayes SVM GP J48 NBayes SVM GP

Subject 1
91.94

TP: 22.8
TN: 99.3

87
TP: 51.8
TN: 90.7

90.4
TP: 0

TN: 100

96.5
TP: 74.4
TN: 98.9

94.96
TP: 50.9
TN: 99.4

99.36
TP: 94.4
TN: 99.9

99.17
TP: 93.8
TN: 99.7

99.1
TP: 96.5
TN: 99.4

81.97
TP: 79.7
TN: 83.6

78.43
TP: 87.6

TN: 72

88.62
TP: 83.9
TN: 91.9

87.4
TP: 95.3
TN: 81.8

Subject 2
96.15

TP: 95.8
TN: 98.6

88.62
TP: 0

TN: 100

77.31
TP: 70

TN: 99.5

99.6
TP: 99.7
TN: 99.5

99.32
TP: 96.4
TN: 99.7

87.27
TP: 0
TN: 1

99.67
TP: 99.6
TN: 99.7

99.2
TP: 94.7
TN: 99.9

85.01
TP: 78.2
TN: 88.2

69.85
TP: 6.2

TN: 99.7

76.28
TP: 98.4
TN: 65.9

87.5
TP: 93.7
TN: 84.5

Subject 3
89.55

TP: 72.6
TN: 94.8

80.19
TP: 98.7
TN: 74.5

99.34
TP: 99.3
TN: 99.4

97.8
TP: 99.0
TN: 97.4

99.49
TP: 92.3
TN: 100

99.46
TP: 95.8
TN: 99.7

99.57
TP: 95.4
TN: 99.9

99.3
TP: 94.4
TN: 99.7

89.30
TP: 83.0
TN: 91.3

76.54
TP: 97.3
TN: 69.9

90.19
TP: 88.3
TN: 90.8

85.1
TP: 86.1
TN: 84.8

Subject 4
87.72

TP: 35.4
TN: 98.3

93.9
TP: 65.4
TN: 99.6

93.6
TP: 64

TN: 99.6

96.0
TP: 87.0
TN: 97.8

99.76
TP: 96.9
TN: 99.9

99.66
TP: 93.7
TN: 99.9

99.49
TP: 90.9
TN: 99.9

99.6
TP: 98.8
TN: 99.7

90.14
TP: 90.9
TN: 89.7

78.00
TP: 96.4
TN: 66.7

90.52
TP: 91.3

TN: 90

85.9
TP: 87.6
TN: 84.8

Subject 5 - - - -
99.28

TP: 86.6
TN: 99.7

99.51
TP: 92.7
TN: 99.8

99.26
TP: 81.5
TN: 99.9

99.0
TP: 98.8
TN: 99.0

84.47
TP: 79.9
TN: 87.3

76.27
TP: 94.2
TN: 65.2

87.77
TP: 84

TN: 90.1

83.3
TP: 87.1
TN: 80.9

Running Lying Going Downstairs
J48 NBayes SVM GP J48 NBayes SVM GP J48 NBayes SVM GP

Subject 1
97.96

TP: 98.2
TN: 97.9

78.74
TP: 99.3
TN: 72.7

93.94
TP: 98.8
TN: 92.5

99.4
TP: 98.3
TN: 99.8

97.7
TP: 98.8
TN: 97.6

92.66
TP: 0

TN: 100

88.94
TP: 100

TN: 88.1

96.8
TP: 100.0
TN: 96.6

91.58
TP: 12.6
TN: 94.1

84.89
TP: 52.6
TN: 85.9

91.64
TP: 30.6
TN: 93.6

92.7
TP: 87.4
TN: 92.9

Subject 2
99.24

TP: 97.1
TN: 99.4

99.57
TP: 97.7
TN: 99.7

97.58
TP: 99.1
TN: 97.4

98.0
TP: 98.4
TN: 98.0

88.12
TP: 0

TN: 100

88.12
TP: 0

TN: 100

98.58
TP: 100

TN: 98.4

99.4
TP: 100.0
TN: 99.4

89.98
TP: 0

TN: 99.7

91.45
TP: 22
TN: 99

90.25
TP: 0

TN: 100.0

89.4
TP: 48.2
TN: 93.9

Subject 3
99.02

TP: 95.4
TN: 99.3

90.61
TP: 97.4
TN: 90.2

99.63
TP: 96.5
TN: 99.8

99.2
TP: 96.9
TN: 99.3

80.7
TP: 0

TN: 100

76.61
TP: 98.9
TN: 71.3

99.03
TP: 98.8
TN: 99.1

99.2
TP: 98.2
TN: 99.4

94.17
TP: 52.9
TN: 98.1

64.89
TP: 92.7
TN: 62.3

95.32
TP: 60

TN: 98.6

87.7
TP: 72.7
TN: 89.1

Subject 4
98.68

TP: 93.0
TN: 99.1

92.50
TP: 99.0
TN: 92.1

99.66
TP: 95.4
TN: 100

94.5
TP: 99.1
TN: 94.2

88.86
TP: 2.2

TN: 99.2

89.33
TP: 0

TN: 100

99.44
TP: 97.5
TN: 99.7

94.9
TP: 98.0
TN: 94.5

95.37
TP: 60.6
TN: 98.6

83.88
TP: 80.3
TN: 84.2

94.97
TP: 56.1
TN: 98.6

91.2
TP: 79.7
TN: 92.3

Subject 5
98.16

TP: 90
TN: 99

95.28
TP: 96.7
TN: 95.1

99.20
TP: 94.2
TN: 99.7

98.8
TP: 93.8
TN: 99.3

94.92
TP: 78.7
TN: 100

76.1
TP: 0

TN: 100

76.23
TP: 7

TN: 99.9

99.7
TP: 99.5
TN: 99.8

91.08
TP: 54

TN: 95.6

58.87
TP: 89.9
TN: 55.1

92.01
TP: 45

TN: 97.7

81.3
TP: 89.5
TN: 80.3

Going Upstairs Being Still Walking (3 gaits)
J48 NBayes SVM GP J48 NBayes SVM GP J48 NBayes SVM GP

Subject 1
97.41

TP: 19.6
TN: 99.9

94.97
TP: 5.2

TN: 97.8

98.42
TP: 59.2
TN: 99.7

98.0
TP: 80.4
TN: 98.6

93.88
TP: 82.9
TN: 97.8

97.61
TP: 97

TN: 97.8

97.77
TP: 97.2

TN: 98

97.7
TP: 97.5
TN: 97.8

83.53
TP: 79.6
TN: 87.1

82.22
TP: 87.4
TN: 77.6

94.44
TP: 94.6
TN: 94.3

86.2
TP: 95.0
TN: 78.2

Subject 2
72.65

TP: 57.2
TN: 74.4

63.38
TP: 76.1
TN: 61.9

72.6
TP: 99.5
TN: 69.6

83.5
TP: 90.6
TN: 82.6

74.56
TP: 32.1
TN: 98.4

98.84
TP: 99.4
TN: 98.5

98.23
TP: 99.9
TN: 97.3

98.9
TP: 99.8
TN: 98.4

94.77
TP: 92.2
TN: 97.6

72.93
TP: 48.4
TN: 99.4

95.08
TP: 91.4

TN: 99

95.1
TP: 95.0
TN: 95.2

Subject 3
93.05

TP: 60.8
TN: 96.6

75.16
TP: 95
TN: 73

94.16
TP: 50.1
TN: 98.9

92.9
TP: 94.4
TN: 92.7

91.02
TP: 82.9
TN: 98.9

98.85
TP: 98.8
TN: 98.9

99.04
TP: 98.7
TN: 99.3

98.8
TP: 98.4
TN: 99.1

95.79
TP: 96.1
TN: 95.5

90.37
TP: 97

TN: 85.4

97.82
TP: 98.6
TN: 97.2

92.4
TP: 96.2
TN: 89.6

Subject 4
95.44

TP: 72.4
TN: 98.1

89.45
TP: 77

TN: 90.9

93.73
TP: 59.8
TN: 97.7

93.7
TP: 95.2
TN: 93.6

97.82
TP: 95.4

TN: 99

98.24
TP: 97.7
TN: 98.5

98.32
TP: 96.6
TN: 99.1

98.1
TP: 98.0
TN: 98.2

96.65
TP: 97.9

TN: 95

90.82
TP: 96.2
TN: 83.7

97.33
TP: 99.5
TN: 94.5

95.1
TP: 96.7
TN: 92.8

Subject 5
92.81

TP: 63.2
TN: 96.6

59.56
TP: 91.7
TN: 55.4

92.17
TP: 49.9
TN: 97.6

94.2
TP: 91.8
TN: 94.5

79.12
TP: 27.6
TN: 98.6

98.86
TP: 97

TN: 99.6

98.99
TP: 99
TN: 99

99.2
TP: 99

TN: 99.2

97.26
TP: 98.6
TN: 95.2

93.15
TP: 96.6
TN: 87.8

97.51
TP: 98.8
TN: 95.6

96.2
TP: 95.9
TN: 96.6

TABLE V. TEST RESULTS: ACCURACIES, TRUE POSITIVE AND TRUE NEGATIVE RATES (%) OF INDIVIDUAL TRAINING AND TESTING FOR EACH
SUBJECT WITH THE PHONE PLACED AT BACK PANT POCKET

Sitting Standing Walking Running Lying Going Downstairs Going Upstairs Being Still Walking (3 Gaits)

Subject 1
96.0

TP: 98.0
TN: 95.8

99.4
TP: 96.7
TN: 99.7

88.0
TP: 93.7
TN: 84.0

99.1
TP: 99.2
TN: 99.1

99.9
TP: 99.7
TN: 99.9

89.6
TP: 47.4
TN: 91.0

92.6
TP: 70.9
TN: 93.3

97.8
TP: 97.3
TN: 98.0

94.5
TP: 95.3
TN: 93.8

Subject 2
99.5

TP: 98.6
TN: 99.6

99.1
TP: 95.9
TN: 99.6

83.5
TP: 80.2
TN: 85.1

99.3
TP: 97.4
TN: 99.4

98.6
TP: 97.2
TN: 98.8

83.0
TP: 60.8
TN: 85.5

87.4
TP: 84.0
TN: 87.8

97.4
TP: 97.2
TN: 97.6

95.9
TP: 99.1
TN: 92.4

Subject 3
99.5

TP: 99.0
TN: 99.7

99.4
TP: 97.1
TN: 99.6

87.7
TP: 91.5
TN: 86.6

97.3
TP: 97.9
TN: 97.3

99.4
TP: 99.8
TN: 99.2

89.5
TP: 74.4
TN: 90.9

94.0
TP: 95.6
TN: 93.8

98.6
TP: 98.3
TN: 99.0

94.8
TP: 94.4
TN: 95.1

Subject 4
98.6

TP: 97.8
TN: 98.8

99.1
TP: 82.9
TN: 99.9

84.8
TP: 89.8
TN: 81.8

95.4
TP: 98.1
TN: 95.2

99.9
TP: 99.4

TN: 100.0

91.0
TP: 82.1
TN: 91.8

94.3
TP: 94.9
TN: 94.2

98.3
TP: 98.3
TN: 98.3

95.5
TP: 97.6
TN: 92.8

Subject 5 -
99.0

TP: 99.8
TN: 98.9

85.2
TP: 88.7
TN: 83.1

99.0
TP: 95.2
TN: 99.4

99.6
TP: 99.5
TN: 99.6

87.7
TP: 84.6
TN: 88.1

94.1
TP: 94.2
TN: 94.0

98.7
TP: 98.1
TN: 98.9

94.8
TP: 95.0
TN: 94.5

2922



TABLE VI. TEST RESULTS: ACCURACIES, TRUE POSITIVE AND TRUE NEGATIVE RATES (%) FROM INDIVIDUAL TRAINING AND TESTING FOR EACH
SUBJECT WITH THE PHONE PLACED AT COAT POCKET

Sitting Standing Walking Running Lying Going
Downstairs

Going
Upstairs Being Still Walking

(3 Gaits)

Subject 3
79.7

TP: 97.6
TN: 74.2

98.4
TP: 96.7
TN: 98.6

82.1
TP: 81.3
TN: 82.3

96.8
TP: 98.3
TN: 96.8

80.7
TP: 0.0

TN: 100.0

85.4
TP: 73.0
TN: 86.6

84.3
TP: 86.8
TN: 84.0

98.5
TP: 98.7
TN: 98.4

96.6
TP: 96.2
TN: 96.9

Subject 4
98.0

TP: 97.7
TN: 98.0

97.3
TP: 42.7
TN: 99.9

81.9
TP: 84.1
TN: 80.5

97.6
TP: 97.5
TN: 97.6

89.4
TP: 0.5

TN: 100.0

93.1
TP: 93.5
TN: 93.1

83.2
TP: 85.0
TN: 83.0

98.2
TP: 97.5
TN: 98.6

93.4
TP: 94.3
TN: 92.2

Subject 5 -
97.6

TP: 99.4
TN: 97.5

84.0
TP: 86.2
TN: 82.7

98.8
TP: 95.0
TN: 99.2

99.4
TP: 99.2
TN: 99.5

87.4
TP: 83.9
TN: 87.8

93.6
TP: 89.9
TN: 94.0

98.1
TP: 98.5
TN: 97.9

95.8
TP: 96.2
TN: 95.2

TABLE VII. TEST RESULTS: ACCURACIES, TRUE POSITIVE AND TRUE NEGATIVE RATES (%) FROM CROSS-PERSON TESTING - TRAINING ON SUBJECT
1 AND TESTING ON OTHER SUBJECTS WITH THE PHONE PLACED AT FRONT PANT POCKET AND BACK PANT POCKET RESPECTIVELY

Training on Subject 1 and Testing on all five subjects (at Front Pant Pocket)

Sitting Standing Walking Running Lying Going
Downstairs

Going
Upstairs Being Still Walking

(3 Gaits)

Subject 1
96.5

TP: 74.4
TN: 98.9

99.1
TP: 96.5
TN: 99.4

87.4
TP: 95.3
TN: 81.8

99.4
TP: 98.3
TN: 99.8

96.8
TP: 100.0
TN: 96.6

92.7
TP: 87.4
TN: 92.9

98.0
TP: 80.4
TN: 98.6

97.7
TP: 97.5
TN: 97.8

86.2
TP: 95.0
TN: 78.2

Subject 2
11.4

TP: 100.0
TN: 0.0

96.7
TP: 80.9
TN: 99.0

68.1
TP: 86.5
TN: 59.4

98.5 (')
TP: 81.8

TN: 100.0

87.7
TP: 0.0

TN: 99.6

90.2
TP: 0.0

TN: 100.0

89.3
TP: 0.0

TN: 99.4

97.1
TP: 99.9
TN: 95.5

88.0
TP: 96.2
TN: 79.2

Subject 3
71.6

TP: 65.3
TN: 73.6

94.6
TP: 98.6
TN: 94.3

78.2
TP: 94.2
TN: 73.1

99.2 (')
TP: 96.8
TN: 99.3

99.1
TP: 97.4
TN: 99.4

74.5
TP: 12.6
TN: 80.4

55.9
TP: 98.4
TN: 51.3

98.3 (')
TP: 98.7
TN: 97.8

91.7
TP: 93.2
TN: 90.5

Subject 4
16.8

TP: 100.0
TN: 0.0

97.4
TP: 97.1
TN: 97.4

73.1
TP: 95.7
TN: 59.2

97.2 (')
TP: 56.0

TN: 100.0

89.3
TP: 0.0

TN: 100.0

91.5
TP: 0.0

TN: 100.0

46.6
TP: 94.5
TN: 41.1

95.7
TP: 99.0
TN: 94.1

90.6
TP: 98.5
TN: 80.1

Subject 5 -
97.5

TP: 42.4
TN: 99.6

63.7
TP: 80.5
TN: 53.3

97.1
TP: 69.4

TN: 100.0

99.7 (')
TP: 99.8
TN: 99.7

89.2
TP: 0.0

TN: 100.0

88.6
TP: 0.0

TN: 100.0

97.0
TP: 99.2
TN: 96.1

85.2
TP: 92.0
TN: 74.8

Training on Subject 1 and Testing on all five subjects (at Back Pant Pocket)

Sitting Standing Walking Running Lying Going
Downstairs

Going
Upstairs Being Still Walking

(3 Gaits)

Subject 1
96.0

TP: 98.0
TN: 95.8

99.4
TP: 96.7
TN: 99.7

88.0
TP: 93.7
TN: 84.0

99.1
TP: 99.2
TN: 99.1

99.9
TP: 99.7
TN: 99.9

89.6
TP: 47.4
TN: 91.0

92.6
TP: 70.9
TN: 93.3

97.8
TP: 97.3
TN: 98.0

94.5
TP: 95.3
TN: 93.8

Subject 2
88.6

TP: 0.0
TN: 100.0

87.8
TP: 98.4
TN: 86.3

56.7
TP: 96.9
TN: 37.8

99.4
TP: 96.7
TN: 99.7

88.1 (')
TP: 0.0

TN: 100.0

33.8
TP: 100.0
TN: 26.7

88.2
TP: 2.0

TN: 97.9

97.0 (')
TP: 98.2
TN: 96.4

82.5
TP: 89.4
TN: 75.1

Subject 3
76.4

TP: 0.0
TN: 100.0

95.4
TP: 96.4
TN: 95.3

70.7
TP: 94.1
TN: 63.3

98.9
TP: 96.4
TN: 99.1

80.7
TP: 0.0

TN: 100.0

48.5
TP: 100.0
TN: 43.6

90.0
TP: 0.1

TN: 99.8

98.4 (')
TP: 98.5
TN: 98.4

88.6
TP: 90.4
TN: 87.3

Subject 4
83.3

TP: 0.0
TN: 100.0

96.4
TP: 82.1
TN: 97.0

68.9
TP: 87.0
TN: 57.8

98.1
TP: 98.9
TN: 98.0

90.2 (')
TP: 8.9

TN: 99.9

35.1
TP: 100.0
TN: 29.1

89.5
TP: 0.0

TN: 99.9

97.6 (')
TP: 98.4
TN: 97.3

87.5
TP: 90.5
TN: 83.6

Subject 5 -
90.8

TP: 99.0
TN: 90.5

71.5
TP: 98.0
TN: 55.0

98.4
TP: 93.9
TN: 98.9

75.5 (')
TP: 0.0

TN: 99.2

36.7
TP: 100.0
TN: 29.0

87.5
TP: 0.0

TN: 98.8

97.7
TP: 99.9
TN: 96.8

87.0
TP: 88.1
TN: 85.4
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