
 
 

 

  

Abstract—In a grid-computing service, Grid-RMS must 
generate suitable assignment combinations (execution blocks) 
for dependable service quality and satisfactory makespan 
(service time). In this paper, service reliability of a grid 
environment and makespan of a grid application are estimated 
via the universal generating function methodology and 
probability theory. Then, we represent a simplified swarm 
optimization (SSO) with the Pareto-set cluster (PC) to search 
the best assignment combinations in a grid environment with 
star topology. In terms of the task partition and distribution for 
a grid application, we employ a Pareto-set cluster to guide 
particle evolution, an elitist strategy to promote solution quality, 
and a simplified update mechanism to enhance the 
multi-objective optimization effectiveness. Finally, we assess the 
performance of the PC-SSO by the interactive tradeoff problem 
based on the analysis of four scenarios with respect to the 
bi-objective problem and given restrictions. 

I. INTRODUCTION 
A grid environment consists of many distributed and 

heterogeneous computing devices, which can process several 
mass and complex workloads. Owing to the 
high-performance computing (HPC) service of a 
grid-computing cluster, the grid environment for all 
applications has a great future. However, in a grid 
environment, grid resource management system (Grid-RMS) 
usually requires efficiently assigning subtasks (task 
partitions) to adequate resources through the communication 
links. In recent decades, the widespread deployment of grid 
environments has become necessary for scientific and 
industrial applications [1]. Grid-computing, which involves 
virtual services generated from grid-computing environment, 
was proposed in 1995 in the I-WAY project by DeFanti et al. 
[2]. In brief, the grid environment connects idle computing 
devices on the network and clusters them together to provide 
high-performance computing (HPC) in a manner analogous 
to parallel processing. In fact, the grid environment is a 
distributed and heterogeneous computing environment. The 
grid-computing technique can facilitate resource 
virtualization, on-demand provisioning, and service 
(resource) sharing between organizations [3]. Thus, the grid 
computing not only provides collaborative resource sharing 
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but also supplies high-performance computing services from 
dynamic virtual organizations at different locations. 

The high performance of grid-computing facilitates the 
resolution of large-scale, highly complex, and 
time-consuming problems that can be processed solely by 
supercomputers. Examples of such problems include 
earthquake simulation, climate modeling, the Human 
Proteome Folding Project, and the Clean Energy Project. 
However, the performance of grid-computing techniques is a 
focal point for expanding applications of the grid 
environment. The grid environment using a resource 
management system (Grid-RMS) to operate the progress of 
task request assignment, when a Grid-RMS receives a task 
from job request of a client (Grid user), the Grid-RMS 
considers how to segment the task and how to allocate 
subtasks to suitable computing devices. The designated 
computing devices with assigned subtasks constitute an 
execution block (EB) for the Grid-RMS, and every EB can 
perform assigned subtasks simultaneously, in a manner 
analogous to parallel computing. After the designated 
computing devices finish their allocated subtasks in each EB, 
they return the result to the Grid-RMS, which then integrates 
all results into a complete output for the task and delivers this 
output to the client that requested the service. Hence, the 
performance of grid-computing techniques in terms of 
processing time and completive reliability is controlled by a 
Grid-RMS within the grid environment [4]. 

At present, the technique of grid-computing is still under 
development. One difficulty involves managing task 
partitions and devices allocation for large-scale applications 
of enterprises and governments. If the Grid-RMS of the grid 
environment is not competent to distribute adaptable 
computing devices to subtasks, the performance of the entire 
grid environment, including system reliability, processing 
time, and operational cost, would be affected. In 
grid-computing management issues such as these, no 
adequate methodology yet exists to handle the problem of 
resource (computing devices) and subtask allocation. 

According to reviews about grid-computing [1]-[5], there 
are many essential QoS (quality of service) requirements for a 
grid-computing service, and these depend on the architecture 
of the grid environment. Without the essential services, the 
grid-computing technique would be hard to popularize. The 
global requirements that grid-computing must satisfy are 
listed below: 

1) Reliability: The grid environment must promise 
continuous service, stable connections, and safe sharing. 

2) Performance: To achieve data and resource sharing, 
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the grid environment must make sufficient use of all 
computing resources to avoid wastage due to idle resources. 
Consequently, resource sharing should increase the 
effectiveness of the grid environment. 

3) Standardization: Grid environment has a standard 
portal with normal interface and consistent protocol without 
involving restrictions on connection type or communication 
facility. 

4) Accessibility: To request a service from a 
grid-computing system, clients must be able to connect 
arbitrarily on the network and to communicate with a browser 
in the customary manner at any time and from any location. 

The extension of grid-computing will be in proportion to its 
implementation of the abovementioned requirements. 
Assuming correct standardization and normal accessibility in 
a secure grid environment, we focus herein on the 
optimization of two themes: service reliability and service 
time. Generally, we evaluate service reliability by analyzing 
assigned subtasks and designated online resources. However, 
different computing resources and communication links have 
different rates of execution and transmission failures when 
running EB subtasks for a grid environment. Thus, service 
reliability depends on the resources and links. Similarly, the 
resources and links of a grid environment affect the execution 
time as well because of their different computing and 
transmission speeds. Therefore, service reliability and 
execution time are strongly interrelated. In this paper, we 
propose using Pareto-set cluster Simplified Swarm 
Optimization (PC-SSO) to optimize the twin targets of 
service reliability and service time for a grid environment 
with a star topology. 
The remainder of the paper is arranged as follows: In Section 
2, we discuss the related work about the Grid-RMS. In 
Section 3, we describe the mathematical model for a grid 
environment with the star topology. In Section 4, we propose 
simplified swarm optimization with the concept of the 
Pareto-set cluster and elitist strategy. In Section 5, and we 
present and explain the optimization results of PC-SSO. 
Section 6 gives the advantages of using the PC-SSO method 
to address the bi-objective problem posed by grid 
environments, presents the results of the study, and mentions 
our future work. 

II. RELATED WORK 
In this section, we discuss some related works about 

Grid-RMS first, and then point out the main diversity of our 
work. Generally, the aspect of Grid-RMS is analogous to a 
matchmaker or broker for subtask and resource matchmaking, 
which would dispose adequate assignment combinations for 
some certain quality of service (QoS) requirements like 
service reliability, makespan, and resource utility etc [6]. 
These feasible assignment combinations consisted of many 
task partitions and computing resources are execution blocks 
(EBs) for completing a grid application from a task request. 
Hence, the Grid-RMS is responsible for balancing 
supply-demand matchmaking process and generating 
subtasks-resources allocation proposals in a grid environment 

[7]. Although some Grid brokers have been developed for the 
basis of grid market and deployed in grid infrastructures, 
these brokers in consideration of fault tolerance, cost and 
runtime is still in its infancy [7], [8]. Buyya et al. [8], [9] 
developed a distributed computational economy-based 
resource broker, named Nimrod-G, to allocate and regulate 
supply and demand of a grid environment with a view of 
deadline, budget, and other required QoS. Dogan and 
Ozguner [10] studied that as the resource price could vary 
with different scheduling time intervals, the independent 
tasks would be scheduling towards multiple QoS 
requirements such as timeliness, reliability, version, and 
priority. Li and Li [11] proposed a price-directed proportional 
resource allocation algorithm for solving the grid task agent 
resource problem. When given specified completion time or 
resource pricing policy, this algorithm could spend the least 
possible amount of money or runtime to finish the grid 
application. Liu et al. [12] proposed a fuzzy particle swarm 
optimization to dynamically schedule the task requests to 
accomplish the minimal makespan. Chauhan and Joshi [13] 
published QoS Guided heuristic algorithms for grid task 
scheduling, whose simulation results using GridSim are 
better than other conventional algorithms. Yang et al. [14] 
proposed a Bayesian optimization algorithm to minimize the 
makspan for the multiprocessor scheduling problem in 
heterogeneous computing environments. In terms of a grid 
application and a grid environment, Dai and Levitin [5], 
[15]-[17] formulated a task allocation model and applied 
genetic algorithm to optimize a single objective function 
(makespan or reliability) with constraints. We looking ahead, 
it is necessary and predictable to simultaneously concern 
makespan, reliability and other QoS requirements in a 
Grid-RMS. Above related work mostly focused on a single 
objective function with additional constraints, which is not 
enough to fulfill important QoS requirements towards a 
distributed and heterogeneous computing environment. 
Furthermore, so far none really multi-objective evolutionary 
algorithm has been developed for the Grid-RMS, whose task 
allocation model is related to makespan of a grid application 
and service reliability of a grid environment. Chitra et al. [18] 
integrated hybrid local search with multi-objective 
evolutionary algorithm (MOEA) [19] such as SPEAII and 
NSGAII to optimize makespan and reliability index for the 
task scheduling system model; however, their assumptions of 
perfect communication link confined their work to a 
heterogeneous computing environment. Therefore, in terms 
of a distributed and heterogeneous computing environment, 
we first propose a bi-objective evolutionary algorithm 
(PC-SSO) as a task allocation model of Grid-RMS to deal 
with the interactive tradeoff problem between service 
reliability and makespan and to generate a non-dominated 
solution set so as to make task allocation by way of choosing 
a proper solution for a specified scenario. 

III. MATHEMATICAL FORMULATION 
In this paper, the deployment of grid environment we 

concentrated is a star topology depicted as Fig. 1 [5], where a 
computer host as a Grid-RMS to serve grid users is connected 
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computing nodes (resources) through their mutually 
independent communication channels (such as a Gigabyte 
Ethernet with star topology). 
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Fig. 2. Diagram of execution block in Grid-RMS 

When the Grid-RMS receiving and approving one or more 
task request, it could perceive the idle resources among the 
provision agreement of the underlying grid-computing 
resources, and generated several execution blocks (EBs) 
composed by resources of a grid environment and subtasks of 
a grid application. In this paper, the execution blocks 
distributed and generated by Grid-RMS are shown in Fig. 1. 
The Grid-RMS [5] determines the subtasks and resources 
allocation, which forms a group within the EB. In each EB, 
every assigned subtask has a definite required batch of input 
data with fixed complexity (ck) and a definite output data 
quantity (dk). Similarly, the designated resources and 
respective connections of every EB possess individual 
processing speeds (xj), processing failure rates (λj), 
transmission speeds (sj), and communication failure rates (πj). 
Thus, the Grid-RMS can estimate the service reliability and 
service time for a given set of EBs. In other words, the service 
reliability and service time can vary between unequal EBs 
with different subtask sets (σi) and resource sets (ωi). 

In terms of the task allocation model of a Grid-RMS [5], 
The Grid-RMS divides tasks requested by clients into m 
subtasks that can be executed independently by resources 
within the grid environment. Thus, the computational 
complexity Ci of EB-i, which comprises a set of subtasks σi, 

is 

( )
1

1
m

i k i
k

C c k σ
=

= ⋅ ∈∑   (1) 

Grid-RMS sends essential data blocks to a resource of EB-i, 
and the resources of EB-i also send generated data to the 
Grid-RMS. The total amount Di of input and output data 
transmitted between the Grid-RMS and an EB-i resource is 
given by  

( )
1 1

1 + 1
i

m n

i k i x k
kk x

D O k I x B
σ

σ
∈= =

⎛ ⎞= ⋅ ∈ ⋅ ∈⎜ ⎟
⎝ ⎠∑ ∑ ∪ , (2) 

where Bk denotes a set of required input data blocks for 
subtask k, Ix denotes the size of data block x, and Ok denotes 
the amount of output data produced for subtask k by a 
resource. Moreover, the Grid-RMS does not perform multiple 
imports of the identical input-data block x; therefore, the total 
amount of input data for EB-i diminishes by removing 
identical data blocks from different subtask k of EB-i via the 
union operation (

i
kk

B
σ∈∪ ). Therefore, the total amount of 

data transmitted from the Grid-RMS to an EB-i resource is 

( )1
1

i

n
x kx k

I x B
σ= ∈

⋅ ∈∑ ∪ . In EB-i, the execution state of 

resource j processing a set of subtasks σi may be either 
complete or incomplete. The random time tij to complete 
subtasks σi can be estimated by  

ˆ ,  if   has been done by R -

,  if   has not been done by R -

i i
ij i

ij j j
i

C D
t jt x s

j

σ

σ

⎧⎪ = += ⎨
⎪∞⎩

, (3) 

The time for incomplete subtasks σi is infinity.  
If the resource j and link j do not fail during the time that 

subtasks σi are processed by resource j (in EB-i), the 
probability of completing the subtasks is  

( ) ( ) ( ) ˆˆ ˆPr j j ijt
ij ij j ijt t p t e λ π− += = = , (4) 

and the probability that subtasks σi are incomplete is the 
following complement: 

( ) ( )ˆPr 1ij j ijt p t= ∞ = −   (5) 

In EB-i, an individual resource j from among a set of 
resources ωi is allocated identical required processing 
subtasks σi. Thus, the random time to complete EB-i is the 
shortest time within which subtasks σi can be processed by 
resource j from among the set of resources ωi:  

( ),
ˆmin

i i
i ijj

tω ω
θ

∈
=   (6) 

In the grid environment, the entire task is finished when all 
the subtasks of EB-i are finished. Thus, the random time for 
completing the entire task is 

( ),1 1
ˆmax max min

i i
i ijji h i h

tω ω
θ

∈≤ ≤ ≤ ≤
⎡ ⎤Θ = = ⎢ ⎥⎣ ⎦

  (7) 

Levitin and Dai [5] use the u-function Uh, [20]-[22] for the 
PMF of the service time Θ of a grid environment with star 
toplogy, so the service reliability [R(Θ ≠ ∞)] as well as the 
conditional expected service time W can be estimated. After 
the u-function Uh(z) eliminates the probability of incomplete 
grid application (Θ = ∞), the probabilities of completion grid 

1595



 
 

 

application are summed as the service reliability [R(Θ ≠ ∞)]: 
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The conditional expected service time W of the grid 
environment can be evaluated through the conditional 
expected value E(Θ⎪Θ≠ ∞) as follows: 
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Thus, the resource allocation model for a Grid-computing 
service can be formulated as a discrete bi-objective COP 
(combinatorial optimization problem), for which the decision 
variables and bi-objective function are described as follows: 
 
Decision variables 

Binary variables: X={xkj| xkj=0 or 1, k=1,…,N, j=1,…,M}, 
where xkj presents the state of subtask k assigned on resource 
j. If subtask k is processed by resource j, the xkp is 1, otherwise 
the xkp is 0. The solution space is 2N×M. 
 
Objective function 
Maximize R(Θ ≠ ∞) 
Minimize W  
Subject to: 

1
1 ,  

M

kj
j

x M k
=

≤ ≤ ∀∑ , (10) 

Θ ≤ θ*, (11) 
where θ* is the upper bound of service-time, that is, the 
guaranteed service-time as a QoS term for the SLA. 

IV. METHODOLOGY 
For the grid-computing reliability-time tradeoff problem, 

we propose a Pareto-set cluster simplified swarm 
optimization (PC-SSO) to search the (near) Pareto solutions 
with the Pareto frontier in grid environments with star 
topologies. The SSO was originally designed by Yeh 
[23]-[25] in 2009 to overcome the drawback of PSO in 
discrete problems and was called discrete PSO (DPSO). 
Simulation results reveal that SSO converges faster and offers 
a higher-quality solution than PSO alone. The procedure of 
the PC-SSO is illustrated in Fig. 2. 

 
Fig. 2. Flowchart for Pareto-set cluster simplified swarm optimization 

(PC-SSO) 

For the max-min bi-objective problem, Pareto frontier 
consists of several pairs of non-dominated bi-objective fitness 
values [R(Θ≠∞), W] that originate from one or more 
non-dominated subtasks-resources allocations. To find the 
Pareto frontier for each iteration, we adopt Graham’s scan 
[26], [27] to find a convex hull from which we construct 
several line segments to P1 (Wmin, Rmin) and P5 (Wmax, Rmax). 
We connect the provisional Pareto points resulted from 
convex hull, and then draw a Pareto frontier. Line segments 
LS of the convex hull CH and a set of Pareto points Pt are 
depicted in Fig. 3. 

Afterwards, we develop a concept of the Pareto-set cluster 
as the evolutional guidance of Pbest and Gbest, because Pbest 
and Gbest cannot determine the quality and diversity in the 
bi-objective problem. Therefore, we combine the concept of 
the Pareto-set cluster with SSO to find the Pareto frontier. The 
Pareto-set cluster is some part of Pareto points (Pt) wrapped 
in line segment (LS). In other words, the concept of Pareto-set 
clusters is used to group non-dominated solutions into several 
clusters to guide particle evolution so that each particle has a 
limited division to explore. Pareto-set cluster (PCc=4) includes 
Pareto points P4, D1, D2, P5 as shown in Fig. 3. For example, 
we have obtained a provisional Pareto frontier (PF) at an 
iteration, so the PF = {P1, A1, P2, B1, B2, P3, C1, C2, P4, D1, D2, 
P5}. If we let LS1 ={P1, P2 }, LS2 ={P2, P3 }, LS3 ={P3, P4 }, 
LS4 ={P4, P5}, then we obtain PC1 ={P1, A1, P2 }, PC2 = { P2, 
B1, B2, P3 }, PC3 = {P3, C1, C2, P4}, PC4 = { P4, D1, D2, P5}. 
 

 
Fig. 3. Conceptual diagram of Pareto frontier (PF) and Pareto-set cluster (PC) 
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After having obtained PF and PC, we can determine the 
selection probability Pr(PC) for each Pareto-set cluster for the 
next iteration. The sum dist(PCc) gives the sum of the 
distance between two ordered and adjoined points in a 
Pareto-set cluster PCc. The sum dist(PF) gives the sum of the 
distance between two ordered and adjoined points in a set of 
Pareto points PF. Therefore, Pr(PCc) is  Σdist(PCc) divided by 
Σdist(PF). In the next iteration, a particle can choose a 
Pareto-set cluster PC on which it can evolve based on the 
selection probability Pr(PC) of each Pareto-set cluster. In Fig. 
3, the selection probability of Pareto-set cluster Pr(PC4) is 
calculated from the sum ( 4 1P D + 1 2D D + 2 5D P ) divided by 

the sum ( 1 1P A + 1 2A P + 2 1P B + 1 2B B + 2 3B P + 3 1P C + 

1 2C C + 2 4C P + 4 1P D + 1 2D D + 2 5D P ) after the scales in 
service reliability and service time [R(Θ≠∞), W] are 
standardized. 

Furthermore, we apply the elitist strategy to PC-SSO, 
which generates a new Pareto frontier produced by 
integrating the previous and present Pareto frontiers, except 
for the 1st generation, and eliminates particles far from the 
convex hull. Thus, the elitist strategy can guarantee 
amelioration of the convex hull for each subsequent 
generation simply by retaining positive solutions and 
discarding negative ones. 

When updating each particle, PC-SSO takes the Pareto-set 
cluster PC and its selection probability Pr(PC) as the 
evolution trend for each particle upon the next generation. 
First, two particle pca and pcb randomly selects from a 
Pareto-set cluster PC by using the selection probability 
Pr(PCc) of each Pareto-set cluster. There are four roles (pca, 
pcb, current solution, random solution) in SSO. At iteration t, 
pca and pcb are two solutions of a Pareto-set cluster PC in the 
best-so-far PF, the current solution is xi, and the random 
solution is a solution xr generated at random. Subsequently, 
the updated mechanism is responsible for the process of each 
particle. The updated mechanism of the PC-SSO is based on 
the following simple mathematical model after cw, cp and cg 
are given: 

[ )
[ )

)
)

1 ,  0,

,  ,

,  ,

,  ,1

t t
i i w

t
i i w p

t
i t

i i p g

t
r i g

x if r C

pca if r C C
x

pcb if r C C

x if r C

−⎧ ∈
⎪

∈⎪⎪= ⎨ ⎡∈⎪ ⎣
⎪

⎡∈⎪ ⎣⎩ , (12) 
where Cp = cp+cw, and Cg = cg+cp+cw. 

V. EXPERIMENT RESULT 

A. Model of Bi-objective Problem with No Restrictions 
We adopted a grid-computing instance [5] to validate the 

optimization effectiveness of PC-SSO. The grid environment 
holds 6 resources and 8 independent subtasks. In the initial 
iteration, the PC-SSO randomly selects 1000 particles. We 
observe that these particles are scattered over the solution 
space rather than gathered in one region, some of which are 

located far from the ideal corner (Rmax= 1, Wmin= 0). Because 
PC-SSO retains elite particles and diminishes passive 
particles, all particles move toward the latest Pareto frontier. 
Positive particles in each generation are retained and updated 
(Fig. 4). 
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Fig. 4. Diagram of convex hull (CH) and non-dominated solutions (ND 

equal to PF) of every generation. 
 
By repeating 30 calculations of PC-SSO with identical 

setting 600 generations and 1000 particles, we obtain the best 
Pareto frontier PF. The best PF is listed in Table I. The best 
PF has 122 pairs of objective values [W, R(Θ≠∞)], which are 
discrete and piecewise distributed in solution space. 
However, if we randomly run a calculation of PC-SSO with 
an identical setup, we can obtain at least 100 Pareto optimal 
solutions, and a final PF could revive 71% (± 5%) of the best 
PF. In other words, we acquire 86 of the best PF, and the other 
solutions of a final PF closely approximate the solutions of 
the best PF. Furthermore, the best PF, whose service 
reliability is greater than 0.9, is repeated at a rate of 92% (± 
4%) by a final PF, which means that the final PF can duplicate 
62 of the best PF with a service reliability of 0.9. 

TABLE I 
THE BEST PARETO FRONTIER PF=[W,  R(Θ≠∞)] 

W R W R W R W R W R W R 

131.29 0.61911 151.32 0.69122 188.10 0.84865 222.81 0.90544 296.68 0.96280 349.63 0.96932
131.44 0.62000 151.41 0.69631 190.15 0.84983 222.85 0.90578 299.44 0.96330 354.93 0.96963
131.50 0.62632 152.52 0.77366 191.07 0.84986 224.72 0.90585 304.64 0.96335 358.02 0.96995
132.38 0.62775 155.20 0.77417 193.92 0.85022 225.19 0.90648 306.15 0.96362 369.13 0.97018
132.62 0.62845 158.69 0.77431 194.23 0.85042 225.98 0.90687 306.66 0.96380 421.94 0.97023
132.81 0.63470 158.73 0.77435 195.54 0.85157 230.49 0.90718 308.24 0.96400 425.36 0.97189
134.10 0.63914 159.18 0.77470 195.93 0.85166 233.56 0.90738 308.39 0.96443 427.88 0.97195
135.60 0.64263 162.78 0.77490 198.00 0.85288 237.44 0.90758 310.54 0.96464 430.05 0.97348
136.75 0.64300 163.16 0.77573 199.00 0.89439 240.29 0.90776 310.87 0.96495 432.62 0.97356
137.59 0.64462 168.86 0.77619 199.63 0.89456 257.16 0.90821 314.50 0.96499 435.43 0.97469
138.48 0.64715 174.47 0.77630 202.40 0.89911 260.33 0.92882 317.20 0.96566 438.08 0.97479
139.75 0.65033 174.57 0.77732 202.63 0.89946 261.23 0.93188 321.12 0.96634 446.71 0.97550
140.04 0.65218 175.66 0.78205 205.19 0.90130 261.63 0.93333 321.67 0.96641 449.54 0.97567
142.57 0.65335 176.16 0.78207 207.97 0.90273 262.32 0.93809 326.38 0.96692 449.85 0.97644
144.26 0.65754 176.61 0.78212 212.02 0.90358 263.40 0.94212 326.95 0.96717 452.69 0.97662
146.88 0.65817 176.71 0.78219 216.52 0.90365 264.26 0.94439 332.41 0.96730 481.52 0.98589
147.12 0.66979 177.74 0.78312 217.46 0.90374 267.48 0.96155 334.42 0.96740 483.84 0.99091
148.05 0.67132 180.39 0.78785 218.04 0.90389 279.59 0.96161 335.09 0.96769 ─ ─ 
149.51 0.67209 180.81 0.78790 220.48 0.90438 291.11 0.96169 338.03 0.96772 ─ ─ 
149.53 0.67905 181.94 0.78891 220.71 0.90475 292.08 0.96199 338.20 0.96821 ─ ─ 
151.21 0.68939 185.55 0.82169 221.23 0.90511 294.44 0.96206 343.49 0.96890 ─ ─ 

 
In addition, each service-time PMF of all Pareto solutions 
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for the best Pareto frontier PF can be derived by the UGFM, 
which can assist us in knowing about PF data such as the 
minimum service time, maximum service time, and the 
conditional expected service time (CEST equal to W) as well 
as its probability relative to individual completion service 
time. The procedure for obtaining a PMF is presented in the 
Appendix. Accordingly, we can determine a suitable 
allocation of subtasks and resources from the best PF for 
various scenarios. For example, if a grid-computing user is 
cautious with both completion service time and CEST, we 
can filter out some allocations from low-risk regions of PF 
because these regions have appropriate maximum completion 
time and small disparity with CEST. Conversely, if a user is 
just concerned about the optimization of two targets, 
high-risk as well as low-risk regions would be considered 
together. In this case, each PF service time is shown in Fig. 5. 
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Fig. 5. Maximum, minimum, and conditional expected service time of Pareto 

frontier (PF = [W, R(Θ≠∞)]) 

B. Model of Bi-objective Problem with Maximum Allowed 
Service Time 

We now turn to an actual constraint—the maximum 
allowed service time θ*. If a grid-computing user claims to 
restrain the maximum completion time, some Pareto frontiers 
PF = [W, R(Θ≠∞)] would become infeasible solutions 
because their maximum completion time would exceed the 
maximum allowed service time. Thus, we transform the 
bi-objective problem [W, R(Θ≠∞)] with the restriction of 
maximum allowed service time θ* into another bi-objective 
problem [θ, R(θ*)]. 

By repeating 30 calculations of PC-SSO with identical 
setting 600 generations and 1000 particles, we obtain the best 
Pareto frontier PF = [θ, R(θ*)] in this study. The best PF is 
listed in Table II. In this study, the best PF has 114 pairs of 
objective values [θ, R(θ*)], which are discrete and piecewise 
distributed in solution space. There are at least 96 Pareto 
solutions in a PC-SSO experiment, and a final PF could 
revive 81% (± 4%) of the best PF. In other words, we acquire 
92 of the best PSGS every time, and the other solutions of the 

final PF closely approximate solutions of the best PF. 
Furthermore, the best PF, whose service reliability is greater 
than 0.9, is repeated at a rate of 97% (± 3%) by the final PF, 
which means that the final PF can duplicate 66 of the best 
PSGS with a service reliability of 0.9. 

TABLE II 
THE BEST PARETO FRONTIER [PF = {Θ, Rmax(Θ*)}] WITH THE RESTRICTION OF 

MAXIMUM ALLOWED SERVICE TIME Θ* 
θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*)

131.29 0.61911 168.33 0.77280 231.75 0.89277 278.50 0.91077 353.00 0.95743 435.00 0.96740
131.50 0.62632 169.33 0.77368 232.25 0.89366 280.50 0.91168 357.00 0.95759 439.95 0.96760
135.25 0.62919 174.00 0.77490 233.50 0.89436 281.25 0.91213 362.33 0.95837 446.76 0.96817
136.00 0.63630 175.33 0.77619 234.25 0.89562 284.75 0.91411 368.33 0.95856 448.48 0.96818
138.57 0.64386 181.33 0.77732 235.75 0.89711 290.25 0.91454 376.67 0.95871 454.29 0.96849
141.86 0.65130 196.00 0.77838 243.25 0.89874 291.75 0.91470 378.00 0.96013 461.10 0.96864
146.33 0.65218 197.67 0.77860 245.50 0.89977 293.50 0.91552 378.38 0.96029 464.67 0.96890
146.67 0.65335 205.14 0.81415 248.50 0.90065 294.50 0.91602 378.67 0.96034 473.33 0.96932
148.43 0.65615 208.29 0.81726 249.50 0.90309 295.50 0.91641 380.67 0.96145 480.33 0.96963
149.57 0.65833 209.20 0.81785 257.75 0.90370 299.50 0.91712 385.62 0.96202 483.00 0.96995
150.67 0.67501 209.43 0.81812 259.75 0.90477 301.25 0.94459 392.43 0.96217 498.00 0.97018
152.57 0.67846 213.00 0.83404 262.00 0.90502 301.50 0.94525 393.71 0.96264 571.00 0.97189
153.57 0.67876 214.10 0.83448 262.25 0.90582 312.75 0.94577 394.14 0.96291 576.67 0.97348
155.33 0.67983 214.14 0.83478 262.75 0.90668 313.25 0.94605 399.67 0.96400 583.67 0.97469
157.14 0.68173 217.33 0.83535 264.25 0.90821 323.00 0.95600 399.95 0.96443 598.67 0.97550
158.29 0.76900 220.50 0.88926 271.00 0.90919 327.33 0.95622 408.19 0.96499 601.33 0.97644
160.67 0.77017 221.00 0.89179 271.75 0.90934 334.33 0.95628 413.14 0.96566 729.13 0.97662
162.67 0.77228 230.00 0.89221 275.25 0.91004 337.67 0.95728 418.95 0.96634 773.60 0.98589

165.67 0.77248 231.00 0.89260 276.00 0.91043 351.00 0.95741 425.76 0.96692 939.33 0.99091

 
On the basis of the Pareto frontier PF = [θ, R(θ*)], we can 

pick out an adoptable solution, including the maximum 
service reliability Rmax(θ*), to restrict the changes in the 
maximum allowed time θ* (Fig. 6). Details of the Pareto 
frontier with a restricted maximum allowed service time [PF 
=θ, R(θ*)] are listed in Table 6. 
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Fig. 6. Maximum, minimum, and conditional expected service time of Pareto 

frontier [PF = [θ, R(θ*)]⎢θ≤ θ*}] 
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TABLE III 
NON-DOMINATED SUBTASK OR RESOURCE ALLOCATIONS {SUBTASKS, 
RESOURCES} WITH RESTRICTED MAXIMUM ALLOWED SERVICE TIME Θ* 

θ* Θmin Θmax Rmax(θ*) W 
200 189.429 197.667 0.77860 191.624 

 {6,R5}{4,7,R3,R4}{1,2,R1,R2}{3,5,8,R6} 
250 241.143 249.500 0.90309 242.261 

 {4,7,R2,R3}{2,6,R1,R4}{1,3,5,8,R5,R6} 
300 289.000 299.500 0.91712 290.615 

 {2,4,R2,R3}{7,R1,R4}{1,3,5,6,8,R5,R6} 
350 303.286 337.667 0.95728 305.261 

 {2,6,7,R1,R2,R3,R4}{1,3,4,5,8,R5,R6} 
400 303.286 399.952 0.96443 308.392 

 {2,6,7,R1,R2,R3}{1,3,4,5,8,R4,R5,R6} 
450 340.143 448.476 0.96818 344.797 

 {3,R1,R2,R3}{1,2,4,5,6,7,8,R4,R5,R6} 
500 363.429 498.000 0.97018 369.129 

 {5,7,R1,R2,R4}{1,2,3,4,6,8,R3,R5,R6} 
600 436.571 598.667 0.97550 446.710 

 {8,R1,R2}{1,2,3,4,5,6,7,R3,R4,R5,R6} 
750 439.857 729.133 0.97662 452.685 

 {5,R1,R4}{1,2,3,4,6,7,8,R2,R3,R5,R6} 
800 466.857 773.600 0.98589 481.518 

 {R1}{1,2,3,4,5,6,7,8,R2,R3,R4,R5,R6} 
1000 466.857 939.333 0.99091 483.838 

 {1,2,3,4,5,6,7,8,R1,R2,R3,R4,R5,R6} 
 

If the constraint of minimum satisfied service reliability R* 
is set to 0.9, we must leave solutions of reliability greater than 
0.9 in the best PF (Fig. 5) because we still focus on the 
bi-objective problem (W,  R(Θ≠∞)). However, when two 
fixed constraints exist for the maximum allowed service time 
θ* and the minimum satisfied service reliability R*, we still 
can optimize another model of the bi-objective problem [θ, 
R(θ*)] and select the non-dominated solutions that satisfy the 
maximum allowed service time and minimum satisfied 
service reliability from the best PF (Fig. 6). Consequently, 
PC-SSO is sufficiently efficient to solve the four types of 
bi-objective problems with fixed restrictions discussed in this 
paper.  

VI. CONCLUSION 
In this paper, we propose a new bi-objective evolutionary 

algorithm, Pareto-set Cluster Simplified Swarm Optimization 
(PC-SSO), to solve the interactive tradeoff problem between 
service reliability and service makespan in a grid 
environment with star topology. The reliability-time tradeoff 
problem is a nonlinear integer programming problem. We 
aimed to efficiently find many adoptable subtasks-resources 
allocations to achieve the best non-dominated service 
reliability and service time. In PC-SSO, we employed 
Pareto-set cluster elitist strategy and simplified the update 
mechanism to enhance its multi-objective optimization 
effectiveness. First, the concept of the Pareto-set cluster can 
group non-dominated solutions into several clusters to guide 
particle evolution while allowing each particle to explore a 
limited division. Second, the elitist strategy can retain 
positive solutions and discard negative ones. Third, by using 
the update mechanism inherited from SSO, PC-SSO is easy to 
implement, has few parameters (population and termination 
condition) to tune, and converges rapidly.  

The optimization effectiveness of PC-SSO is validated 
through a numeric example of a grid application. The greater 
part of the Pareto frontier can be found in a PC-SSO 
calculation. No computation time of the PC-SSO exceeds 15 
minutes Pentium 2.4 GHz with 4G RAM using VBA (Visual 
Basic for Applications) with 1000 populations and 600 
generations. Moreover, we analyze four scenarios with 
respect to the bi-objective problem and restrictions and verify 
the optimization effectiveness of PC-SSO in the interactive 
bi-objective problem. Experiment results show that the 
Grid-RMS can make a suitable task allocation for a specified 
scenario from numerous non-dominated solutions. However, 
the use of a few resources can slightly boost service reliability 
because of their high processing failure rate, but their 
bandwidth and processing speed is lower than that of the 
other resources; therefore, the service time suddenly 
increases. This problem can be possibly solved in future 
studies by using the concept of unit cost or marginal utility 
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