

Abstract—In a grid-computing service, Grid-RMS must
generate suitable assignment combinations (execution blocks)
for dependable service quality and satisfactory makespan
(service time). In this paper, service reliability of a grid
environment and makespan of a grid application are estimated
via the universal generating function methodology and
probability theory. Then, we represent a simplified swarm
optimization (SSO) with the Pareto-set cluster (PC) to search
the best assignment combinations in a grid environment with
star topology. In terms of the task partition and distribution for
a grid application, we employ a Pareto-set cluster to guide
particle evolution, an elitist strategy to promote solution quality,
and a simplified update mechanism to enhance the
multi-objective optimization effectiveness. Finally, we assess the
performance of the PC-SSO by the interactive tradeoff problem
based on the analysis of four scenarios with respect to the
bi-objective problem and given restrictions.

I. INTRODUCTION
A grid environment consists of many distributed and

heterogeneous computing devices, which can process several
mass and complex workloads. Owing to the
high-performance computing (HPC) service of a
grid-computing cluster, the grid environment for all
applications has a great future. However, in a grid
environment, grid resource management system (Grid-RMS)
usually requires efficiently assigning subtasks (task
partitions) to adequate resources through the communication
links. In recent decades, the widespread deployment of grid
environments has become necessary for scientific and
industrial applications [1]. Grid-computing, which involves
virtual services generated from grid-computing environment,
was proposed in 1995 in the I-WAY project by DeFanti et al.
[2]. In brief, the grid environment connects idle computing
devices on the network and clusters them together to provide
high-performance computing (HPC) in a manner analogous
to parallel processing. In fact, the grid environment is a
distributed and heterogeneous computing environment. The
grid-computing technique can facilitate resource
virtualization, on-demand provisioning, and service
(resource) sharing between organizations [3]. Thus, the grid
computing not only provides collaborative resource sharing

S.-C. Wei is with the Institute of Statistical Science, Academia Sinica,
Taipei, Taiwan 115, R.O.C (corresponding author: phone: +886-02-
2787-1955; e-mail: wsc@stat.sinica.edu.tw).

W.-C. Yeh is with the Department of Industrial Engineering and
Engineering Management, National Tsing Hua University, Hsinchu, Taiwan
300, R.O.C (e-mail: yeh@ieee.org).

T.-J. Yen is with the Institute of Statistical Science, Academia Sinica,
Taipei, Taiwan 115, R.O.C (e-mail: tjyen@stat.sinica.edu.tw)

but also supplies high-performance computing services from
dynamic virtual organizations at different locations.

The high performance of grid-computing facilitates the
resolution of large-scale, highly complex, and
time-consuming problems that can be processed solely by
supercomputers. Examples of such problems include
earthquake simulation, climate modeling, the Human
Proteome Folding Project, and the Clean Energy Project.
However, the performance of grid-computing techniques is a
focal point for expanding applications of the grid
environment. The grid environment using a resource
management system (Grid-RMS) to operate the progress of
task request assignment, when a Grid-RMS receives a task
from job request of a client (Grid user), the Grid-RMS
considers how to segment the task and how to allocate
subtasks to suitable computing devices. The designated
computing devices with assigned subtasks constitute an
execution block (EB) for the Grid-RMS, and every EB can
perform assigned subtasks simultaneously, in a manner
analogous to parallel computing. After the designated
computing devices finish their allocated subtasks in each EB,
they return the result to the Grid-RMS, which then integrates
all results into a complete output for the task and delivers this
output to the client that requested the service. Hence, the
performance of grid-computing techniques in terms of
processing time and completive reliability is controlled by a
Grid-RMS within the grid environment [4].

At present, the technique of grid-computing is still under
development. One difficulty involves managing task
partitions and devices allocation for large-scale applications
of enterprises and governments. If the Grid-RMS of the grid
environment is not competent to distribute adaptable
computing devices to subtasks, the performance of the entire
grid environment, including system reliability, processing
time, and operational cost, would be affected. In
grid-computing management issues such as these, no
adequate methodology yet exists to handle the problem of
resource (computing devices) and subtask allocation.

According to reviews about grid-computing [1]-[5], there
are many essential QoS (quality of service) requirements for a
grid-computing service, and these depend on the architecture
of the grid environment. Without the essential services, the
grid-computing technique would be hard to popularize. The
global requirements that grid-computing must satisfy are
listed below:

1) Reliability: The grid environment must promise
continuous service, stable connections, and safe sharing.

2) Performance: To achieve data and resource sharing,

Pareto Simplified Swarm Optimization for
Grid-computing Reliability and Service Makspan in Grid-RMS

Shang-Chia Wei, Wei-Chang Yeh, Senior Member, IEEE, and Tso-Jung Yen

1593

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

the grid environment must make sufficient use of all
computing resources to avoid wastage due to idle resources.
Consequently, resource sharing should increase the
effectiveness of the grid environment.

3) Standardization: Grid environment has a standard
portal with normal interface and consistent protocol without
involving restrictions on connection type or communication
facility.

4) Accessibility: To request a service from a
grid-computing system, clients must be able to connect
arbitrarily on the network and to communicate with a browser
in the customary manner at any time and from any location.

The extension of grid-computing will be in proportion to its
implementation of the abovementioned requirements.
Assuming correct standardization and normal accessibility in
a secure grid environment, we focus herein on the
optimization of two themes: service reliability and service
time. Generally, we evaluate service reliability by analyzing
assigned subtasks and designated online resources. However,
different computing resources and communication links have
different rates of execution and transmission failures when
running EB subtasks for a grid environment. Thus, service
reliability depends on the resources and links. Similarly, the
resources and links of a grid environment affect the execution
time as well because of their different computing and
transmission speeds. Therefore, service reliability and
execution time are strongly interrelated. In this paper, we
propose using Pareto-set cluster Simplified Swarm
Optimization (PC-SSO) to optimize the twin targets of
service reliability and service time for a grid environment
with a star topology.
The remainder of the paper is arranged as follows: In Section
2, we discuss the related work about the Grid-RMS. In
Section 3, we describe the mathematical model for a grid
environment with the star topology. In Section 4, we propose
simplified swarm optimization with the concept of the
Pareto-set cluster and elitist strategy. In Section 5, and we
present and explain the optimization results of PC-SSO.
Section 6 gives the advantages of using the PC-SSO method
to address the bi-objective problem posed by grid
environments, presents the results of the study, and mentions
our future work.

II. RELATED WORK
In this section, we discuss some related works about

Grid-RMS first, and then point out the main diversity of our
work. Generally, the aspect of Grid-RMS is analogous to a
matchmaker or broker for subtask and resource matchmaking,
which would dispose adequate assignment combinations for
some certain quality of service (QoS) requirements like
service reliability, makespan, and resource utility etc [6].
These feasible assignment combinations consisted of many
task partitions and computing resources are execution blocks
(EBs) for completing a grid application from a task request.
Hence, the Grid-RMS is responsible for balancing
supply-demand matchmaking process and generating
subtasks-resources allocation proposals in a grid environment

[7]. Although some Grid brokers have been developed for the
basis of grid market and deployed in grid infrastructures,
these brokers in consideration of fault tolerance, cost and
runtime is still in its infancy [7], [8]. Buyya et al. [8], [9]
developed a distributed computational economy-based
resource broker, named Nimrod-G, to allocate and regulate
supply and demand of a grid environment with a view of
deadline, budget, and other required QoS. Dogan and
Ozguner [10] studied that as the resource price could vary
with different scheduling time intervals, the independent
tasks would be scheduling towards multiple QoS
requirements such as timeliness, reliability, version, and
priority. Li and Li [11] proposed a price-directed proportional
resource allocation algorithm for solving the grid task agent
resource problem. When given specified completion time or
resource pricing policy, this algorithm could spend the least
possible amount of money or runtime to finish the grid
application. Liu et al. [12] proposed a fuzzy particle swarm
optimization to dynamically schedule the task requests to
accomplish the minimal makespan. Chauhan and Joshi [13]
published QoS Guided heuristic algorithms for grid task
scheduling, whose simulation results using GridSim are
better than other conventional algorithms. Yang et al. [14]
proposed a Bayesian optimization algorithm to minimize the
makspan for the multiprocessor scheduling problem in
heterogeneous computing environments. In terms of a grid
application and a grid environment, Dai and Levitin [5],
[15]-[17] formulated a task allocation model and applied
genetic algorithm to optimize a single objective function
(makespan or reliability) with constraints. We looking ahead,
it is necessary and predictable to simultaneously concern
makespan, reliability and other QoS requirements in a
Grid-RMS. Above related work mostly focused on a single
objective function with additional constraints, which is not
enough to fulfill important QoS requirements towards a
distributed and heterogeneous computing environment.
Furthermore, so far none really multi-objective evolutionary
algorithm has been developed for the Grid-RMS, whose task
allocation model is related to makespan of a grid application
and service reliability of a grid environment. Chitra et al. [18]
integrated hybrid local search with multi-objective
evolutionary algorithm (MOEA) [19] such as SPEAII and
NSGAII to optimize makespan and reliability index for the
task scheduling system model; however, their assumptions of
perfect communication link confined their work to a
heterogeneous computing environment. Therefore, in terms
of a distributed and heterogeneous computing environment,
we first propose a bi-objective evolutionary algorithm
(PC-SSO) as a task allocation model of Grid-RMS to deal
with the interactive tradeoff problem between service
reliability and makespan and to generate a non-dominated
solution set so as to make task allocation by way of choosing
a proper solution for a specified scenario.

III. MATHEMATICAL FORMULATION
In this paper, the deployment of grid environment we

concentrated is a star topology depicted as Fig. 1 [5], where a
computer host as a Grid-RMS to serve grid users is connected

1594

computing nodes (resources) through their mutually
independent communication channels (such as a Gigabyte
Ethernet with star topology).

Link_A

Link_B

()

()

computational complexity of subtask

computational data amount of subtask
k

k

k
c M operations

k
d Kbits

=

=

iσ=

iω=

()
processing speed of resource

failure rate of resource
j

j

j
x M operations

j
λ

=

=

Link_B

Link_BLink_A

L ink_A

()
data transmission speed of link

failure rate of link
j

j

j
s Kbits

j
π

=

=

Fig. 2. Diagram of execution block in Grid-RMS

When the Grid-RMS receiving and approving one or more
task request, it could perceive the idle resources among the
provision agreement of the underlying grid-computing
resources, and generated several execution blocks (EBs)
composed by resources of a grid environment and subtasks of
a grid application. In this paper, the execution blocks
distributed and generated by Grid-RMS are shown in Fig. 1.
The Grid-RMS [5] determines the subtasks and resources
allocation, which forms a group within the EB. In each EB,
every assigned subtask has a definite required batch of input
data with fixed complexity (ck) and a definite output data
quantity (dk). Similarly, the designated resources and
respective connections of every EB possess individual
processing speeds (xj), processing failure rates (λj),
transmission speeds (sj), and communication failure rates (πj).
Thus, the Grid-RMS can estimate the service reliability and
service time for a given set of EBs. In other words, the service
reliability and service time can vary between unequal EBs
with different subtask sets (σi) and resource sets (ωi).

In terms of the task allocation model of a Grid-RMS [5],
The Grid-RMS divides tasks requested by clients into m
subtasks that can be executed independently by resources
within the grid environment. Thus, the computational
complexity Ci of EB-i, which comprises a set of subtasks σi,

is

()
1

1
m

i k i
k

C c k σ
=

= ⋅ ∈∑ (1)

Grid-RMS sends essential data blocks to a resource of EB-i,
and the resources of EB-i also send generated data to the
Grid-RMS. The total amount Di of input and output data
transmitted between the Grid-RMS and an EB-i resource is
given by

()
1 1

1 + 1
i

m n

i k i x k
kk x

D O k I x B
σ

σ
∈= =

⎛ ⎞= ⋅ ∈ ⋅ ∈⎜ ⎟
⎝ ⎠∑ ∑ ∪ , (2)

where Bk denotes a set of required input data blocks for
subtask k, Ix denotes the size of data block x, and Ok denotes
the amount of output data produced for subtask k by a
resource. Moreover, the Grid-RMS does not perform multiple
imports of the identical input-data block x; therefore, the total
amount of input data for EB-i diminishes by removing
identical data blocks from different subtask k of EB-i via the
union operation (

i
kk

B
σ∈∪). Therefore, the total amount of

data transmitted from the Grid-RMS to an EB-i resource is

()1
1

i

n
x kx k

I x B
σ= ∈

⋅ ∈∑ ∪ . In EB-i, the execution state of

resource j processing a set of subtasks σi may be either
complete or incomplete. The random time tij to complete
subtasks σi can be estimated by

ˆ , if has been done by R -

, if has not been done by R -

i i
ij i

ij j j
i

C D
t jt x s

j

σ

σ

⎧⎪ = += ⎨
⎪∞⎩

, (3)

The time for incomplete subtasks σi is infinity.
If the resource j and link j do not fail during the time that

subtasks σi are processed by resource j (in EB-i), the
probability of completing the subtasks is

() () () ˆˆ ˆPr j j ijt
ij ij j ijt t p t e λ π− += = = , (4)

and the probability that subtasks σi are incomplete is the
following complement:

() ()ˆPr 1ij j ijt p t= ∞ = − (5)

In EB-i, an individual resource j from among a set of
resources ωi is allocated identical required processing
subtasks σi. Thus, the random time to complete EB-i is the
shortest time within which subtasks σi can be processed by
resource j from among the set of resources ωi:

(),
ˆmin

i i
i ijj

tω ω
θ

∈
= (6)

In the grid environment, the entire task is finished when all
the subtasks of EB-i are finished. Thus, the random time for
completing the entire task is

(),1 1
ˆmax max min

i i
i ijji h i h

tω ω
θ

∈≤ ≤ ≤ ≤
⎡ ⎤Θ = = ⎢ ⎥⎣ ⎦

 (7)

Levitin and Dai [5] use the u-function Uh, [20]-[22] for the
PMF of the service time Θ of a grid environment with star
toplogy, so the service reliability [R(Θ ≠ ∞)] as well as the
conditional expected service time W can be estimated. After
the u-function Uh(z) eliminates the probability of incomplete
grid application (Θ = ∞), the probabilities of completion grid

1595

application are summed as the service reliability [R(Θ ≠ ∞)]:
() ()

() () ()
1 1

Pr

 Pr 1 1
F F

f f
f f

R

Q

θ

θ θ

∗

∗ ∗

= =

Θ ≠ ∞ = Θ ≤ = ∞

= Θ = Θ ⋅ Θ ≤ = ⋅ Θ ≤∑ ∑
 (8)

The conditional expected service time W of the grid
environment can be evaluated through the conditional
expected value E(Θ⎪Θ≠ ∞) as follows:

() ()
()

() ()()

()

1

1 1

1 1

Pr

Pr

Pr

 1

F

f f
f

F F
f

f f f
f f

F F

f f f
f f

W E

Q R

Q Q

θ

θ
θ

θ

∗

=

∗
∗

= =

∗

= =

= Θ Θ ≠ ∞ = Θ ⋅ Θ Θ≤ =∞

Θ ⎛ ⎞
= Θ ⋅ = Θ ⋅ Θ≤⎜ ⎟

Θ≤ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
= Θ ⋅ ⋅ Θ≤⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑ ∑

∑ ∑

 (9)

Thus, the resource allocation model for a Grid-computing
service can be formulated as a discrete bi-objective COP
(combinatorial optimization problem), for which the decision
variables and bi-objective function are described as follows:

Decision variables

Binary variables: X={xkj| xkj=0 or 1, k=1,…,N, j=1,…,M},
where xkj presents the state of subtask k assigned on resource
j. If subtask k is processed by resource j, the xkp is 1, otherwise
the xkp is 0. The solution space is 2N×M.

Objective function
Maximize R(Θ ≠ ∞)
Minimize W
Subject to:

1
1 ,

M

kj
j

x M k
=

≤ ≤ ∀∑ , (10)

Θ ≤ θ*, (11)
where θ* is the upper bound of service-time, that is, the
guaranteed service-time as a QoS term for the SLA.

IV. METHODOLOGY
For the grid-computing reliability-time tradeoff problem,

we propose a Pareto-set cluster simplified swarm
optimization (PC-SSO) to search the (near) Pareto solutions
with the Pareto frontier in grid environments with star
topologies. The SSO was originally designed by Yeh
[23]-[25] in 2009 to overcome the drawback of PSO in
discrete problems and was called discrete PSO (DPSO).
Simulation results reveal that SSO converges faster and offers
a higher-quality solution than PSO alone. The procedure of
the PC-SSO is illustrated in Fig. 2.

Fig. 2. Flowchart for Pareto-set cluster simplified swarm optimization

(PC-SSO)

For the max-min bi-objective problem, Pareto frontier
consists of several pairs of non-dominated bi-objective fitness
values [R(Θ≠∞), W] that originate from one or more
non-dominated subtasks-resources allocations. To find the
Pareto frontier for each iteration, we adopt Graham’s scan
[26], [27] to find a convex hull from which we construct
several line segments to P1 (Wmin, Rmin) and P5 (Wmax, Rmax).
We connect the provisional Pareto points resulted from
convex hull, and then draw a Pareto frontier. Line segments
LS of the convex hull CH and a set of Pareto points Pt are
depicted in Fig. 3.

Afterwards, we develop a concept of the Pareto-set cluster
as the evolutional guidance of Pbest and Gbest, because Pbest
and Gbest cannot determine the quality and diversity in the
bi-objective problem. Therefore, we combine the concept of
the Pareto-set cluster with SSO to find the Pareto frontier. The
Pareto-set cluster is some part of Pareto points (Pt) wrapped
in line segment (LS). In other words, the concept of Pareto-set
clusters is used to group non-dominated solutions into several
clusters to guide particle evolution so that each particle has a
limited division to explore. Pareto-set cluster (PCc=4) includes
Pareto points P4, D1, D2, P5 as shown in Fig. 3. For example,
we have obtained a provisional Pareto frontier (PF) at an
iteration, so the PF = {P1, A1, P2, B1, B2, P3, C1, C2, P4, D1, D2,
P5}. If we let LS1 ={P1, P2 }, LS2 ={P2, P3 }, LS3 ={P3, P4 },
LS4 ={P4, P5}, then we obtain PC1 ={P1, A1, P2 }, PC2 = { P2,
B1, B2, P3 }, PC3 = {P3, C1, C2, P4}, PC4 = { P4, D1, D2, P5}.

Fig. 3. Conceptual diagram of Pareto frontier (PF) and Pareto-set cluster (PC)

P4,D1,D2,P5

Convex hull (CH)

P2,B1,B2,P3

P1,A1,P2
P1

P2

P3

P4

P5

Se
rv

ic
e

R
el

ia
bi

lit
y

(R
)

Pareto frontier

C2

D2D1

C1

B1

B2

A1

The line segment (2 3P P) of CH

4∈PC

2∈PC

1∈PC

Service Time (W)

1596

After having obtained PF and PC, we can determine the
selection probability Pr(PC) for each Pareto-set cluster for the
next iteration. The sum dist(PCc) gives the sum of the
distance between two ordered and adjoined points in a
Pareto-set cluster PCc. The sum dist(PF) gives the sum of the
distance between two ordered and adjoined points in a set of
Pareto points PF. Therefore, Pr(PCc) is Σdist(PCc) divided by
Σdist(PF). In the next iteration, a particle can choose a
Pareto-set cluster PC on which it can evolve based on the
selection probability Pr(PC) of each Pareto-set cluster. In Fig.
3, the selection probability of Pareto-set cluster Pr(PC4) is
calculated from the sum (4 1P D + 1 2D D + 2 5D P) divided by

the sum (1 1P A + 1 2A P + 2 1P B + 1 2B B + 2 3B P + 3 1P C +

1 2C C + 2 4C P + 4 1P D + 1 2D D + 2 5D P) after the scales in
service reliability and service time [R(Θ≠∞), W] are
standardized.

Furthermore, we apply the elitist strategy to PC-SSO,
which generates a new Pareto frontier produced by
integrating the previous and present Pareto frontiers, except
for the 1st generation, and eliminates particles far from the
convex hull. Thus, the elitist strategy can guarantee
amelioration of the convex hull for each subsequent
generation simply by retaining positive solutions and
discarding negative ones.

When updating each particle, PC-SSO takes the Pareto-set
cluster PC and its selection probability Pr(PC) as the
evolution trend for each particle upon the next generation.
First, two particle pca and pcb randomly selects from a
Pareto-set cluster PC by using the selection probability
Pr(PCc) of each Pareto-set cluster. There are four roles (pca,
pcb, current solution, random solution) in SSO. At iteration t,
pca and pcb are two solutions of a Pareto-set cluster PC in the
best-so-far PF, the current solution is xi, and the random
solution is a solution xr generated at random. Subsequently,
the updated mechanism is responsible for the process of each
particle. The updated mechanism of the PC-SSO is based on
the following simple mathematical model after cw, cp and cg
are given:

[)
[)

)
)

1 , 0,

, ,

, ,

, ,1

t t
i i w

t
i i w p

t
i t

i i p g

t
r i g

x if r C

pca if r C C
x

pcb if r C C

x if r C

−⎧ ∈
⎪

∈⎪⎪= ⎨ ⎡∈⎪ ⎣
⎪

⎡∈⎪ ⎣⎩ , (12)
where Cp = cp+cw, and Cg = cg+cp+cw.

V. EXPERIMENT RESULT

A. Model of Bi-objective Problem with No Restrictions
We adopted a grid-computing instance [5] to validate the

optimization effectiveness of PC-SSO. The grid environment
holds 6 resources and 8 independent subtasks. In the initial
iteration, the PC-SSO randomly selects 1000 particles. We
observe that these particles are scattered over the solution
space rather than gathered in one region, some of which are

located far from the ideal corner (Rmax= 1, Wmin= 0). Because
PC-SSO retains elite particles and diminishes passive
particles, all particles move toward the latest Pareto frontier.
Positive particles in each generation are retained and updated
(Fig. 4).

0.50

0.60

0.70

0.80

0.90

1.00

100 150 200 250 300 350 400 450 500

Se
rv

ic
e

R
el

ia
bi

lit
y

Conditional Expected Service Time

1st-CH

1st-ND

10th-CH

10th-ND

50th-CH

50th-ND

150th-CH

150th-ND

Final-CH

Final-ND

Fig. 4. Diagram of convex hull (CH) and non-dominated solutions (ND

equal to PF) of every generation.

By repeating 30 calculations of PC-SSO with identical

setting 600 generations and 1000 particles, we obtain the best
Pareto frontier PF. The best PF is listed in Table I. The best
PF has 122 pairs of objective values [W, R(Θ≠∞)], which are
discrete and piecewise distributed in solution space.
However, if we randomly run a calculation of PC-SSO with
an identical setup, we can obtain at least 100 Pareto optimal
solutions, and a final PF could revive 71% (± 5%) of the best
PF. In other words, we acquire 86 of the best PF, and the other
solutions of a final PF closely approximate the solutions of
the best PF. Furthermore, the best PF, whose service
reliability is greater than 0.9, is repeated at a rate of 92% (±
4%) by a final PF, which means that the final PF can duplicate
62 of the best PF with a service reliability of 0.9.

TABLE I
THE BEST PARETO FRONTIER PF=[W, R(Θ≠∞)]

W R W R W R W R W R W R

131.29 0.61911 151.32 0.69122 188.10 0.84865 222.81 0.90544 296.68 0.96280 349.63 0.96932
131.44 0.62000 151.41 0.69631 190.15 0.84983 222.85 0.90578 299.44 0.96330 354.93 0.96963
131.50 0.62632 152.52 0.77366 191.07 0.84986 224.72 0.90585 304.64 0.96335 358.02 0.96995
132.38 0.62775 155.20 0.77417 193.92 0.85022 225.19 0.90648 306.15 0.96362 369.13 0.97018
132.62 0.62845 158.69 0.77431 194.23 0.85042 225.98 0.90687 306.66 0.96380 421.94 0.97023
132.81 0.63470 158.73 0.77435 195.54 0.85157 230.49 0.90718 308.24 0.96400 425.36 0.97189
134.10 0.63914 159.18 0.77470 195.93 0.85166 233.56 0.90738 308.39 0.96443 427.88 0.97195
135.60 0.64263 162.78 0.77490 198.00 0.85288 237.44 0.90758 310.54 0.96464 430.05 0.97348
136.75 0.64300 163.16 0.77573 199.00 0.89439 240.29 0.90776 310.87 0.96495 432.62 0.97356
137.59 0.64462 168.86 0.77619 199.63 0.89456 257.16 0.90821 314.50 0.96499 435.43 0.97469
138.48 0.64715 174.47 0.77630 202.40 0.89911 260.33 0.92882 317.20 0.96566 438.08 0.97479
139.75 0.65033 174.57 0.77732 202.63 0.89946 261.23 0.93188 321.12 0.96634 446.71 0.97550
140.04 0.65218 175.66 0.78205 205.19 0.90130 261.63 0.93333 321.67 0.96641 449.54 0.97567
142.57 0.65335 176.16 0.78207 207.97 0.90273 262.32 0.93809 326.38 0.96692 449.85 0.97644
144.26 0.65754 176.61 0.78212 212.02 0.90358 263.40 0.94212 326.95 0.96717 452.69 0.97662
146.88 0.65817 176.71 0.78219 216.52 0.90365 264.26 0.94439 332.41 0.96730 481.52 0.98589
147.12 0.66979 177.74 0.78312 217.46 0.90374 267.48 0.96155 334.42 0.96740 483.84 0.99091
148.05 0.67132 180.39 0.78785 218.04 0.90389 279.59 0.96161 335.09 0.96769 ─ ─
149.51 0.67209 180.81 0.78790 220.48 0.90438 291.11 0.96169 338.03 0.96772 ─ ─
149.53 0.67905 181.94 0.78891 220.71 0.90475 292.08 0.96199 338.20 0.96821 ─ ─
151.21 0.68939 185.55 0.82169 221.23 0.90511 294.44 0.96206 343.49 0.96890 ─ ─

In addition, each service-time PMF of all Pareto solutions

1597

for the best Pareto frontier PF can be derived by the UGFM,
which can assist us in knowing about PF data such as the
minimum service time, maximum service time, and the
conditional expected service time (CEST equal to W) as well
as its probability relative to individual completion service
time. The procedure for obtaining a PMF is presented in the
Appendix. Accordingly, we can determine a suitable
allocation of subtasks and resources from the best PF for
various scenarios. For example, if a grid-computing user is
cautious with both completion service time and CEST, we
can filter out some allocations from low-risk regions of PF
because these regions have appropriate maximum completion
time and small disparity with CEST. Conversely, if a user is
just concerned about the optimization of two targets,
high-risk as well as low-risk regions would be considered
together. In this case, each PF service time is shown in Fig. 5.

100

200

300

400

500

600

700

800

900

0.61911 0.99091

Se
rv

ic
e

Ti
m

e

Service Reliability

Maximal_Service_Time Minimal_Service_Time CEST

high risk region

low risk region

0.9

Fig. 5. Maximum, minimum, and conditional expected service time of Pareto

frontier (PF = [W, R(Θ≠∞)])

B. Model of Bi-objective Problem with Maximum Allowed
Service Time

We now turn to an actual constraint—the maximum
allowed service time θ*. If a grid-computing user claims to
restrain the maximum completion time, some Pareto frontiers
PF = [W, R(Θ≠∞)] would become infeasible solutions
because their maximum completion time would exceed the
maximum allowed service time. Thus, we transform the
bi-objective problem [W, R(Θ≠∞)] with the restriction of
maximum allowed service time θ* into another bi-objective
problem [θ, R(θ*)].

By repeating 30 calculations of PC-SSO with identical
setting 600 generations and 1000 particles, we obtain the best
Pareto frontier PF = [θ, R(θ*)] in this study. The best PF is
listed in Table II. In this study, the best PF has 114 pairs of
objective values [θ, R(θ*)], which are discrete and piecewise
distributed in solution space. There are at least 96 Pareto
solutions in a PC-SSO experiment, and a final PF could
revive 81% (± 4%) of the best PF. In other words, we acquire
92 of the best PSGS every time, and the other solutions of the

final PF closely approximate solutions of the best PF.
Furthermore, the best PF, whose service reliability is greater
than 0.9, is repeated at a rate of 97% (± 3%) by the final PF,
which means that the final PF can duplicate 66 of the best
PSGS with a service reliability of 0.9.

TABLE II
THE BEST PARETO FRONTIER [PF = {Θ, Rmax(Θ*)}] WITH THE RESTRICTION OF

MAXIMUM ALLOWED SERVICE TIME Θ*
θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*) θ Rmax(θ*)

131.29 0.61911 168.33 0.77280 231.75 0.89277 278.50 0.91077 353.00 0.95743 435.00 0.96740
131.50 0.62632 169.33 0.77368 232.25 0.89366 280.50 0.91168 357.00 0.95759 439.95 0.96760
135.25 0.62919 174.00 0.77490 233.50 0.89436 281.25 0.91213 362.33 0.95837 446.76 0.96817
136.00 0.63630 175.33 0.77619 234.25 0.89562 284.75 0.91411 368.33 0.95856 448.48 0.96818
138.57 0.64386 181.33 0.77732 235.75 0.89711 290.25 0.91454 376.67 0.95871 454.29 0.96849
141.86 0.65130 196.00 0.77838 243.25 0.89874 291.75 0.91470 378.00 0.96013 461.10 0.96864
146.33 0.65218 197.67 0.77860 245.50 0.89977 293.50 0.91552 378.38 0.96029 464.67 0.96890
146.67 0.65335 205.14 0.81415 248.50 0.90065 294.50 0.91602 378.67 0.96034 473.33 0.96932
148.43 0.65615 208.29 0.81726 249.50 0.90309 295.50 0.91641 380.67 0.96145 480.33 0.96963
149.57 0.65833 209.20 0.81785 257.75 0.90370 299.50 0.91712 385.62 0.96202 483.00 0.96995
150.67 0.67501 209.43 0.81812 259.75 0.90477 301.25 0.94459 392.43 0.96217 498.00 0.97018
152.57 0.67846 213.00 0.83404 262.00 0.90502 301.50 0.94525 393.71 0.96264 571.00 0.97189
153.57 0.67876 214.10 0.83448 262.25 0.90582 312.75 0.94577 394.14 0.96291 576.67 0.97348
155.33 0.67983 214.14 0.83478 262.75 0.90668 313.25 0.94605 399.67 0.96400 583.67 0.97469
157.14 0.68173 217.33 0.83535 264.25 0.90821 323.00 0.95600 399.95 0.96443 598.67 0.97550
158.29 0.76900 220.50 0.88926 271.00 0.90919 327.33 0.95622 408.19 0.96499 601.33 0.97644
160.67 0.77017 221.00 0.89179 271.75 0.90934 334.33 0.95628 413.14 0.96566 729.13 0.97662
162.67 0.77228 230.00 0.89221 275.25 0.91004 337.67 0.95728 418.95 0.96634 773.60 0.98589

165.67 0.77248 231.00 0.89260 276.00 0.91043 351.00 0.95741 425.76 0.96692 939.33 0.99091

On the basis of the Pareto frontier PF = [θ, R(θ*)], we can

pick out an adoptable solution, including the maximum
service reliability Rmax(θ*), to restrict the changes in the
maximum allowed time θ* (Fig. 6). Details of the Pareto
frontier with a restricted maximum allowed service time [PF
=θ, R(θ*)] are listed in Table 6.

100

200

300

400

500

600

700

800

900

0.62 0.97

Se
rv

ic
e

Ti
m

e

Service Reliability

Maximal_Service_Time Minimal_Service_Time CEST

Rmax(θ200)

Rmax(θ250)

Rmax(θ300)
Rmax(θ350)

Rmax(θ400)

Rmax(θ450)
Rmax(θ500)

Rmax(θ600)

Rmax(θ750)

Rmax(θ800)

Rmax(θ950)

0.9

Fig. 6. Maximum, minimum, and conditional expected service time of Pareto

frontier [PF = [θ, R(θ*)]⎢θ≤ θ*}]

1598

TABLE III
NON-DOMINATED SUBTASK OR RESOURCE ALLOCATIONS {SUBTASKS,
RESOURCES} WITH RESTRICTED MAXIMUM ALLOWED SERVICE TIME Θ*

θ* Θmin Θmax Rmax(θ*) W
200 189.429 197.667 0.77860 191.624

 {6,R5}{4,7,R3,R4}{1,2,R1,R2}{3,5,8,R6}
250 241.143 249.500 0.90309 242.261

 {4,7,R2,R3}{2,6,R1,R4}{1,3,5,8,R5,R6}
300 289.000 299.500 0.91712 290.615

 {2,4,R2,R3}{7,R1,R4}{1,3,5,6,8,R5,R6}
350 303.286 337.667 0.95728 305.261

 {2,6,7,R1,R2,R3,R4}{1,3,4,5,8,R5,R6}
400 303.286 399.952 0.96443 308.392

 {2,6,7,R1,R2,R3}{1,3,4,5,8,R4,R5,R6}
450 340.143 448.476 0.96818 344.797

 {3,R1,R2,R3}{1,2,4,5,6,7,8,R4,R5,R6}
500 363.429 498.000 0.97018 369.129

 {5,7,R1,R2,R4}{1,2,3,4,6,8,R3,R5,R6}
600 436.571 598.667 0.97550 446.710

 {8,R1,R2}{1,2,3,4,5,6,7,R3,R4,R5,R6}
750 439.857 729.133 0.97662 452.685

 {5,R1,R4}{1,2,3,4,6,7,8,R2,R3,R5,R6}
800 466.857 773.600 0.98589 481.518

 {R1}{1,2,3,4,5,6,7,8,R2,R3,R4,R5,R6}
1000 466.857 939.333 0.99091 483.838

 {1,2,3,4,5,6,7,8,R1,R2,R3,R4,R5,R6}

If the constraint of minimum satisfied service reliability R*
is set to 0.9, we must leave solutions of reliability greater than
0.9 in the best PF (Fig. 5) because we still focus on the
bi-objective problem (W, R(Θ≠∞)). However, when two
fixed constraints exist for the maximum allowed service time
θ* and the minimum satisfied service reliability R*, we still
can optimize another model of the bi-objective problem [θ,
R(θ*)] and select the non-dominated solutions that satisfy the
maximum allowed service time and minimum satisfied
service reliability from the best PF (Fig. 6). Consequently,
PC-SSO is sufficiently efficient to solve the four types of
bi-objective problems with fixed restrictions discussed in this
paper.

VI. CONCLUSION
In this paper, we propose a new bi-objective evolutionary

algorithm, Pareto-set Cluster Simplified Swarm Optimization
(PC-SSO), to solve the interactive tradeoff problem between
service reliability and service makespan in a grid
environment with star topology. The reliability-time tradeoff
problem is a nonlinear integer programming problem. We
aimed to efficiently find many adoptable subtasks-resources
allocations to achieve the best non-dominated service
reliability and service time. In PC-SSO, we employed
Pareto-set cluster elitist strategy and simplified the update
mechanism to enhance its multi-objective optimization
effectiveness. First, the concept of the Pareto-set cluster can
group non-dominated solutions into several clusters to guide
particle evolution while allowing each particle to explore a
limited division. Second, the elitist strategy can retain
positive solutions and discard negative ones. Third, by using
the update mechanism inherited from SSO, PC-SSO is easy to
implement, has few parameters (population and termination
condition) to tune, and converges rapidly.

The optimization effectiveness of PC-SSO is validated
through a numeric example of a grid application. The greater
part of the Pareto frontier can be found in a PC-SSO
calculation. No computation time of the PC-SSO exceeds 15
minutes Pentium 2.4 GHz with 4G RAM using VBA (Visual
Basic for Applications) with 1000 populations and 600
generations. Moreover, we analyze four scenarios with
respect to the bi-objective problem and restrictions and verify
the optimization effectiveness of PC-SSO in the interactive
bi-objective problem. Experiment results show that the
Grid-RMS can make a suitable task allocation for a specified
scenario from numerous non-dominated solutions. However,
the use of a few resources can slightly boost service reliability
because of their high processing failure rate, but their
bandwidth and processing speed is lower than that of the
other resources; therefore, the service time suddenly
increases. This problem can be possibly solved in future
studies by using the concept of unit cost or marginal utility

REFERENCES
[1] I. Foster and C. Kesselman, The Grid2: Blueprint for a New Computing

Infrastructure, Morgan Kauffmann, 2nd edition, 2004.
[2] T. A. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss,

“Overview of the I-WAY: Wide Area Visual Supercomputing,”
International Journal of Supercomputer Applications, vol. 10, no. 2,
pp. 123-130, 1996. -p1

[3] P. Plaszczak and R. Wellner, Jr., Grid computing: The savvy manager’s
guide, Morgan Kauffmann, 2006.

[4] K. Krauter, R. Buyya, and M. Maheswaran, “A taxonomy and survey of
grid resource management system for distributed computing”,
Software-Practice and Experience, vol. 32, no. 2, pp. 135-164, 2002.

[5] G. Levitin and Y. S. Dai, “Optimal service task partition and
distribution in grid environment with star topology”, Reliability
Engineering and System Safety, vol. 93, pp. 152-159, 2008.

[6] X. Bai, H. Yu, Y. Ji, and D. C. Marinescu, ”Resource matching and a
matching service for an intelligent grid”, International Journal of
Computational Intelligence, vol.1, no.3, pp.163-171, 2004.

[7] A. Clematis, A. Corana, D. D’Agostino, A. Galizia, and A. Quarati,
“Job-resource matchmaking on Grid through two-level benchmarking”,
Future Generation Computer Systems, vol. 26, no. 8, pp. 1165-1179,
2010.

[8] D. Abramson, R. Buyya, and J. Giddy, “A computational economy for
grid computing and its implementation in the Nimrod-G resource
broker”, Future Generation Computer Systems, vol. 18, no. 8, pp.
1061-1074, 2002.

[9] R. Buyya, D. Abramson, and J. Giddy, “Nimrod-G: an architecture for
a resource management and scheduling system in a global
computational grid”, International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia 2000), Beijing, China,
IEEE Computer Society Press, USA, 2000.

[10] A. Dogan and F. Ozguner, “Scheduling independent tasks with QoS
requirements in grid computing with time-varying resource prices”, In
Proceedings of GRID 2002, LNCS, vol.2536, pp.58-69, 2002.

[11] C. Li and L. Li, “Competitive proportional resource allocation policy
for computational grid”, Future Generation Computer Systems, vol. 20,
no. 6, pp. 1041-1054, 2004.

[12] H. Liu, A. Abraham, A. Ella Hassanien, “Scheduling jobs on
computational grids using a fuzzy particle swarm optimization
algorithm”, Future Generation Computer Systems, vol.26, no.8,
pp.1336-1343, 2010.

[13] S. S. Chauhan and R. C. Joshi, “QoS Guided Heuristic Algorithms for
Grid Task Scheduling”, International Journal of Computer
Applications, vol. 2, no. 9, pp. 24-31, 2010.

[14] J. Yang, H. Xu, L. Pan, P. Jia, F. Long, M. Jie, “Task scheduling using
Bayesian optimization algorithm for heterogeneous computing
environments”, Applied Soft Computing, 2011,
doi:10.1016/j.asoc.2010.11.029.

1599

[15] Y. S. Dai and G. Levitin, “Optimal Resource Allocation for
Maximizing Performance and Reliability in Tree-Structured Grid
Services,” IEEE Transactions on Reliability, vol. 56, no. 3, pp.
444-453, 2007.

[16] Y. S. Dai and G. Levitin, “Optimal resource allocation for maximizing
performance and reliability in tree-structured grid services,” IEEE
Transactions on Reliability, vol. 56, no. 3, pp. 444-453, 2007.

[17] Y. S. Dai, G. Levitin, and X. Wang, “Optimal task partition and
distribution in grid service system with common cause failures,” Future
Generation Computer Systems, vol. 23, no. 2, pp. 209-218, 2007.

[18] P. Chitra, R. Rajaram, and P. Venkatesh, “Application and comparison
of hybrid evolutionary multiobjective optimization algorithms for
solving task scheduling problem on heterogeneous systems”, Applied
Soft Computing, vol. 11, no. 2, pp. 2725-2734, 2011.

[19] K. Deb, Multi-objective Optimization Using Evolutionary Algorithms,
Wiley, New York, 2001.

[20] G. Levitin, Universal Generating Function in Reliability Analysis and
Optimization, Springer-Verlag, 2005.

[21] A. Lisnianski and G. Levitin, Multi-State System Reliability.
Assessment, Optimization and Applications, World Scientific, 2003.

[22] W. C. Yeh, “A Simple Universal Generating Function Method to
Search for All MPs in Networks”, IEEE Transactions on Systems, Man
and Cybernetics-Part A: Systems and Humans, vol. 39, no. 6, pp.
1247-1254, 2009.

[23] W. C. Yeh, “A Two-Stage Discrete Particle Swarm Optimization for
the Problem of Multiple Multi-Level Redundancy Allocation in Series
Systems”, Expert Systems with Applications, vol. 36, no. 5, pp.
9192-9200, 2009.

[24] W.C. Yeh, “Optimization of the disassembly sequencing problem on
the basis of self-adaptive simplified swarm optimization,” IEEE
Transactions on Systems, Man and Cybernetics-Part A: Systems and
Humans, vol. 42, no. 1, pp. 250-261, 2011.

[25] W.C. Yeh, “Simplified swarm optimization in disassembly sequencing
problems with learning effects, Computers & Operations Research,”
vol. 39, no. 9, pp. 2168-2177, 2012.

[26] R. E. Steuer, Multiple Criteria Optimization: Theory, Computation and
Applications. New York: Wiley, 1986.

[27] F. P. Preparata, M. I. Shamos. Computational Geometry: An
Introduction, Springer-Verlag, New York, 1985.

1600

