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Abstract—Differential evolution (DE), as a very powerful
population-based stochastic optimizer, is one of the most active
research topics in the field of evolutionary computation. Self-
adaptive differential evolution (SaDE) is a well- known DE
variant, which aims to relieve the practical difficulty faced
by DE in selecting among many candidates the most effective
search strategy and its associated parameters. SaDE operates
with multiple candidate strategies and gradually adapts the
employed strategy and its accompanying parameter setting via
learning the preceding behavior of already applied strategies and
their associated parameter settings. Although highly effective,
SaDE concentrates more on exploration than exploitation. To
enhance SaDE’s exploitation capability while maintaining its
exploration power, we incorporate local search chains into SaDE
following two different paradigms (Lamarckian and Baldwinian)
that differ in the ways of utilizing local search results in SaDE.
Our experiments are conducted on the CEC-2014 real-parameter
single-objective optimization testbed. The statistical comparison
results demonstrate that SaDE with Baldwinian local search
chains, armed with suitable parameter settings, can significantly
outperform original SaDE as well as classic DE at any tested
problem dimensionality.

I. INTRODUCTION

Differential evolution (DE) [1]–[3] is one of the most
effective techniques in the field of evolutionary computation
for solving real-parameter black-box optimization problems.
Since invented by Storn and Price in 1995, DE has attracted
considerable attentions of both academic and industrial re-
searchers. Today has already seen a large volume of research
works on DE, including algorithmic improvements [4]–[13],
theoretical studies [14] and real-world applications [3]. DE fea-
tures many search strategies, which may significantly influence
its optimization performance. It is highly problem-dependent
to choose the most suitable strategy and its associated control
parameters for DE. Meanwhile, even a chosen search strategy
equipped with the best-calibrated parameter setting may not
perform consistently well at different search stages. Therefore,
many research efforts in DE have been devoted to the adaption
of search strategies and parameters. Self-adaptive differential
evolution (SaDE) proposed in [9], [10] is a well-known repre-
sentative among these works.

SaDE avoids the time-consuming task of choosing among
many candidates the most effective search strategy and its
associated parameters for DE. It operates with multiple candi-
date strategies that better suit problems of different properties.

During the search, SaDE adapts the employed strategy and
its accompanying parameter setting via learning the preceding
behavior of already applied strategies and their associated
parameter settings. In other words, the more effectively a
search strategy and its parameters had performed in the past,
the more probably they will be chosen to apply for the future.
Due to applying the trial-and-error scheme to adapt strate-
gies and parameters, SaDE focuses more on exploration than
exploitation during the search. Consequently, some already
visited promising regions of the search space may not be
well exploited to take advantage of more valuable informa-
tion therein. To address this issue, we introduce the idea of
local search chains proposed by [15] into SaDE, following
the Lamarckian and Baldwinian paradigms commonly used
in Memetic algorithms (MAs) [16], [17], a.k.a. the synergy
of global search and local search. In thus developed two
SaDE variants, SaDELAM incorporates local search results
into SaDE’s search process while SaDEBAL does not. Both
variants have two other parameters in additional to SaDE’s two
parameters: population size (NP) and learning period (LP), i.e.,
the local search strength (Istr) and the local search ratio (rL),
which are used in local search chains to control how intensive
and how often the local search process is executed.

This paper systematically investigates the performance of
SaDELAM , SaDEBAL, SaDE and classic DE (DE/rand/1/bin)
on the recently proposed CEC-2014 real-parameter single-
objective optimization testbed consisting of 30 test functions
at different problem dimension sizes (10D, 30D and 50D).
We employ the Wilcoxon’s signed rank test [18] to conduct
the pairwise comparison between SaDE and each of its two
variants (SaDELAM and SaDEBAL) using two different pa-
rameter settings ((Istr, rL): (100, 0.2) and (400, 0.8)). This
statistical comparison demonstrates that two SaDE variants
significantly outperform SaDE at some problem dimension
sizes while performing similar to SaDE at all the other problem
dimension sizes. Moreover, SaDEBAL using (Istr, rL): (100,
0.2) significantly outperforms SaDE at any tested problem
dimensionality. We also compare two SaDE variants using two
different parameter settings, SaDE and DE/rand/1/bin using an
advanced statistical hypothesis test (the Iman and Davenport
test followed by the Hochberg procedure [19], [20]). This
statistical comparison further reveals that SaDEBAL using
either of the two examined parameter settings demonstrates the
statistically superior performance at any tested problem dimen-
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sionality. Furthermore, we report in detail the performance of
SaDEBAL with (Istr, rL): (100, 0.2) on the CEC-2014 testbed.

The remaining paper is organized as follows. First, SaDE
is briefly reviewed in Section II, followed by the introduction
of the proposed SaDE with local search chains algorithms
in Section III. Section IV reports and analyzes experimental
results. Section V concludes this paper and mentions some
related future work.

II. SELF-ADAPTIVE DIFFERENTIAL EVOLUTION (SADE)

The scope of this paper focuses on real-parameter single-
objective black-box optimization, aiming to find the optimal
values of real-valued decision variables to minimize one real-
valued objective function without knowing function character-
istics. It can be formulated as:

x∗ = arg min
x∈RD

f(x), f(x) ∈ R

where x = {x1, . . . , xD} ∈ RD is a decision vector composed
of D real-valued decision variables.

DE is a population-based stochastic search algorithm very
effective in real-parameter black-box optimization. In the con-
text of DE, let xi,g = {x1

i,g, . . . , x
D
i,g} represent the i-th deci-

sion vector at the g-th generation and Pg = {x1,g, . . . ,xNP,g}
denote the population consisting of NP decision vectors at the
g-th generation. DE firstly creates an initial population P0 by
sampling each decision variable from a uniform distribution
between certain prescribed bounds of these variables. Then,
at a subsequent generation (e.g., g-th generation), a trial
vector ui,g is produced with respect to each decision vector
xi,g (so-called target vector) in the current population using
mutation and recombination operations. After that, DE uses
the greedy replacement to produce the population at the (g+1)-
th generation, i.e., Pg+1. The above procedure is repeated
generation by generation until certain termination criteria are
met. Readers can refer to [1], [2] for more details about DE’s
implementation.

DE features its unique differential mutation scheme and
its capability of exploiting contour matching. It has many
available trial vector generation strategies, typically denoted
by “DE/x/y/z” where x, y and z stand for the base vector
generation scheme, the number of population member pairs
used to form the vector difference and the recombination
scheme, respectively. Typically, DE has three key control
parameters: population size (NP), crossover rate (CR) and
mutation scale factor (F). The performance of DE crucially
depends on the employed search strategy and its associated
parameter setting which are highly problem-dependent. On the
one hand, using the trial-and-error scheme to select the most
suitable strategy and parameter setting may expend prohibitive
computational costs. On the other hand, a single strategy
even armed with well-calibrated parameters cannot guarantee
consistent effectiveness at different search stages since regions
of the search space explored at different search stages may
not always favor this strategy. Therefore, many recent research
efforts have been devoted to the adaptation of strategies and
parameters. Among these efforts, a differential evolution with
strategy adaptation algorithm named SaDE [9], [10] is a well-
known representative.

SaDE avoids the time-consuming strategy and parameter
setting selection task. It features a pool of potentially effective
yet complementary trial vector generation strategies. During
the population’s evolution, with respect to each target vector
in the population at the current generation, one strategy will
be selected from this pool according to strategy selection
probabilities, which are computed according to the success rate
of each strategy for generating promising trial vectors (those
that can enter the population for the next generation) within
the number of LP (learning period) preceding generations.
This selected strategy is then applied to the corresponding
target vector to generate the trial vector. For the parameter
setting associated with this selected strategy, SaDE adapts CR
while randomizing F. Specifically, it archives the CR values
associated with each strategy which had generated promising
trial vectors within the preceding LP generations. The median
of those recorded CR values with respect to each strategy is
computed at the end of the current generation, and used as the
mean value of the normal distribution with standard deviation
0.1 to generate the CR values to be used by the corresponding
strategy in the next generation. The value of F is randomly
sampled from the normal distribution with mean value 0.5 and
standard deviation 0.3 to maintain both exploration (large F
values) and exploitation (small F values) in the entire course of
the search. SaDE leaves NP as a manually specified parameter
to be determined based on the available problem knowledge
and computational budget.

In SaDE, the initial LP generations accumulate the search
behavior to be learnt. During this period, all strategy selection
probabilities are set to be equal and the mean value of the
normal distribution for generating the CR values is set to 0.5.
To avoid invalid selection probabilities when the success rates
of all strategies are zero or when a strategy is never chosen
within the preceding LP generations, a small constant value
(0.01) is introduced as illustrated in Algorithm 1. More details
about SaDE’s implementation can be found in [9], [10], [21].

III. SADE WITH LOCAL SEARCH CHAINS

Intrinsically, SaDE employs the trail-and-error scheme to
gradually adapt the employed trail vector generation scheme
and its associated parameter setting. As a result, it devotes
much more search efforts on exploration than exploitation.
Accordingly, some promising regions of the search space,
even had already been identified (i.e., one or more population
members falled within these regions), cannot be well exploited
to take advantage of more valuable information therein.

Memetic algorithms (MAs) [16], [17], as an emerging
hot area in the field of evolutionary computation, study the
synergy of population-based global search and separate local
search procedures. Usually, these local search procedures can
incorporate various available problem knowledge and thus
may significantly enhance the quality of finally obtained so-
lutions. Compared to the pure population-based global search,
MAs often demonstrate superior efficacy in solving complex
optimization problems. However, the performance of MAs
relies on several crucial factors, e.g., the properties of local
search methods, the local search strength and frequency, the
interaction between the population-based search and the local
search, etc. Among existing works to addressing these issues
[15]–[17], [22], an approach called local search chains [15]
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can adapt the strength of the local search to exploit promising
regions identified by the population-based global search. The
essence of local search chains is to concatenate multiple low-
strength local search procedures to provide a single uninter-
rupted high-strength local search process. To achieve this, the
final solution and configuration achieved by the preceding local
search execution will be recorded and then used as the initial
solution and configuration for the next local search invocation.

To compensate the insufficient exploitation in SaDE while
retaining SaDE’s good exploration ability, we propose two
SaDE variants which incorporate local search chains into
SaDE following two paradigms (Lamarckian and Baldwinian)
commonly employed in MAs. These two paradigms differ
in the ways of utilizing the solutions obtained by the local
search in SaDE. Specifically, SaDE with Lamarckian local
search chains (SaDELAM ) updates SaDE’s population with
local search results while SaDE with Baldwinian local search
chains (SaDEBAL) does not.

Let Istr and rL denote the local search strength (the
number of function evaluations assigned to one local search
execution) and the local search ratio (the number of function
evaluations assigned to the local search divided by the maximal
number of function evaluations allowed for the entire algo-
rithm), respectively. Accordingly, the relationship between the
global search execution and the local search execution can be
determined by Istr · (1 − rL)/rL, which defines the number
of function evaluations to be executed by the global search
between any two consecutive local search executions. The
pseudo-code of SaDE with local search chains is illustrated
in Algorithm 1. Three key steps related to local search chains
(lines: 4, 19 and 24) are elaborated as follows:

• Initialization (Algorithm 2): A local search flag set
({LSFi, i = 1, . . . ,NP}) and a local search archive set
({LSAi, i = 1, . . . ,NP}) are initialized. Each archive
LSAi contains three elements, i.e., the individual used
as the starting point of the local search (xi,0), the
objective function value of this individual (f(xi,0)),
and the local search configuration (lsparamdefault).
Each flag LSFi has three status values, i.e., “1” means
the individual in LSAi is not yet exploited; “2” means
the individual in LSAi was obtained by a previous local
search execution and can still be further improved;
“0” means the individual in LSAi was obtained by a
previous local search execution and cannot be further
improved any more.

• Updating (Algorithm 3): If a trial vector ui,g can enter
Pg+1, it will update the ith element in the local search
flag set and the local search archive set, and may also
lead to the expansion of the flag and archive sets if
LSFi = 0 or 2.

• Implementation (Algorithm 4): The best individual
stored in the current local search archive will be
selected as the starting point of the local search if
its corresponding local search flag is above 0. This
allows the local search to exploit either previously un-
exploited (flag=1) or previously less exploited (flag=2)
promising regions of the search space. The local
search will start from the selected individual using the
configuration stored in its corresponding archive. After
executing the local search, the achieved solution and

Algorithm 2 Local Search Chains: Initialization (Line 4 in
Algorithm 1)

1: Initialize a set of local search flags LSFi = 1, i = 1, . . .NP
with index i corresponding to the ith individual in the
population.

2: Initialize a set of local search archives LSAi =
{xi,0, f(xi,0), lsparamdefault}, i = 1, . . .NP with index i
corresponding to the ith individual in the population. Here,
lsparamdefault denotes the default parameter setting of the
local search method.

Algorithm 3 Local Search Chains: Updating (Line 19 in
Algorithm 1)

1: Suppose the current size of the local search flag set and
archive set is m,m ≥ NP.

2: if (LSFi 6= 1) then
3: LSFm+1 = LSFi and LSAm+1 = LSAi.
4: end if
5: LSFi = 1 and LSAi = {ui,g, f(ui,g), lsparamdefault}.

configuration will update the corresponding archive.
Furthermore, the local search flag corresponding to
the local search archive of the selected individual will
be set to 0 (if further improvement cannot be expected,
e.g., when the change in either the solution space or
the objective space is trivial at the end of the last local
search execution) and 2 (otherwise). Finally, in the
case of Lamarckian local search chains, the solution
obtained by the local search will update SaDE’s global
best and also its corresponding target vector only if the
corresponding archive’s index does not exceed NP.

Among the proposed SaDE with local search chains algo-
rithms, SaDELAM utilizes the solutions obtained by the local
search to update the population of SaDE and thus enhances
SaDE’s exploitation ability at some expense of its explo-
ration power. SaDEBAL compensates the exploitation power of
SaDE via separate local search procedures without influencing
SaDE’s exploration ability. Note that SaDEBAL is distinct
from the two-stage global-followed-by-local search approach.
Instead of exploiting the best solution achieved by a complete
execution of the global search, SaDEBAL may identify a
superior solution by exploiting many intermediate promising
solutions obtained in the course of the global search. In our
implementation, we choose the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm [23] as the local search method.

IV. EXPERIMENTS

We test classic DE (DE/rand/1/bin), SaDE and two SaDE
variants (SaDELAM and SaDEBAL) using two different pa-
rameter settings ((Istr, rL): (100, 0.2) and (400, 0.8)) on 30
test functions contained in the recently proposed CEC-2014
testbed at three problem dimension sizes (10D, 30D and 50D).

To find out whether local search chains can help to improve
the performance of SaDE, we employ the Wilcoxon’s signed
rank test [18] to make a pairwise comparison between SaDE
and each of SaDELAM and SaDEBAL using two different
parameter settings respectively. Furthermore, we conduct an
advanced statistical hypothesis test (the Iman and Davenport
test followed by the Hochberg procedure [19], [20]) to compare
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Algorithm 4 Local Search Chains: Implementation (Line 24
in Algorithm 1)

1: Find the most promising starting point from the current
local search archive set to perform the local search:
s = argi min{LSAi(2),LSFi > 0} where LSAi(2) stands
for the 2nd element in the local search archive LSAi.

2: Perform the local search for Istr function evaluations,
starting from LSAs(1) using the configuration LSAs(3).

3: Update the local search archive LSAs with the final
solution obtained by the local search, its corresponding
objective function value and the current local search con-
figuration.

4: For Lamarckian Local Search Chain:
if s ≤ NP and (LSAs(2) ≤ f(xs,g+1)) then xs,g+1 =

LSAs(1)
if (LSAs(2) ≤ f(xgbest

g+1 )) then xgbest
g+1 = LSAs(1)

5: if (LSAs(1) cannot be further improved by the local search,
e.g., the last local search improvement is trivial) then

6: LSFs = 0
7: else
8: LSFs = 2
9: end if

the performance of six algorithms, i.e., DE/rand/1/bin, SaDE,
SaDELAM and SaDEBAL using two different parameter set-
tings respectively, aiming at finding the statistically superior
algorithms. Since both above statistical comparisons reveal
that SaDEBAL with (Istr, rL): (100, 0.2) demonstrates the
superior performance over all 30 test functions at any examined
problem dimensionity, we report, for SaDEBAL with (Istr, rL):
(100, 0.2), all performance measures advocated by the CEC-
2014 testbed [24] as well as the success rate and the expected
running time to succeed (ERT) [25], [26].

A. Experimental Setup

The CEC-2014 testbed involves 30 numerical test functions
grouped into uni-modal functions (f1-f3), simple multi-modal
functions (f4-f16), hybrid functions (f17-f22) and composi-
tion functions (f23-f30), which extends its predecessor (i.e,
the CEC-2013 testbed) by introducing several new features,
e.g., additional basic problems, composing a test problem by
extracting features dimension-wisely from several problems,
the graded level of linkages, rotated trap problems and so on.
The detailed description of the CEC-2014 testbed can be found
in [24].

For each of 30 test functions at each of three problem
dimension sizes (10D, 30D and 50D), we test six algorithms
including DE/rand/1/bin using its commonly suggested param-
eter setting (NP: 50, CR: 0.9 and F: 0.5) [2], [27], SaDE
using its commonly suggested parameter setting (NP: 50 and
LP: 50) [10], [21], SaDELAM with (Istr, rL): (100, 0.2), so-
called SaDELAM1, SaDELAM with (Istr, rL): (400, 0.8), so-
called SaDELAM2, SaDEBAL with (Istr, rL): (100, 0.2), so-
called SaDEBAL1, and SaDEBAL with (Istr, rL): (400, 0.8),
so-called SaDEBAL2.

Each of the six algorithms under test is executed 51 times
with respect to each test function at each problem dimension
size. Each of 51 runs uses distinct random seeds. For any
individual run, all algorithms share the same random seed.

TABLE IV. COMPUTATIONAL COMPLEXITY MEASURED BY CPU
SECONDS ( [24]) AT 10D, 30D AND 50D, RESPECTIVELY. T0 MEASURES

THE COMPUTATION TIME OF BASIC OPERATIONS. T1 MEASURES THE
COMPUTATION TIME OF 200000 EVALUATIONS OF TEST FUNCTION f18 . T̂2

MEASURES THE AVERAGE COMPUTATION TIME FOR FIVE ALGORITHM
EXECUTIONS ON TEST FUNCTION f18 WITH EACH EXECUTION EXPENDING

200000 EVALUATIONS.

DIM T0 T1 T̂2 (T̂2 − T1)/T0

D = 10
0.165

2.019 14.233 74.023
D = 30 2.166 19.916 107.576
D = 50 2.667 22.491 120.147

Two stopping criteria are used here [24]: (1) the maximum
number of function evaluations (maxFEvals), set to 104 times
the problem dimension size, is reached. (2) The object function
error value (FEV), defined as the difference between the
objective function value of the best solution found so far and
that of the globally optimal solution, is less than or equal to
10−8. In this case, we set FEV to 10−8 instead of zero as
suggested by the CEC-2014 testbed since the latter way may
dramatically decrease the average FEV at termination if only
a few runs achieve the FEVs less than or equal to 10−8.

We use MATLAB to implement all algorithms. The algo-
rithm execution platform is a Windows PC with the Intel Xeon
E5-2630 CPU at 2.3 GHz.

The algorithm’s performance is measured by:

• the best, worse, median and mean (standard deviation)
of the FEVs achieved when the algorithm terminates
over 51 runs;

• the success rate (SR) over 51 runs. An execution run
is claimed to succeed once the algorithm achieves the
FEV smaller than 10−8;

• the expected running time to succeed (ERT) [25],
[26]. This performance index estimates the expected
number of function evaluations to succeed. It is com-
puted by the total number of function evaluations
when the algorithm succeeds or terminates (without
succeeding) summed over 51 runs and divided by the
total number of successful runs. If all runs fail, this
measure becomes invalid;

• the computational complexity measured by CPU-
seconds at three problem dimension sizes (10D, 30D
and 50D), respectively [24].

B. Result Analysis

Our first experiment employs the Wilcoxon’s signed rank
test [18] to conduct the pairwise comparison between the
mean FEVs achieved by SaDE and those achieved by each of
the four algorithms (SaDELAM1, SaDELAM2, SaDEBAL1 and
SaDEBAL2) for 30 functions at different problem dimension-
ality (10D, 30D, 50D and the combination of all dimension
sizes), respectively. The results reported in Table I demon-
strate that each of the four tested algorithms significantly
outperforms SaDE at some problem dimension sizes while
maintaining the similar performance to SaDE at all the others.
This observation verifies that the incorporation of local search
chains into SaDE can improve SaDE’s performance in a stati-
cally significant manner. Notably, the SaDEBAL1 algorithm,
i.e., SaDEBAL with (Istr, rL): (100, 0.2), can significantly
outperform SaDE at any tested problem dimensionality.
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TABLE I. WILCOXON’S SIGNED RANK TEST RESULTS OF COMPARING SADE (NP:50, LP:50) WITH ITS VARIANTS INCORPORATING LOCAL SEARCH
CHAINS, I.E., SADE WITH LAMARCKIAN LOCAL SEARCH CHAINS: SADELAM1 AND SADELAM2 AS WELL AS SADE WITH BALDWINIAN LOCAL SEARCH

CHAINS: SADEBAL1 AND SADEBAL2 OVER 30 CEC-2014 TEST FUNCTIONS AT PROBLEM DIMENSIONALITY 10D, 30D, 50D AND ALL (COMBINATION OF
ALL DIMENSION SIZES), RESPECTIVELY. HERE, THE MEAN FEVS ARE COMPARED. R− AND R+ ARE THE INTERMEDIATE RANKING VALUES USED IN THE

WILCOXON’S SIGNED RANK TEST. R+ BEING LARGER (SMALLER) THAN R− INDICATES SADE PERFORMS WORSE (BETTER) THAN ITS COMPETITOR WITH
p-VALUE STATISTICALLY MEASURING THE PERFORMANCE DIFFERENCE AT THE SIGNIFICANT LEVEL OF 0.05. THE COLUMN “WIN-FLAG” INDICATES THAT

SADE IS BETTER (1), SIMILAR (0) OR WORSE (-1) THAN ITS COMPETITOR.

SaDE vs.
PROBLEMS

10D 30D 50D ALL
R− R+ p-value win-flag R− R+ p-value win-flag R− R+ p-value win-flag R− R+ p-value win-flag

SaDELAM1 71 280 7.9523e-003 -1 141 294 9.8092e-002 0 209 256 6.2884e-001 0 1295 2360 1.9633e-002 -1
SaDELAM2 147 204 4.6916e-001 0 148 287 1.3289e-001 0 116 349 1.6566e-002 -1 1196 2459 5.6560e-003 -1
SaDEBAL1 50 275 2.4697e-003 -1 37 369 1.5679e-004 -1 39 396 1.1351e-004 -1 361 3042 5.7534e-010 -1
SaDEBAL2 145 206 4.3855e-001 0 88 347 5.1070e-003 -1 79 386 1.5927e-003 -1 867 2788 2.5686e-005 -1

TABLE II. PERFORMANCE COMPARISON OF SIX ALGORITHMS (DE, SADE, SADELAM1 , SADELAM2 , SADEBAL1 AND SADEBAL2 ) USING THE IMAN
AND DAVENPORT TEST WITH THE HOCHBERG POST-HOC PROCEDURE OVER 30 CEC-2014 TEST FUNCTIONS AT PROBLEM DIMENSIONALITY 10D, 30D,
50D AND ALL (COMBINATION OF ALL DIMENSION SIZES), RESPECTIVELY. HERE, THE MEAN FEVS ARE COMPARED. AMONG SIX ALGORITHMS, THOSE

LEADING TO THE STATISTICALLY SIGNIFICANTLY BETTER PERFORMANCE (AT THE SIGNIFICANCE LEVEL OF 0.05) OVER OTHERS WITH RESPECT TO 10D,
30D, 50D AND ALL PROBLEMS RESPECTIVELY ARE DENOTED BY ∗. AN EMPTY CELL MEANS THE CORRESPONDING ALGORITHM IS STATISTICALLY

SIGNIFICANTLY WORSE THAN SOME OTHER ALGORITHMS FOR SOLVING ALL 30 TEST FUNCTIONS AT A CERTAIN PROBLEM DIMENSION.

PROBLEMS DE SaDE SaDELAM1 SaDELAM2 SaDEBAL1 SaDEBAL2
10D ∗ ∗ ∗ ∗ ∗
30D ∗ ∗ ∗
50D ∗ ∗ ∗
ALL ∗ ∗

Our second experiment aims to find the statistically supe-
rior algorithms among six algorithms (DE/rand/1/bin, SaDE,
SaDELAM1, SaDELAM2, SaDEBAL1 and SaDEBAL2) by us-
ing an advanced statistical hypothesis test. Specifically, we first
employ the Iman and Davenport test [19], [20] to compare
the mean FEVs achieved by six algorithms over all 30 test
functions to judge whether at least two algorithms have the
statistically significantly different performance. If this is true,
we then apply the Hochberg post-hoc procedure [19], [20] to
further find out the exact statistically superior algorithms. In
our work, the significance level is set to 0.05.

The Iman and Davenport test [19], [20] is an improved
version of the well-known Friedman’s test [18] for detecting
among multiple algorithms whether there exists the statistically
significant difference between the performance of at least two
algorithms. Although it is able to identify the existence of
the performance distinction among multiple compared algo-
rithms, it cannot separate out which algorithms are signifi-
cantly different from the others. To address this issue, some
post-hoc procedures should be employed to perform pairwise
performance comparisons under the control of the family-wise
error rate (FWER) [19], [20]. In this work, the Hochberg
procedure is used, as recommended in [19], [20]. To apply
the Hochberg procedure, we choose the control method as the
algorithm with the lowest ranking value obtained in the Iman
and Davenport test. For more detailed information about the
Iman and Davenport test and the Hochberg post-hoc procedure,
readers can refer to [18]–[20].

Table II reports the comparison results. We can observe
that the effect of incorporating local search chains into SaDE
become prominent when solving higher dimensional problems.
Furthermore, SaDE with Balwinian local search chains using
either of the two tested parameter settings demonstrates the
statistically superior performance at any tested problem di-
mensionality.

Based on the above findings, we report in detail the
performance of SaDEBAL1, i.e., SaDEBAL with (Istr, rL):
(100, 0.2), in Table III. We can observe from this table that
SaDEBAL1’s performance decreases as increasing the problem
dimension size. For 10D problems, SaDEBAL1 has non-zero
SRs on 10 out of 30 test functions, i.e., f1, f2, f3, f4, f5,
f6, f7, f8, f10 and f17. On 13 out of the remaining 20 test
functions, i.e., f9, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20,
f21 and f22, SaDEBAL1 achieves FEVs less than 1.00e+00 in
at least one run. For 30D problems, SaDEBAL1 has non-zero
SRs on six out of 30 test functions, i.e., f2, f3, f4, f7, f8
and f10. Among the remaining 24 test functions, SaDEBAL1

achieves FEVs less than 1.00e+00 in at least one run on six
functions, i.e., f1, f6, f12, f13 and f14. For 50D problems,
SaDEBAL1 has non-zero SRs on three out of 30 test functions,
i.e., f4, f7 and f8. Among the remaining 27 test functions,
SaDEBAL1 achieves FEVs less than 1.00e+00 in at least one
run on seven functions, i.e., f1, f2, f3, f10, f12, f13 and f14.
The computational complexity of SaDEBAL1 is depicted in
Table IV.

V. CONCLUSIONS AND FUTURE WORK

We proposed to incorporate local search chains into the
SaDE algorithm following two paradigms (Lamarckian and
Baldwinian) commonly used in MAs. The two developed
SaDE with local search chain algorithms, i.e., SaDELAM and
SaDEBAL), differ in how to utilize local search results in
SaDE. In fact, SaDELAM enhances SaDE’s exploitation ability
at some expense of its exploration power. SaDEBAL compen-
sates the exploitation power of SaDE via separate local search
procedures without influencing SaDE’s exploration ability.

We tested classic DE (DE/rand/1/bin), SaDE as well
as SaDELAM and SaDEBAL using two different parameter
settings ((Istr, rL): (100, 0.2) and (400, 0.8)) respectively
on 30 CEC-2014 test functions at different problem dimen-
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TABLE III. PERFORMANCE (PFM) OF SADEBAL WITH THE PARAMETER SETTING NP:50, LP:50, Istr = 100, rL = 0.2 AT PROBLEM
DIMENSIONALITY (DIM) 10D, 30D AND 50D, RESPECTIVELY. BEST, WORST, MEDIAN, MEAN (STD) REPRESENT THE BEST, WORST, MEDIAN, MEAN

(STANDARD DEVIATION) OF THE FEVS AT EXECUTION TERMINATION OVER 51 RUNS, RESPECTIVELY. SR AND ERT STAND FOR THE SUCCESS RATE AND
THE EXPECTED RUNNING TIME TO SUCCEED. ERT IS DENOTED BY “-” (INVALID) WHEN ALL 51 RUNS FAIL.

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

10D

Best 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 1.00e-08 9.95e-01 1.00e-08 1.87e-01 2.60e-02 1.94e-02 3.90e-02 2.27e-01
Worst 7.92e-04 1.00e-08 1.00e-08 1.00e-08 2.00e+01 8.95e-01 1.23e-02 1.00e-08 4.97e+00 1.87e-01 1.34e+02 1.93e-01 6.44e-02 2.00e-01 6.58e-01
Median 1.00e-08 1.00e-08 1.00e-08 1.00e-08 2.00e+01 1.00e-08 1.00e-08 1.00e-08 2.98e+00 1.00e-08 1.86e+01 9.26e-02 3.19e-02 9.42e-02 3.88e-01
Mean 2.23e-05 1.00e-08 1.00e-08 1.00e-08 1.70e+01 1.76e-02 2.46e-03 1.00e-08 2.71e+00 1.96e-02 3.41e+01 9.45e-02 3.50e-02 9.62e-02 3.95e-01
Std 1.20e-04 5.01e-24 5.01e-24 5.01e-24 6.83e+00 1.25e-01 4.12e-03 5.01e-24 9.14e-01 4.05e-02 3.75e+01 4.47e-02 1.11e-02 3.64e-02 9.32e-02
SR 0.94 1.00 1.00 1.00 0.04 0.92 0.73 1.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00
ERT 5.09e+04 2.59e+04 2.09e+04 5.24e+03 2.54e+06 5.28e+04 5.84e+04 1.86e+04 - 6.87e+04 - - - - -

f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30
Best 6.81e-01 1.00e-08 3.15e-03 4.98e-02 1.20e-02 1.51e-05 1.51e-03 3.29e+02 1.00e+02 1.00e+02 1.00e+02 1.03e+00 3.14e+02 1.80e+02 2.62e+02
Worst 2.29e+00 1.78e+02 7.11e+00 4.54e-01 1.11e+00 1.69e+01 3.62e-01 3.29e+02 1.12e+02 2.00e+02 1.00e+02 4.00e+02 4.81e+02 2.37e+02 6.00e+02
Median 1.44e+00 1.24e+01 1.01e+00 1.69e-01 1.21e-01 1.39e-01 3.16e-02 3.29e+02 1.09e+02 1.20e+02 1.00e+02 2.16e+00 3.60e+02 2.24e+02 4.83e+02
Mean 1.43e+00 3.35e+01 1.10e+00 1.90e-01 1.66e-01 1.82e+00 5.51e-02 3.29e+02 1.09e+02 1.34e+02 1.00e+02 1.46e+02 3.74e+02 2.23e+02 4.84e+02
Std 3.65e-01 4.76e+01 1.20e+00 8.01e-02 1.98e-01 4.99e+00 7.41e-02 2.87e-13 2.30e+00 2.97e+01 9.44e-03 1.70e+02 3.58e+01 8.47e+00 5.92e+01
SR 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - 5.04e+06 - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

30D

Best 1.09e-03 1.00e-08 1.00e-08 1.00e-08 2.00e+01 5.31e-01 1.00e-08 1.00e-08 1.19e+01 1.00e-08 9.25e+02 9.61e-02 8.82e-02 1.34e-01 1.42e+00
Worst 3.15e-01 1.00e-08 2.27e-01 1.00e-08 2.00e+01 8.04e+00 3.20e-02 9.95e-01 3.38e+01 1.14e+00 2.11e+03 3.92e-01 2.16e-01 2.72e-01 4.13e+00
Median 1.47e-03 1.00e-08 1.00e-08 1.00e-08 2.00e+01 3.68e+00 1.00e-08 1.00e-08 2.19e+01 4.16e-02 1.56e+03 1.90e-01 1.53e-01 2.13e-01 2.55e+00
Mean 1.35e-02 1.00e-08 7.15e-03 1.00e-08 2.00e+01 3.64e+00 2.56e-03 1.95e-02 2.26e+01 6.44e-02 1.58e+03 2.09e-01 1.50e-01 2.10e-01 2.61e+00
Std 5.75e-02 5.01e-24 3.43e-02 5.01e-24 2.01e-04 1.68e+00 7.13e-03 1.39e-01 5.15e+00 1.56e-01 2.65e+02 8.11e-02 3.10e-02 3.53e-02 6.17e-01
SR 0.00 1.00 0.86 1.00 0.00 0.00 0.86 0.98 0.00 0.16 0.00 0.00 0.00 0.00 0.00
ERT - 8.66e+04 1.60e+05 3.54e+04 - - 6.51e+04 6.60e+04 - 1.79e+06 - - - - -

f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30
Best 8.56e+00 3.06e+02 4.52e+01 3.27e+00 1.50e+01 1.92e+01 2.06e+01 3.14e+02 2.23e+02 2.00e+02 1.00e+02 3.21e+02 7.38e+02 4.39e+02 6.17e+02
Worst 1.06e+01 2.58e+03 1.74e+02 8.61e+00 3.55e+02 2.07e+03 3.63e+02 3.14e+02 2.41e+02 2.14e+02 2.00e+02 5.28e+02 9.54e+02 1.80e+03 2.13e+03
Median 9.72e+00 1.01e+03 8.39e+01 4.63e+00 6.87e+01 7.54e+02 1.41e+02 3.14e+02 2.26e+02 2.09e+02 1.00e+02 4.01e+02 8.21e+02 8.28e+02 1.06e+03
Mean 9.68e+00 1.08e+03 9.07e+01 4.89e+00 9.28e+01 7.57e+02 1.03e+02 3.14e+02 2.28e+02 2.08e+02 1.04e+02 4.01e+02 8.34e+02 9.25e+02 1.10e+03
Std 4.49e-01 5.05e+02 3.04e+01 1.12e+00 7.72e+01 3.81e+02 7.15e+01 2.93e-10 4.11e+00 4.60e+00 1.96e+01 3.88e+01 5.01e+01 2.41e+02 3.16e+02
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - - -

DIM PFM f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

50D

Best 1.03e-02 1.57e-03 5.57e-03 1.00e-08 2.00e+01 7.12e+00 1.00e-08 1.00e-08 3.28e+01 1.25e-02 2.75e+03 1.12e-01 1.76e-01 1.97e-01 5.10e+00
Worst 1.21e+02 4.91e+01 1.21e+03 3.99e+00 2.00e+01 2.33e+01 3.19e-02 9.95e-01 8.56e+01 1.39e+00 4.56e+03 4.30e-01 4.55e-01 3.46e-01 1.90e+01
Median 7.57e-01 4.43e-03 7.21e+00 1.00e-08 2.00e+01 1.58e+01 7.40e-03 1.00e-08 6.17e+01 6.25e-02 3.73e+03 2.46e-01 3.02e-01 2.76e-01 1.03e+01
Mean 1.25e+01 1.19e+00 4.72e+01 3.91e-01 2.00e+01 1.54e+01 6.23e-03 7.80e-02 6.12e+01 1.54e-01 3.70e+03 2.45e-01 2.98e-01 2.71e-01 1.10e+01
Std 2.32e+01 6.90e+00 1.81e+02 1.20e+00 2.31e-05 3.22e+00 6.95e-03 2.70e-01 1.01e+01 2.75e-01 3.84e+02 7.00e-02 5.90e-02 3.68e-02 3.06e+00
SR 0.00 0.00 0.00 0.90 0.00 0.00 0.45 0.92 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - 1.10e+05 - - 6.69e+05 1.53e+05 - - - - - - -

f16 f17 f18 f19 f20 f21 f22 f23 f24 f25 f26 f27 f28 f29 f30
Best 1.75e+01 1.28e+03 6.04e+01 9.96e+00 5.32e+01 7.76e+02 1.56e+02 3.37e+02 2.69e+02 2.00e+02 1.00e+02 5.88e+02 1.06e+03 7.12e+02 1.42e+03
Worst 2.01e+01 8.21e+04 2.86e+02 7.38e+01 7.25e+02 1.14e+05 7.93e+02 3.37e+02 2.89e+02 2.32e+02 2.00e+02 9.08e+02 1.45e+03 1.86e+03 5.95e+03
Median 1.88e+01 3.21e+03 1.45e+02 3.13e+01 2.19e+02 3.36e+03 4.57e+02 3.37e+02 2.77e+02 2.23e+02 2.00e+02 7.85e+02 1.19e+03 9.99e+02 2.21e+03
Mean 1.88e+01 9.32e+03 1.48e+02 2.82e+01 2.56e+02 1.10e+04 4.40e+02 3.37e+02 2.77e+02 2.22e+02 1.55e+02 7.65e+02 1.21e+03 1.08e+03 2.29e+03
Std 6.13e-01 1.34e+04 4.14e+01 1.59e+01 1.68e+02 2.07e+04 1.48e+02 7.82e-09 3.73e+00 7.47e+00 5.01e+01 7.91e+01 9.08e+01 2.25e+02 7.83e+02
SR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ERT - - - - - - - - - - - - - - -

sionality. Both pairwise and multiple statistical comparisons
were conducted to verify the effectiveness of the proposed
algorithms, which revealed that the incorporation of local
search chains into SaDE led to the statistically better or
similar performance compared to SaDE at any tested problem
dimensionality. Furthermore, the SaDEBAL with (Istr, rL):
(100, 0.2) algorithm consistently demonstrated the statistically
superior performance at any tested problem dimensionality.
Therefore, we comprehensively reported its performance on
the CEC-2014 testbed. Our future work includes analyzing
the time complexity of the proposed algorithms, developing
more efficient local search methods, investigating the effects of
two parameters Istr and rL on handling problems of different
properties, and studying the performance of the proposed al-
gorithms for solving high-dimensional (large-scale) problems.
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Algorithm 1 SaDE with Local Search Chains
Input: NP, LP, Istr, rL

1: Initialize the generation counter g = 0, strategy selection probabilities stPbk,g = 1/4, k = 1, . . . , 4, and CRmk,g = 0.5, k =
1, 2, 3; Set the success and failure archives to empty.

2: Initialize the population Pg of NP D-dimensional individuals: Pg = {x1,g, . . . ,xNP,g} with xi,g = {x1
i,g, . . . , x

D
i,g}.

3: Evaluate the objective function value of each individual in Pg , i.e., f(xi,g), i = 1, . . . ,NP; Find xgbest
g = xi∗,g with

i∗ = argi min f(xi,g); Set the evaluation counter #feval = NP.
4: Initialize the local search flag set (LSFi, i = 1, . . . ,NP) and archive set (LSAi, i = 1, . . . ,NP) (Algorithm 2).
5: while the predefined termination criteria are not met do
6: for i = 1→ NP do
7: Select a strategy index ki in {1, 2, 3, 4} based on stPbk,g, k = 1, . . . , 4 using stochastic universal sampling.
8: Randomly generate a F value according to normal distribution randn(0.5, 0.3).
9: Randomly select in {1, . . . ,NP} five mutually exclusive indices rm,m = 1, . . . , 5 that are distinct from i.

10: Generate a mutant vector vi,g = {v1i,g, . . . , vDi,g}:
if (ki == 1) then vi,g = xr1,g + F · (xr2,g − xr3,g)
if (ki == 2) then vi,g = xi,g + F · (xgbest

g − xi,g) + F · (xr2,g − xr3,g)
if (ki == 3) then vi,g = xr1,g + F · (xr2,g − xr3,g) + F · (xr4,g − xr5,g)
if (ki == 4) then vi,g = xi,g + randu(0, 1) · (xr1,g − xi,g) + F · (xr2,g − xr3,g)

11: Generate a trial vector ui,g = {u1
i,g, . . . , u

D
i,g}:

if (ki < 4) then
Randomly generate CR ∈ [0, 1] from normal distribution randn(CRmki , 0.1); jrand = ceil(randu(1, D)).
for j = 1→ D do

uj
i,g =

{
vji,g if randu(0, 1) ≤ CR or j = jrand

xj
i,g otherwise

end for
else
ui,g = vi,g

end if
12: end for
13: Set xi,g+1 = xi,g, i = 1, . . . ,NP and xgbest

g+1 = xgbest
g .

14: for i = 1→ NP do
15: Function evaluation of the generated trial vector ui,g; Increase the evaluation counter: #feval = #feval + 1.
16: if (f(ui,g) ≤ f(xi,g+1)) then
17: xi,g+1 = ui,g , and store the tuple (g, ki,CR) (if ki == 1, 2 or 3) or (g, ki) (if ki == 4) into the success archive.
18: if (f(ui,g) ≤ f(xgbest

g+1 )) then xgbest
g+1 = ui,g .

19: Update the local search flag set and the local search archive set (Algorithm 3).
20: else
21: Store the tuple (g, ki) into the failure archive.
22: end if
23: if (rem(#feval −NP, Istr/rL) + 1 == Istr · (1− rL)/rL) then
24: Perform the local search for Istr function evaluations and update the current population (Algorithm 4).
25: Increase the evaluation counter: #feval = #feval + Istr.
26: end if
27: end for
28: if (g ≥ LP ) then
29: if (g > LP ) then
30: Remove those tuples with the first elements smaller or equal to g − LP from the success and failure archives.
31: end if
32: Calculate Sk,g and Fk,g , k = 1, . . . , 4 as the number of tuples having the second elements equal to k in the success

and failure archives, respectively.
33: if (Sk,g + Fk,g > 0) then
34: stPbk,g = Sk,g/(Sk,g + Fk,g) + 0.01
35: else
36: stPbk,g = 0.01
37: end if
38: stPbk,g = stPbk,g/

∑
k=1,...,4 stPbk,g

39: Calculate CRmk,g, k = 1, 2, 3 as the median value of the third elements in those tuples in the success archive having
the second elements equal to k, k = 1, 2, 3.

40: end if
41: Increase the generation counter: g = g + 1.
42: end while
43: Find the optimal solution x∗ via comparing xbest

g and all solutions stored in the local search archive.
NOTE: (1) randu(a, b) is uniform sampling in [a, b]; (2) randn(a, b) is Gaussian sampling with mean a and standard
deviation b; (3) ceil(c) is the smallest integer not below c; (4) rem(a, b) is the reminder of a divided by b.
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