
Multi-Scenario Optimization Using Multi-Criterion
Methods: A Case Study on Byzantine Agreement

Problem

Ling Zhu∗, Kalyanmoy Deb∗† and Sandeep Kulkarni∗
∗Department of Computer Science and Engineering
†Department of Electrical and Computer Engineering

Michigan State University
East Lansing, Michigan 48824

Email: {zhuling, kdeb, sandeep}@msu.edu

Abstract—In this paper, we address solution methodolo-
gies of an optimization problem under multiple scenarios.
Often in practice, a problem needs to be considered for
different scenarios, such as evaluating for different loading
conditions, different blocks of data, multi-stage operations, etc.
After reviewing various single-objective aggregate methods for
handling objectives and constraints under multiple scenarios,
we then suggest a multi-objective optimization approach for
solving multi-scenario optimization problems. On a Byzantine
agreement problem, we demonstrate the usefulness of the
proposed multi-objective approach and explain the reasons for
their superior behavior. The suggested procedure is generic and
now awaits further applications to more challenging problems
from engineering and computational fields.

I. INTRODUCTION

IN many engineering and computational optimization
problems, a solution must be evaluated against a number

of scenarios [1][2]. For example, in a structural optimization
problem, a solution must usually be checked under a number
of loading conditions arising from various considerations,
such as from severe wind conditions providing lateral loads
and from extreme vertical loads occurring from additional
vehicular loads, heavy snow conditions, etc. In such prob-
lems, a solution is considered acceptable only if it performs
in a satisfactory manner to not one but all specified loading
scenarios.

Let us say that there are K different scenarios that must
be considered for an optimization task:

Minimize �Kk=1f(k,x),
subject to �Kk=1gj(k,x) ≥ 0, j = 1, 2, . . . , J,

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.

(1)

Here, the symbol � signifies an aggregate performance of
objective function f() or constraint function g j() under all
K scenarios. Figure 1 provides a sketch of the multi-scenario
optimization problem. The evaluation of the objective func-
tion for a solution requires computation of it for all K
scenarios and then derive an aggregate measure which can
then be optimized. A solution x will be considered feasible,
only if it satisfies each constraint for all K scenarios. In its
traditional sense, if any constraint gets violated for any of the
given scenarios, then the solution is considered infeasible.

In this paper, we address the solution of above problem
using different aggregation methods for handling multi-
scenario treatment of objectives and constraints used in
practice. In doing so, some critical properties of resulting
optimization task are revealed. Thereafter, a multi-objective
approach is suggested to address the solution of the above
problem. Although the paper discusses a generic methodol-
ogy, we demonstrate the proposed methodology on a Byzan-
tine agreement problem, which is of great importance in fault
tolerant system design and in many military applications
[3][4].

The rest of this paper is organized as follows: Section
II presents different aggregation methods used for handling
objective function and constraints. The proposed multi-
objective methodology is described in Section III. Thereafter,
in Section IV, we discuss the Byzantine agreement problem
and the requirement for considering multiple scenarios in
solving the problem. Section V presents the results using
five different single and multi-objective methodologies. The
reasons for superior performance of the multi-objective op-
timization approach is also discussed in Section VI. Finally,
conclusions of this study are drawn in Section VII.

II. METHODOLOGIES FOR HANDLING MULTIPLE
SCENARIOS

In this section, we discuss different methodologies that
are used for handling the objective function and constraints
under multiple scenarios.

A. Handling the Objective Function

In the presence of multiple scenarios (Sk, k =
1, 2, . . . ,K), the objective function must first be computed
for each scenario, thereby computing f(k,x) for every k.
For example, in a structural optimization problem under mul-
tiple loading conditions, if the cost of fabricating a structure
(denoted by a set of design variables x) is the objective
function, the fabrication cost must first be computed for each
of the loading conditions. Several aggregation methodologies
can be used in practice with the cost values obtained for each
scenario.

2601

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Fig. 1. An optimization algorithm must get a solution x evaluated for all scenarios and use an aggregate measure of constraints and objective function
values to proceed.

1) Worst-Case Aggregation: A common strategy which
is followed in practice is to find the worst cost of all scenar-
ios and is used as the objective function of the optimization
problem, that is, for minimization problems,

�Kk=1f(k,x) =
K

max
k=1

f(k,x). (2)

Thus, for a minimization problem, the overall problem
becomes a min-max problem. For maximization problems,
the operator max should be replaced by a min operator,
thereby having a max-min problem. This approach may
provide a pessimistic estimate of the objective function, since
the worst-case scenario may be an isolated event which may
not represent the true performance over all K scenarios. The
following approach can be used.

2) Average-Case Aggregation: An average objective
value of all K scenarios can be used, instead:

�Kk=1f(k,x) = μK
f (x) =

1

K

K∑
k=1

f(k,x). (3)

The average-case scenario is logical particularly when there
is not much difference in performance among all K scenar-
ios. When the variance in performance among K scenarios
is large, a more statistically favorable aggregation would be
better, such as the median-case or the following measure.

3) Mean-Variance Aggregation: Instead of an average,
the mean and standard deviation of the objective function
among all K scenarios can be used for minimization prob-
lems:

�Kk=1f(k,x) = μK
f (x) + κσK

f (x), (4)

where σK
f (x) is the standard deviation of f() over K

scenarios. The parameter κ can be chosen as 1, 2 or 3,
depending on the importance of the standard deviation over
the mean. Such an aggregate measure will give adequate
importance to the distribution of f() for different scenarios.

For maximization problems, κ can be considered negative.
Due to its complexity, we do not consider this aggregation
scheme in this paper.

4) Weighted-Sum Aggregation: In a generic problem
setting, different scenarios may have different importance.
For example, if p-th scenario happens more often than q-
th scenario, then a large weight can be used for the p-th
scenario and the following weighted-sum function can be
used:

�Kk=1f(k,x) =
1∑K

k=1 wk

K∑
k=1

wkf(k,x), (5)

Certainly, other aggregate methods are possible, but the
above presents the most common strategies. We now discuss
aggregate strategies for handling constraints under multiple
scenarios.

B. Handling Constraint Functions

A constraint function determines whether a solution is
feasible or not. For example, if the stress developed in
a structure must be at most the strength of the material
chosen for building the component, this constraint must
be computed and satisfied for every loading condition (say
k-th scenario). A check on the average of constraint val-
ues, weighted-sum of constraint values or other methods
discussed above is not enough to say that the solution is
feasible – the solution must satisfy every constraint for
every scenario. That is, only the worst-case aggregate of
the constraint function is applicable for handling constraints
under multiple scenarios. Thus, since the original constraint
is gj ≥ 0, we always adopt the following aggregation
function for handling constraints:

�Kk=1gj(k,x) =
K
min
k=1

gj(k,x) ≥ 0. (6)

2602

III. PROPOSED MULTI-OBJECTIVE MULTI-SCENARIO

APPROACH

The above approaches do not change the dimension of
the optimization problem. That is, the objective function and
constraint functions are modified by certain transformations
and the original single-objective optimization problem re-
mains as a single-objective problem. To solve such problems,
a single-objective optimization approach (a classical method
[5][6] or an evolutionary approach [7]) can be used to find
the optimal solution.

However, the multi-scenario single-objective optimiza-
tion problem (given in Equation 1) can be converted into a
multi-objective optimization problem, as follows:

Minimize (f(1,x), f(2,x), . . . , f(K,x)) ,
subject to �Kk=1gj(k,x) ≥ 0, j = 1, 2, . . . , J,

x
(L)
i ≤ xi ≤ x(U)

i , i = 1, 2, . . . , n.
(7)

That is, the objective function computed for each scenario
now can be considered as a separate objective function,
thereby posing a multi-objective optimization problem. Al-
though the original problem is not a multi-objective one,
the multi-objectivization of the problem may help solve the
problem better, as found in other contexts [15][16]. The
constraint function can be considered using Equation 6.
Since each objective for each scenario is minimized, the
above problem may not have a single minimal solution,
particularly if scenarios are so different from each other
that they constitute a conflicting situation among multi-
scenario objective values [8]. For two or three scenario
problems, elitist non-dominated sorting genetic algorithms
(NSGA-II) [9] can be used, whereas for more than three
scenario problems, recently proposed NSGA-III [10] can be
used. Any trade-off Pareto-optimal solution will still satisfy
all constraints and under all K specified scenarios. Under
conflicting situation, a single trade-off solution must then be
chosen for implementation. The information of weights for
different scenarios can be used to perform a post-optimality
decision making to choose a preferred solution. The MCDM
literature [11][12] and recent EMO-MCDM studies [13][14]
suggest a number of methodologies for this purpose. The
knowledge of multiple trade-off solutions also allow a user
to have a better knowledge of different alternative solutions
which may be helpful in a longer run.

However, most real-world problems are multi-modal,
meaning that every scenario may give rise to a number
of optimal solutions. Although there may exist a common
optimal solution for all K scenarios, finding that solution
may be a difficult task. Figure 2 illustrates this aspect for a
hypothetical two-scenario maximization problem. Solutions
A to B are optimal for Scenario 1 and solutions A to C are
optimal for Scenario 2, but the only solution A is common
to both scenarios. Thus, when the problem is solved with
Scenario 1 alone, any point within AB can be obtained
(as they maximize the objective under Scenario 1). But
any solution on AB other than A does not simultaneously
maximize the objective function under Scenario 2. Pos-
ing the two-scenario problem as a two-objective problem
and solving for non-weak Pareto-optimal solutions makes
solution A as the target. NSGA-II [9] or NSGA-III [10]
approaches can be used for this purpose. Although a single

D

f(2,x)

Scenario 2
Optimal for

Optimal for
Scenario 1

A

B

C

f(1,x)

Fig. 2. Multiple scenarios are treated as a multi-objective optimization
problem. All feasible solutions are represented by the shaded region.
Solution A maximizes both scenarios.

solution is our target, due to the nature of the scenarios
themselves, the problem may be relatively easier to optimize
under some scenarios compared to others. In such problems,
although there will be only one Pareto-optimal solution for
a multi-objective optimization algorithm to find, seeking
for that single Pareto-optimal solution using the aggregate
approaches discussed in the previous subsection (worst-
case, average, or weighted-sum or mean-variance approach)
may overly emphasize on solving easier scenarios first by
ignoring the more difficult scenarios in the beginning of a
simulation run. In the context of the above figure, this may
cause an algorithm to converge to a solution like D. When
this happens, the search may have led to such a part in the
variable space from where it may be difficult to come out
and converge to the optimal region (AC) for the difficult
scenarios. What we would like to achieve in such situations
is a procedure that provides equal importance to all scenarios
from the start to the finish of an optimization run without
solving the scenarios in any hierarchical manner. Our multi-
objectivization approach allows a holistic optimization task
to be achieved, as the process would provide importance to
all scenarios simultaneously and importantly would keep a
useful diversity in solutions so as to not get ‘stuck’ dictated
by any particular influential scenario.

In the next section, we discuss a multi-scenario Byzan-
tine agreement problem. In the subsequent section, we
consider three different scenarios of the same problem and
demonstrate the usefulness of the multi-objective optimiza-
tion approach.

IV. BYZANTINE AGREEMENT PROBLEM

As a case study we focus on synthesizing fault-tolerant
programs for the Byzantine agreement problem [17][18]. We
utilize an evolutionary approach to synthesize programs. In
the Byzantine agreement problem, n processors communi-
cate with each other in order to reach an agreement on a
specific binary value. The problem consists of one general,
g and three non-generals, j, k, and l. First, the general makes
a decision and communicates it to the non-generals. After
communication with the general and with each other, the

2603

non-generals need to finalize their decisions. This com-
munication could be subject to a Byzantine fault where
the Byzantine participant (general or non-general) sends
incorrect values to other participants. It is necessary that
eventually all non-Byzantine non-generals finalize a decision
such that they satisfy a validity measure (if the general is
non-Byzantine, then all non-Byzantine non-generals finalize
their value to be equal to the decision of the general) and
an agreement measure (if the general is Byzantine, then the
finalized values by all non-generals are the same). Given the
structure of the problem, each process maintains a decision
variable d. We concatenate the name of the process to denote
the variable of that process. Hence, d.g denotes the decision
of process g, d.j denotes the decision of process j and
so on. The decision of a non-general can be 1, 0, or ⊥
(where ⊥ denotes that the process has not yet received
the decision from the general). Additionally, each process
maintains a read-only variable b. Thus, b.j denotes that
process j is Byzantine. Finally, all non-generals maintain a
variable f ; f.j denotes j has finalized its decision or whether
the decision of j is temporary.

A. Program Representation

In this work, the generated programs are round-based
distributed programs. The distributed system consists of a
finite number of processes. Each process is associated with
a set of variables, each with a finite domain. Some of
these variables are read-only and modified only by faults.
Other variables can be read or written by the process. These
processes execute in a round-based manner, i.e., in round
r, each process receives a message from (zero or more)
other processes. It utilizes the information received in these
messages to update its own state. Thus, the program of each
process has the structure shown in Figure 3.

Actions for variable x
if condition 1 then x = xi

elseif condition 2 then x = 0
elseif condition 3 then x = 1

Actions for variable y
if condition 1 then y = 0
elseif condition 2 then y = 1

... ...

Fig. 3. Program structure for each process is given above

The conditions shown in Figure 3 are Boolean expres-
sions involving the state of the process and the messages
received by the process in the previous round. Statements
update the variables of the process and send messages that
will be used in the next round. For brevity of modeling, we
partition the variables of the process into public and private
variables. Intuitively, in each round, the process sends its
updated public variables.

The conditions of a statement are evolved by genetic
programming (GP), but the statements themselves are not.
Instead, they are specified by the designer. The approach to
design these statements is to choose a writable variable of
the given process and assign a value to it from its domain.
For example, if x is a Boolean variable of the program, then

two possible statements are x = true and x = false. Other
actions could be chosen by considering the specification,
e.g., if a variable is used to identify a distance from a
fixed node, it could be incremented or decremented based on
messages received by the process. We choose all variables
that a process could read and write. Then, for each variable,
we construct actions by assigning to that variable all possible
values allowed by the program specifications. For a writable
variable, the process in each round runs one of the actions
for this variable, or none of them, based on the conditional
statements evolved by GP.

B. Genetic Programming

The conditions shown in Figure 3 are evolved using a
stack-based GP [19][20]. The Stack-based GP has several
advantages in producing round-based programs. It is able
to directly perform on the linear statements, guarantees
the safety of resulting programs [21], and is not effected
by noneffective code (introns). The conditions shown in
Figure 3 regulate the execution of actions that are the targets
of evolution. Conditional statements consist of a series of
Boolean conditions connected by Boolean operators (∧ or
∨). Each Boolean condition consists of any one of the
variables a process could read and compare with any value
from its domain or the same type of variable. Genotype used
in stack-based GP is comprised of one or more genomes that
are represented as a vector of integers. Each genome that
represents a series of conditional statements for a process
is decoded into conditions and Boolean operators, and these
conditions and operators are pushed into the operand stack
and operator stack respectively to obtain the corresponding
program. A generated program consists of multiple series of
such statements.

V. SIMULATION RESULTS

All simulations use a population size of 100 and the
genome size is 80. A single-point crossover operator with
pc = 0.95 and an integer-wise mutation with pm = 0.0375
are used. We set the maximum number of generations to
500. All experiments are run on an intel CORE-i7 (2.9
GHz) machine with 8 GB RAM. Each solution is tested
in three different scenarios, and for each scenario, we run
the generated program for a pre-specified number of times
checking how many properties the program satisfies.

A. Modeling Objective Functions

The performance measure of a solution to the Byzantine
agreement problem must be considered for three different
criteria:

• Validity: If the general is non-Byzantine, then the
final decision of a non-Byzantine non-general must
be the same as that of the general.

• Agreement: The final decision of two non-
Byzantine processes must be the same.

• Termination: All non-Byzantine non-generals must
eventually finalize their decisions.

Using the above criteria, we evaluate a solution for three
different scenarios: (1) when no process is Byzantine, (2)

2604

when some non-general is Byzantine, and (3) when the
general is Byzantine. The goal of the GP is to evolve
programs that work well in all these scenarios. Next, we
describe how the objective function is constructed for each
scenario.

Scenario 1: No Byzantine process. The objective value of
individuals is calculated as the average of two distinct cases:
one in which the decision of the general is 0, and another in
which it is 1. For each of these cases, the objective function
of the individual is based on the nine properties that have to
be satisfied when there is no Byzantine process. Hence, for
the objective for Scenario 1 is defined as follows:

From validity: Q1 = (d.j == d.g), Q2 = (d.k ==
d.g), Q3 = (d.l == d.g)

From agreement: Q4 = (d.j == d.k), Q5 = (d.k ==
d.l), Q6 = (d.j == d.l)

From termination: Q7 = (f.j == 1), Q8 = (f.k ==
1), Q9 = (f, l == 1)

The objective function Fno byz(P) is now calculated by
counting the number of properties that are satisfied and
normalized to one. Thus,

Fno byz(P) =
1

2

2∑
d.g=1

1

9

9∑
i=1

f(P |= Qi). (8)

Scenario 2: One of the non-generals is a Byzantine. In the
following discussion, let l be the Byzantine process of a non-
general. In round-based computation, each process sends
some information to other processes in each round. Mod-
eling Byzantine process in this context is straightforward: a
Byzantine process sends random decision values to other
processes (Possibly different decision values to different
processes). If l is the Byzantine process then only Q1, Q2,
Q4, Q7 and Q8 (denoted as Qrelevantl) have to be satisfied.
Hence, we evaluate the candidate program for each of these
properties. This experiment is repeated for cases where the
initial decision of the general is 0 or 1 as well as for the
cases where processes j and k are Byzantine. A total of 120
runs are made in this scenario. Since this involves a total of
six possible experiments, each of which identifies how the
five properties are satisfied, the objective function is defined
as follows:

Fbyz non general(P) =

1
2

2∑
d.g=1

1
3

j,k,l∑
byz

1
5 (f(P |= Qrelevantbyz).

(9)

Scenario 3: The general is a Byzantine. If the general
is a Byzantine, then only Q4 − Q9 need to be satisfied.
This experiment is repeated n = 20 times and the objective
function is the average value of how these six properties
are satisfied in each experiment. The objective function is
computed as follows:

Fbyz general(P) =

1
n

n∑
m=1

1
6

9∑
i=4

f(P |= Qi).
(10)

In all three scenarios, the objective function is maximized.
Each of these objective functions has a maximum value

of one, and there exists at least one solution P that will
correspond to the maximum of all three objectives. We are
now ready to discuss results of our simulations.

B. Worst-Case Aggregation Results

In the worst-case aggregation, the objective function
is computed as the worst performance among the three
scenarios:
F (P) =
min (Fno byz(P), Fbyz non general(P), Fbyz general(P)) .

Figure 4 shows the variation of population-average objective
value of each scenario with the generation number. It is clear

0 20 40 60 80 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Single objective (Worst Case)

Generation

A
ve

ra
ge

 o
bj

ec
ti

ve
 v

al
ue

 o
f

ea
ch

 s
ce

na
ri

o

Scenario 1

Scenario 2

Scenario 3

Fig. 4. Variation of three objectives with generation is shown for the worst-
case aggregation method. The vertical dashed line shows the generation
when the optimal solution for all three objectives (equal to one) is obtained
for the first time.

from the figure that Fno byz and Fbyz non general reach their
maximum values quickly, whereas Fbyz general takes a large
number of generations to come close to its maximum value.
In this case, the optimal solution P∗ that maximizes all
three objectives is found at generation 98. The corresponding
solution is presented in Figure 5.

Actions for d.j
if (d.j == ⊥) ∧ (f.j 	= 1) ∧ (d.j 	= 1) then d.j = d.g
elseif (d.k == d.l) ∧ (d.k == 0) then d.j = 0
elseif (d.k == d.l) then d.j = 1

Actions for f.j
if (d.j 	= ⊥) ∧ ((d.l 	= ⊥) ∨ (d.l == ⊥))

∧((d.l == d.j) ∨ (d.k == d.j)) then f.j = 1

Fig. 5. One of the Generated Solution for Byzantine Agreement
Program

Although the optimal solution was found eventually, due
to the unequal emphasis for all three objectives in the worst-
case aggregation scheme, it was difficult for the GP to find
the optimal solution quickly.

2605

C. Average-Case Aggregation Results

The three objective functions are simply averaged here
and the average function value is maximized. Figure 6
shows the variation of population-average value of all three
objectives. A similar observation can be made here as well,

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Single objective (Average Case)

Generation

A
ve

ra
ge

 o
bj

ec
ti

ve
 v

al
ue

 o
f

ea
ch

 s
ce

na
ri

o

Scenario 1

Scenario 2

Scenario 3

Fig. 6. Variation of three objectives with generation is shown for the
average-case aggregation method.

however, the convergence to the true optimal solution is
quick. Due to the averaging effect, although all three ob-
jectives get emphasized, the process still sets a hierarchical
importance to three objectives.

D. Mean-Variance Aggregation Results

Next, we use the following aggregate function derived
from three objective values:

F (P) = μ (Fno byz(P), Fbyz non general(P), Fbyz general(P))
−2σ (Fno byz(P), Fbyz non general(P), Fbyz general(P)) .

and maximize F (P). Figure 7 shows the variation of
population-average objective values. Due to the considera-
tion of both (increasing) mean and (reducing) standard devi-
ation of objective values, all three objectives get emphasized
and the optimization method is able to quickly converge to
the true optimal solution.

E. Weighted-Sum Aggregation Results

The worst-case and average-case aggregation results have
shown that it is relatively easy to solve Fno byz(P) and
Fbyz non general(P), and in both cases the algorithm waits
until it solves the third objective to find the true optimum. If
for this reason or for another reason of preferring the third
objective more than the first two objectives, we use the fol-
lowing weighted-sum of three objectives as an aggregation
scheme:

F (P) = 0.25Fno byz(P) + 0.25Fbyz non general(P)
+0.5Fbyz general(P),

and maximize F (P). Figure 8 shows the variation of
population-average objective values. Due to the emphasis

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Single objective (Mean Variance)

Generation

A
ve

ra
ge

 o
bj

ec
ti

ve
 v

al
ue

 o
f

ea
ch

 s
ce

na
ri

o

Scenario 1

Scenario 2

Scenario 3

Fig. 7. Variation of three objectives with generation is shown for the
mean-variance aggregation method.

put on the third objective now, the third objective reaches
its maximum quickly, but the the first two objective takes
a long time to converge to their maximum values. Note
that for the third objective, there exist a number of optimal
solutions. Unfortunately, the algorithm converges to one
solution that does not correspond to the maximum of the
first two objectives. It takes the algorithm 200 generations to
find the optimum that is shared between all three objectives.
Therefore, if different weights need to be used for different
objectives, the use of a single weighted-sum of objectives
(F (P)) may not be the right way forward.

0 50 100 150 200 250
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Single objective (Weighted Sum)

Generation

A
ve

ra
ge

 o
bj

ec
ti

ve
 v

al
ue

 o
f

ea
ch

 s
ce

na
ri

o

Scenario 1

Scenario 2

Scenario 3

Fig. 8. Variation of three objectives with generation is shown for the
weighted-sum aggregation method.

F. Multi-objective Results

We employ NSGA-II procedure and solve the Byzantine
agreement problem as a three-objective optimization prob-
lem. NSGA-II does not require any additional parameters

2606

and identical genetic operators are used here. Figure 9 shows
the population-average objective values with generation. A
comparison of this figure with that obtained for all the
previous single-objective methods reveals an interesting fact.
All three objectives increase more or less in a similar
manner. Since all objectives are emphasized simultaneously
in a multi-objective optimization problem, the population
maintains a good diversity of solutions and no objective
is ignored or less-emphasized. The optimal solution for all
three objectives is also obtained quickly by this method.

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Muilti−Objective

Generation

A
ve

ra
ge

 o
bj

ec
ti

ve
 v

al
ue

 o
f

ea
ch

 s
ce

na
ri

o

Scenario 1

Scenario 2

Scenario 3

Fig. 9. Variation of three objectives with generation is shown for the
multi-objective method.

G. Specific Bi-objective Aggregation Results

When the number of scenarios is large, the above multi-
objective approach will be required to handle many ob-
jectives. Unfortunately, NSGA-II or other domination-based
evolutionary approaches are not adequate in handling more
than three or four objectives. However, recently proposed
decomposition-based methods such as NSGA-III [10] or
MOEA/D [22] are potential algorithms for handling many
scenarios. Another approach to handling many scenarios
would be to club a few scenarios together into one class and
thereby reduce the number of scenarios for optimization. To
demonstrate this method, we merge the first two scenarios
into one and compute the combined objective function as
F1(P) = (Fno byz(P) + Fbyz non general(P)) /2 and use
the third objective as the second objective for a bi-objective
optimization (F2(P) = Fbyz general(P)). NSGA-II is then
employed to solve this specific bi-objective problem.

Figure 10 shows the variation of the population-average
objective value of each of the three original objectives. The
growth of three objective values is closer to each other,
meaning that the optimization algorithm is able to emphasize
all three objectives in a similar manner when arriving at the
optimal solution.

To summarize the outcome of all six methods, in Table I,
we tabulate the number of successful runs and best, median
and worst number of generations (of 25 runs) required to

0 10 20 30 40 50
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Bi−Objective

Generation

A
ve

ra
ge

 o
bj

ec
ti

ve
 v

al
ue

 o
f

ea
ch

 s
ce

na
ri

o

Scenario 1

Scenario 2

Scenario 3

Fig. 10. Variation of three objectives with generation is shown for the
bi-objective method.

arrive at the optimal solution P∗ that maximizes all three
objectives. The best values are shown in bold font. The

TABLE I. PERFORMANCE OF SIX ALGORITHMS FOR SOLVING

BYZANTINE AGREEMENT PROBLEM.

Optimization Success Min # Median # Max #
Approach Rate Gens. to Gens. to Gens. to

(%) Converge Converge Converge
Worst-Case 92 8 98 172
Average-Case 92 6 29 111
Mean-Variance 96 6 31 366
Weighted-Sum 48 5 200 421

Multi-objective 100 5 29 386
Bi-objective 96 4 27 349

table shows that multi-objective methods are not only more
successful, but they are also quicker in most of their runs.
Among the single-objective methods, average-case and the
mean-variance methods are better for this problem.

VI. DISCUSSION

It is clear that multi-objective approach is able to main-
tain an equal emphasis on each of the three objectives from
the start to the end of the optimization process. The reason
for this behavior is the natural diversity among optimal
solutions for different objectives that an evolutionary multi-
objective optimization (EMO) method maintains. To inves-
tigate this aspect further, we compute a diversity measure as
follows.

At every generation, we compute the centroid F̄ of
the population members in the objective space. Then, we

compute the the distance di =
√∑3

i=1(fi − f̄i)2 of each
objective vector from the centroid. The diversity measure is
then calculated by taking an average of the distance values,
or D =

∑N
i=1 di/N . When this measure is plotted with gen-

eration counter, it will indicate the diversity of the population
in the objective space. Figure 11 plots this diversity metric
for all six methods. It is clear from the plot that single-

2607

0 5 10 15 20 25 30 35 40 45 50
10

−3

10
−2

10
−1

Generation

D
iv

er
si

ty
 M

ea
su

re
, D

Bi−Objective

Multi−Objective

Mean−Variance

Worst−CaseAverage

Weighted−Sum

Fig. 11. Diversity measure D with generation counter for six methods of
this study.

objective methods lose diversity very quickly, whereas both
bi-objective and three-objective methods are able to maintain
a large diversity all along. For a method, if the optimal
solution P∗ is found, the variation after its occurrence in
the population is marked with a dashed line. A reason for
poor performance of some of the single-objective methods is
their rapid loss of diversity. Once the population gets stuck
to the optimum of one of the objectives and the population
diversity is small, evolutionary algorithms have difficulties
in getting out from there. In multi-scenario problems, an
optimal solution for all scenarios is the target, and getting
stuck to an optimum for one scenario is often detrimental in
arriving at the desired solution. It is now amply clear that
due to presence of diversity in the population throughout
the entire evolution process, multi-objective methods have
performed well in the Byzantine agreement problem.

VII. CONCLUSIONS

In this paper, we have presented different methods
for addressing multi-scenario optimization problems which
often occur in practice. We then have discussed various
aggregation methods of deriving a single objective function
and constraint function value, which then can be used in an
optimization algorithm. We have also proposed generic and
specific multi-objective optimization approaches in which
objectives for different clusters of scenarios can be optimized
as a multi-objective manner. On a Byzantine agreement
problem, we have demonstrated that the multi-objective
approaches are able to maintain adequate diversity of the
solutions so generation operators of an evolutionary algo-
rithm are able to emphasize each objective function arising
from every scenario uniformly to eventually find the desired
optimum without getting stuck anywhere in the search space.

The idea portrayed and demonstrated in this paper is
generic and is ready to be applied to other multi-scenario
optimization problems from engineering and other compu-
tational optimization fields.

REFERENCES

[1] C. D. Laird and L. T. Biegler, Large-Scale Nonlinear Programming
for Multi-scenario Optimization. Springer, 2008, pp. 323–336.

[2] D. Varvarezos, L. Biegler, and I. Grossmann, “Multi-period design
optimization with sqp decomposition,” Comp. Chem. Eng., vol. 18,
no. 7, pp. 579–595, 1994.

[3] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ
Replication: A Hybrid Quorum Protocol for Byzantine Fault Toler-
ance,” in Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, 2006.

[4] P. -L. Aublin, S. B. Mokhtar, and V. Quéma, “RBFT: Redundant
Byzantine Fault Tolerance,” in 33rd IEEE International Conference
on Distributed Computing Systems, 2013.

[5] K. Deb, Optimization for Engineering Design: Algorithms and Ex-
amples. New Delhi: Prentice-Hall, 1995.

[6] G. V. Reklaitis, A. Ravindran, and K. M. Ragsdell, Engineering
Optimization Methods and Applications. New York : Wiley, 1983.

[7] D. E. Goldberg, Genetic Algorithms for Search, Optimization, and
Machine Learning. Reading, MA: Addison-Wesley, 1989.

[8] K. Deb, Multi-objective optimization using evolutionary algorithms.
Chichester, UK: Wiley, 2001.

[9] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[10] K. Deb and H. Jain, “Evolutionary many-objective optimization algo-
rithm using reference-point based non-dominated sorting approach,
Part I: Solving problems with box constraints,” IEEE Transactions
on Evolutionary Computation, in press.

[11] K. Miettinen, Nonlinear Multiobjective Optimization. Boston:
Kluwer, 1999.

[12] V. Chankong and Y. Y. Haimes, Multiobjective Decision Making
Theory and Methodology. New York: North-Holland, 1983.

[13] J. Branke, K. Deb, K. Miettinen, and R. Slowinski, Multiobjective
optimization: Interactive and evolutionary approaches. Berlin,
Germany: Springer-Verlag, 2008.

[14] K. Deb, J. Sundar, N. Uday, and S. Chaudhuri, “Reference point
based multi-objective optimization using evolutionary algorithms,”
International Journal of Computational Intelligence Research (IJ-
CIR), vol. 2, no. 6, pp. 273–286, 2006.

[15] J. D. Knowles, R. A. Watson, and D. W. Corne, “Reducing local
optima in single-objective problems by multi-objectivization,” in
Proceedings of the First International Conference on Evolutionary
Multi-Criterion Optimization (EMO-01), 2001, pp. 269–283.

[16] D. Saxena and K. Deb, “Trading on infeasibility by exploiting
constraint’s criticality through multi-objectivization: A system de-
sign perspective,” in Proceedings of the Congress on Evolutionary
Computation (CEC-2007), in press.

[17] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals
problem,” ACM Transactions on Programming Languages and
Systems, vol. 4, no. 3, pp. 382–401, Jul. 1982. [Online]. Available:
http://doi.acm.org/10.1145/357172.357176

[18] S. S.Kulkarni, A. Arora and A. Chippada, “Polynomial time syn-
thesis of Byzantine agreement,” in IEEE Symposium on Reliable
Distributed Systems(SRDS), 2001, pp.130–140.

[19] L. Spector and A. Robinson, “Genetic programming and autocon-
structive evolution with the push programming language,” in Genetic
Programming and Evolvable Machines, 2002, pp. 7–40.

[20] T. Perkis, “Stack-based genetic programming,” in Evolutionary Com-
putation, 1994. IEEE World Congress on Computational Intelli-
gence., Proceedings of the First IEEE Conference on. IEEE, 1994,
pp. 148–153.

[21] M. Oltean, C. Grosan, L. Diosan, and C. Mihaila, “Genetic program-
ming with linear representation: a survey,” International Journal on
Artificial Intelligence Tools, vol. 18, no. 2, pp. 197–238, 2009.

[22] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary al-
gorithm based on decomposition,” Evolutionary Computation, IEEE
Transactions on, vol. 11, no. 6, pp. 712–731, 2007.

2608

