
On the Performance of Classification Algorithms for
Learning Pareto-Dominance Relations

Sunith Bandaru∗, Amos H.C. Ng∗ and Kalyanmoy Deb†
∗Virtual Systems Research Centre, University of Skövde, Skövde, Sweden

Email: {sunith.bandaru,amos.ng}@his.se
†Department of Electrical and Computer Engineering, Michigan State University, East Lansing, USA

Email: kdeb@egr.msu.edu

Abstract—Multi-objective evolutionary algorithms (MOEAs)
are often criticized for their high-computational costs. This
becomes especially relevant in simulation-based optimization
where the objectives lack a closed form and are expensive to
evaluate. Over the years, meta-modeling or surrogate modeling
techniques have been used to build inexpensive approximations
of the objective functions which reduce the overall number of
function evaluations (simulations). Some recent studies however,
have pointed out that accurate models of the objective functions
may not be required at all since evolutionary algorithms only
rely on the relative ranking of candidate solutions. Extending
this notion to MOEAs, algorithms which can ‘learn’ Pareto-
dominance relations can be used to compare candidate solutions
under multiple objectives. With this goal in mind, in this
paper, we study the performance of ten different off-the-shelf
classification algorithms for learning Pareto-dominance relations
in the ZDT test suite of benchmark problems. We consider
prediction accuracy and training time as performance measures
with respect to dimensionality and skewness of the training data.
Being a preliminary study, this paper does not include results of
integrating the classifiers into the search process of MOEAs.

Keywords—Meta-modeling, Multi-objective optimization, Clas-
sification algorithms, Pareto-dominance, Machine learning

I. INTRODUCTION

Meta-modeling or surrogate modeling is now a common
methodology employed in optimization problems involving ex-
pensive objective(s) and/or constraints. This is usually the case
in simulation-based optimization where complex processes are
evaluated using time-consuming computational models. Due
to high non-linearity of the processes and non-availability of
closed-form (analytical) objectives and derivative information,
evolutionary algorithms (EAs) are popular in such optimization
tasks. However, being population-based, they are also notori-
ous for high computational costs. Thus, meta-modeling plays a
more crucial role in improving the resource efficiency of EAs
than that of any other optimization algorithm. Consequently,
many meta-modeling methods have been developed specif-
ically to be used with evolutionary computation. A survey
of these can be found in [1] and [2]. With all methods, the
general idea is to approximate the fitness (objective) function,
either locally or globally, and use it in place of actual function
evaluations (simulations). The meta-model is updated as the
population evolves and new computations become available.

Recently however, Runarsson [3] argued that since EAs
only rely on the relative ranking of candidate individuals, very
accurate approximations of the objective function may not be

required. The idea was demonstrated through an approximate
ranking procedure, which assumes the surrogate model to be
sufficiently accurate as long as the selection of solutions be-
tween generations is not drastically affected. Runarsson carried
forward the idea in [4], which suggested replacing fitness
approximating surrogates with solution ranking surrogates. The
proposed ranking surrogate performs ordinal regression on the
solutions using a rank-based support vector machine (SVM)
[5] which maximizes the margin between rank boundaries.
Loshchilov et al. [6] implement rank-based SVM within CMA-
ES in their aptly titled paper “Comparison-Based Optimizers
Need Comparison-Based Surrogates”. The proposed approach
alleviates the problem of kernel choice using an adaptive kernel
derived from the covariance matrix of CMA-ES.

The above studies were however tailored for single-
objective optimization problems. Multi-objective optimization
problems take the following mathematical form

Minimize F(x) = {𝑓1(x), 𝑓2(x), . . . , 𝑓𝑀 (x)}
Subject to x ∈ 𝑆 (1)

where 𝑓𝑖 : R𝑛 → R are 𝑀(> 2) conflicting objectives that
have to be simultaneously minimized and the variable vector
x = {𝑥1, 𝑥2, . . . , 𝑥𝑛} belongs to the non-empty feasible region
𝑆 ⊂ R𝑛. The feasible region is formed by the constraint
functions and the variable bounds. A variable vector x1 is
said to ‘weakly Pareto-dominate’ x2 and denoted as x1 ⪯ x2

if
𝑓𝑖(x1) ≤ 𝑓𝑖(x2) ∀𝑖 ∈ {1, 2, . . . ,𝑀}. (2)

If in addition to the above there exists at least one 𝑗 ∈
{1, 2, . . . ,𝑀} such that 𝑓𝑗(x1) < 𝑓𝑗(x2) then the correspond-
ing Pareto-dominance relation is denoted as x1 ≺ x2, and
read as x1 ‘Pareto-dominates’ x2 or x1 ‘is better than’ x2 or
x1 ‘is preferable to’ x2. If neither x1 ⪯ x2 nor x2 ⪯ x1,
then x1 and x2 are said to be ‘non-dominated with respect to
each other’ or ‘equivalent’ or ‘incomparable’. This dominance
relation is denoted as x1∣∣x2. A vector x∗ ∈ 𝑆 is said to be
‘Pareto-optimal’ if there does not exist any x ∈ 𝑆 such that
x ≺ x∗. The set of all such x∗ (which are, by definition, also
non-dominated with respect to each other) is referred to as the
‘Pareto-optimal set’. The projection of the Pareto-optimal set in
the objective space, F(x∗) ∀x∗ is called the ‘Pareto-optimal
front’. Most MOEAs work by dividing the population into
‘non-dominated levels’ or ‘ranks’ or ‘fronts’ and promoting
high (numerically smaller) rank solutions.

Metamodels for multi-objective optimization problems are
usually a straightforward extension of those used in single-

1139

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

objective optimization, meaning that an independent meta-
model is built for each objective 𝑓𝑖(x). Model accuracy
becomes especially important here, because the error involved
in the Pareto-dominance comparisons increases exponentially
with the number of objectives in the worst case [7]. Knowles
and Nakayama [8] present a review of meta-modeling methods
in multi-objective optimization and discuss several related is-
sues. Common meta-modeling techniques are response surface
methods, kriging, neural networks, radial basis functions and
support vector regression (SVM-R) [9]. A general survey of
meta-models can be found in [10].

On the other hand, a mono-surrogate method uses a single
surrogate for all objectives. Since ideally the output of a mono-
surrogate model should be same for all solutions at any given
non-dominated level and different for solutions from different
levels, classification algorithms have been a natural choice;
and among them only SVM based methods have been pursued
so far, probably due to their popularity. The first attempt
at a mono-surrogate strategy by Yun et al. [11] uses One-
Class SVM [12] to learn a decision boundary that envelops
the visited part of the objective space. Solutions with lower
decision function values are closer to the boundary, while
those with negative values are considered as anomalies. These
anomalies are emphasized during evolution, with the rationale
that the Pareto-optimal front is outside the visited region.
However, Loshchilov et al. [13] note that such an approach
can be used to guide evolution only in specific problems
and propose the Aggregated Surrogate Model (ASM) which
combines ideas from SVM-R and One-Class SVM. ASM maps
all current non-dominated variable vectors to a narrow interval
[𝜌 − 𝜖, 𝜌 + 𝜖] and all current dominated solutions to its left
(< 𝜌 − 𝜖). The Pareto-optimal front expectedly lies in the
‘negative region’ of One-Class SVM, which here is the half-
space > 𝜌 + 𝜖. A Rank-based ASM (RASM) was proposed
in [7] by the same authors. RASM uses the rank-based SVM
referenced above to learn from Pareto-dominance relations of
the kind xi ≺ xj but not from those of the kind xi∣∣xj. The
training set of ASM consists of solutions categorized as non-
dominated and dominated, where as that of RASM contains
pairwise dominance relations between solutions1. Thus while
ASM does not learn to differentiate between different levels of
dominated solutions, RASM does not learn to recognize non-
dominated solutions at a given non-domination level. Unlike
Yun et al.’s approach, which is defined in the objective space,
both ASM and RASM work in the decision space. Moreover,
they are both implemented in the filter-based meta-modeling
framework [14], where meta-models are used to pre-screen
solutions rather than to replace fitness evaluations altogether.
Pareto rank learning (PRL) [15] goes a step further and uses
the ranks obtained by non-dominated sorting [16] for training
a rank-based SVM. PRL also uses the filtering approach to
perform real (expensive) function evaluations on solutions
classified by it as rank one. All the above methods update the
SVM model periodically using recently evaluated solutions.
The method described in [17] however, generates the SVM
model only once as a representation of the Pareto-optimal
front and uses it throughout the optimization process. An
artificial training set is generated in the objective space by
‘improving’ a few known near-Pareto optimal solutions twice,

1The consideration of non-dominance relations was deferred for a future
study.

P
A
R
E
T
O
−
D
O
M
I
N
A
N
C
E

(M+1) Surrogates

Proposed Mono−surrogate

xi,xj

𝑓1

𝑓2

𝑓𝑀

𝑓1(xj)

𝑓1(xi)

𝑓2(xi)

𝑓2(xj)

𝑓𝑀 (xi)

𝑓𝑀 (xj)

xi ≺ xj

xi∥xj

xi ≻ xj

Fig. 1. Conceptualization of the proposed mono-surrogate using 𝑀 objective
surrogates f̂ and one Pareto-dominance surrogate.

first for obtaining the negative instances (dominated solutions)
and once again for the positive instances (non-dominated
solutions). It should however be pointed out that the purpose
of the study in [17] was only to test whether a one-time SVM
representation carries sufficient information to guide the search
effectively.

In this paper, we propose a mono-surrogate strategy that
uses multi-class classification. The paper is organized as
follows. Section II describes the framework of the present
approach. Multi-class classification algorithms used within this
approach are briefly described in Section III. Next we present
the experimental methodology in Section IV and finally discuss
the results in Section V.

II. CLASSIFICATION BASED MONO-SURROGATE

The present approach starts like any other surrogate
method. The population is initialized randomly and actual
(expensive) function evaluations are carried out. Selection and
variation operators are used to produce offspring and individ-
uals are ranked using Pareto-dominance principles. Thereafter,
better ranked members are chosen to form the next generation
population. The process continues until either an archive of
pre-defined size is full or a pre-specified number of generations
are executed, at which point the surrogate(s) is updated. In
the proposed approach, the Pareto-dominance relations already
established between different individuals of the current archive
or the current population (as the case may be) serve as training
instances. We use𝑁 to denote the size of this training set. For a
pair of individuals xi and xj, three possible Pareto-dominance
relations exist (i) xi ≺ xj, or (ii) xi ≻ xj, or (iii) xi∣∣xj. A
multi-class classification algorithm can be trained using the 𝑁
instances to classify new pairs of solutions into one of these
three classes, thereby avoiding the need to evaluate objective
functions and perform Pareto-dominance test. This classifica-
tion based mono-surrogate approach can thus be thought of
as a combination of (𝑀 + 1) surrogates, 𝑀 of which model
the objective functions and a final surrogate which models
the Pareto-dominance relation between two given individuals
as shown in Figure 1. Like, ASM and RASM, the proposed
approach also works in the decision space. However, it is

1140

TABLE I. CHANGES IN CLASS SKEW (PERCENTAGE) WITH

GENERATIONS FOR ZDT1 (𝑛 = 5)

𝑔𝑒𝑛 Class ‘≺’ Class ‘≻’ Class ‘∥’
2 1.26 24.99 73.75
20 0.27 0.28 99.45
40 0.19 0.17 99.64
60 0.16 0.18 99.67
80 0.15 0.16 99.68

100 0.11 0.13 99.76

important to understand that this method does not generate
ranks (or a measure of rank) for individual solutions but
simply predicts the Pareto-dominance relation between any two
individuals from the population. As the population evolves,
the spread of solutions in the decision space changes and the
classification algorithm may need to be re-trained just like any
other surrogate based methods.

In this preliminary study, our aim is only to compare
various multi-class classification algorithms in terms of their
accuracy and training times at various stages of optimization
and for various problem sizes.

∙ Optimization stage: As optimization proceeds, the
proportion of training instances belonging to the
three classes changes. The class representing the non-
dominance relation (i.e. xi∣∣xj) grows in size with
generations as the population moves towards the
Pareto-optimal front. Table I shows an example of
how the class proportions change with generations in
ZDT1 for 𝑛 = 5 variables. The fact that 𝑂(𝑀𝑁2)
non-dominated sorting presented in [16] compares
non-dominated solution pairs more often than other
solution pairs contributes to this class skew. The
classification algorithms should therefore be robust
enough to handle class skewness in the training set.

∙ Problem size: The number of objectives and the
number of variables also effect classification. It is
well-known that with higher number of objectives
a greater proportion of solutions are non-dominated.
This further adds to the class skew discussed above.
Moreover, higher number of variables means more
features to be taken into account. Since the proposed
mono-surrogate takes two solution vectors as input,
doubling the number of variables quadruples the num-
ber of features. This results in increased training times.

While the integration of the mono-surrogate with optimiza-
tion is left for a future study, the results of this study can guide
the selection of an appropriate classifier for the mono-surrogate
in specific cases. Next, we briefly describe ten off-the-shelf
classification algorithms used with the above proposed mono-
surrogate.

III. MULTI-CLASS CLASSIFICATION

In the field of supervised machine learning, classification
refers to the task of training a computer program using a set
of instances (training set) with known class memberships. The
user chooses certain features of the instances that may effect
its classification and the program ‘learns’ the mapping between
these features and the classes. Once trained, the performance
of the classifier is defined by its ability to correctly predict the

class membership of a new instance (from test set) previously
‘unseen’ by the program during training. Many classifiers have
been proposed in the machine learning literature [18] and
the No Free Lunch theorem applies, meaning that for each
application, a range of classifiers should be experimented with
before choosing one.

Classifiers are often developed with binary classification in
mind, i.e. when each instance can belong to one of two classes.
Multi-class classification deals with problems involving𝐾 > 2
classes. Binary classifiers that output posterior probabilities
can directly be extended for multi-class classification. The
test instance is assigned to the class with the largest posterior
probability. When the output of the binary classifier is not
calibrated, voting mechanisms are used instead. In ‘one-vs-all’
voting,𝐾 binary classifiers are trained to distinguish each class
from rest of the classes. On the other hand, the ‘one-vs-one’
approach builds

(
𝐾
2

)
binary classifiers to distinguish each class

from every other class. The following sections briefly describe
the ten multi-class classifiers used in this study.

A. Multinomial Logistic Regression

Logistic regression uses the logistic (or sigmoid) function
to define the probability, in terms of a linear combination of
𝐷 features X, that an outcome 𝑌 is one of two classes {0, 1},
i.e.

𝑃𝑟(𝑌 = 1∣X) =
1

1 + 𝑒−(𝛽0+𝜷𝑇X)
. (3)

Since 𝑃𝑟(𝑌 = 1∣X)+𝑃𝑟(𝑌 = 0∣X) = 1, the above equation
can be expressed as,

ln

(
𝑃𝑟(𝑌 = 1∣X)

𝑃𝑟(𝑌 = 0∣X)

)
= 𝛽0 + 𝜷𝑇

X, (4)

where 𝛽0 + 𝜷𝑇
X represents the decision boundary between

the two classes. The logit model in Eq. (4) can be extended to
𝐾 classes using 𝐾 − 1 independent decision boundaries as,

ln

(
𝑃𝑟(𝑌 = 𝑘∣X)

𝑃𝑟(𝑌 = 𝐾∣X)

)
= 𝛽0𝑘 + 𝜷𝑇

k
X ∀ 𝑘 = {1, . . . ,𝐾 − 1},

(5)
where the probability of the outcome being the 𝐾-th class is
taken as reference in the denominator. The 𝐾 − 1 coefficients
𝛽0𝑘 and (𝐾 − 1) × 𝐷 coefficients 𝜷k are estimated using
maximum likelihood.

B. Support Vector Machines

Support vector machines are primarily binary classifiers
that divide instances using a linear decision boundary (hy-
perplane) representing maximal separation or margin between
their classes 𝑌 = {−1, 1}. Instances that are closest to the
hyperplane on either side of it are called support vectors and
they satisfy,

w𝑇X𝑖 − 𝑏 = +1 ∀ 𝑌𝑖 = +1

w𝑇X𝑖 − 𝑏 = −1 ∀ 𝑌𝑖 = −1

}
𝑌𝑖(w

𝑇X𝑖 − 𝑏) = 1, (6)

where w is the normal vector to the hyperplane and 𝑏/∥w∥ is
its distance from the origin. In general, all instances satisfy
𝑌𝑖(w

𝑇X𝑖 − 𝑏) ≥ 1. In soft margin SVMs, exceptions are
allowed using non-negative slack variables 𝜉𝑖 as follows,

𝑌𝑖(w
𝑇X𝑖 − 𝑏) ≥ 1− 𝜉𝑖 ∀ 𝑖 = {1, . . . , 𝑁} (7)

1141

The maximal soft margin hyperplane is obtained by minimiz-
ing ∥w∥ while penalizing non-zero 𝜉𝑖 with a penalty 𝐶 > 0,
i.e.

min
w,𝑏,𝝃

1
2∥w∥

2 + 𝐶
∑𝑁

𝑖=1 𝜉𝑖

subject to 𝑌𝑖(w
𝑇X𝑖 − 𝑏) ≥ 1− 𝜉𝑖 ∀ 𝑖 = {1, . . . , 𝑁}

𝜉𝑖 ≥ 0 ∀ 𝑖 = {1, . . . , 𝑁}
(8)

Since 𝑁 is usually large, the dual form of the above op-
timization problem is solved. SVMs can ‘act’ as non-linear
classifiers using the kernel trick which basically maps feature
vectors 𝑋𝑖 to a high-dimensional space where the decision
boundary can be linear. LIBSVM’s [19] implementation of
one-vs-one multi-class SVM classification is used in this paper
with 𝐶 = 1 and 𝜎 = 1 for the Gaussian radial basis function
kernel 𝜅(Xi,Xj) = exp(−(∥Xi −Xj∥2)/2𝜎2).

C. Multi-layered Perceptron

Multi-layered perceptrons, or more commonly artificial
neural networks, can be used for a variety of purposes, like
function approximation, pattern recognition and clustering. A
neural network consists of interconnected units or neurons
arranged into different layers namely input, hidden and output
layers. Each connection between neurons carries a weight.
For classification, the input layer takes features from the
training set. Each neuron in the hidden and output layers
accepts a weighted sum of outputs from the previous layer
and generates its own output using the activation function. The
number of neurons in the output layer depends on the purpose
of the neural network. Approximation of a scalar function
require just one output neuron. For multi-class classification
with 𝐶 classes, typically 𝐶 output neurons are used. Starting
with randomly initialized values, the network weights are
learned iteratively using the training set. In the standard
back-propagation algorithm, each time a training instance is
evaluated, the error at the output layer is back propagated to
update the weight values. More sophisticated algorithms, like
Levenberg-Marquardt and Scaled Conjugate Gradient, perform
network learning from an optimization point of view, using
search directions, line searches and error functions. In this
paper we use a neural network model with 𝐷 neurons in the
input layer for the 𝐷 features, 10 neurons in one hidden layer
and three neurons in the output layer each representing a class.
The sigmoid activation function is used at all hidden and output
layer neurons.

D. Classification Trees

Classification trees are a variant of decision trees where
the outcomes at the end nodes (leaves) belong to one of the 𝐶
classes. A classification tree consists of a root node where all
training instances are present. The root node splits the training
set into two subsets represented by two child nodes. The
process continues until all instances in a node belong to one
class. Each node uses a split criterion to select a feature and
a corresponding value, on the basis of which the two subsets
are formed. Popular split criteria are the Gini impurity index,
information gain and the twoing rule. In this work, we use the
Gini impurity index is given by, 𝐺(𝑡) = 1 −

∑𝐾
𝑘=1[𝑓(𝑘∣𝑡)]2,

where 𝑓(𝑘∣𝑡) is the fraction of instances belonging to class
𝑘 at the given node 𝑡. The split is based on the condition 𝑣

(combination of a feature and a value) which maximizes the
Gini gain Δ, between the parent node and its child nodes. It
is given by,

Δ = 𝐺(𝑝𝑎𝑟𝑒𝑛𝑡)−
∑
𝑣∈𝑉

𝑓𝑝𝑎𝑟𝑒𝑛𝑡,𝑣𝐺(𝑐ℎ𝑖𝑙𝑑∣𝑣), (9)

where 𝑉 is the set of all possible conditions obtained from
the features and their sorted values, 𝑓𝑝𝑎𝑟𝑒𝑛𝑡,𝑣 is the fraction
of instances in parent node that satisfy condition 𝑣 and
𝐺(𝑐ℎ𝑖𝑙𝑑∣𝑣) is the Gini index of the child node satisfying
𝑣. We use Matlab’s R⃝ classregtree function which also
performs tree pruning to avoid over-fitting.

E. Naive Bayes Classifier

The naive Bayes classifier uses Bayes rule to calculate the
probability that an instance X belongs to class 𝑘, i.e.,

𝑃𝑟(𝑌 = 𝑘∣X) =
𝑃𝑟(𝑌 = 𝑘)𝑃𝑟(X∣𝑌 = 𝑘)∑𝐾
𝑖=1 𝑃𝑟(𝑌 = 𝑖)𝑃𝑟(X∣𝑌 = 𝑖)

. (10)

This classifier makes the ‘naive’ assumption that the features
are conditionally independent of each other, which is almost
always wrong. Thus, Eq. (10) can be written as,

𝑃𝑟(𝑌 = 𝑘∣X) =
𝑃𝑟(𝑌 = 𝑘)Π𝐷

𝑗=1𝑃𝑟(𝑋𝑗 ∣𝑌 = 𝑘)∑𝐾
𝑖=1 𝑃𝑟(𝑌 = 𝑖)Π𝐷

𝑗=1𝑃𝑟(𝑋𝑗 ∣𝑌 = 𝑖)
,

(11)
where X = [𝑋1, 𝑋2, . . . 𝑋𝐷]𝑇 . The probability distribution on
the right hand side of Eq. (11) are estimated from the training
data. For real-valued features, the probability distributions for
each class 𝑖 with each feature 𝑗, i.e. 𝑃𝑟(𝑋𝑗 ∣𝑌 = 𝑖), are
often assumed to be Gaussian, which involves two parameters,
namely the mean 𝜇 and the standard deviation 𝜎. Thus, in all
2𝐷𝐾 parameters are to be estimated from the training set.
Maximum likelihood estimates are used commonly.

F. 𝑘 Nearest Neighbor

𝑘 nearest neighbor or 𝑘-NN is the simplest of all the
classifiers studied in this paper. Unlike other learning algo-
rithms, 𝑘-NN defers all computations until a new instance is
to be classified. Therefore, it is also known as lazy learner.
Given a test instance, it approximates the mapping locally by
considering 𝑘 nearest neighbors of the instance in the feature
space from the training set. The distance measure depends
on the type of features. We use Euclidean distance since all
features are real and continuous. Thereafter, a voting strategy
is employed to predict the class of the instance. In majority
voting, the predicted class is the class to which a majority
of the of the 𝑘 neighbors belong. In case of a tie between
two or more classes, the predicted class is the one which
contains the training instance closest to the test instance. In
general however, majority voting is not recommended when
class distribution is skewed. This study uses 𝑘 = 𝐷 neighbors.

G. Linear Discriminant Analysis

Linear discriminant analysis (LDA), also sometimes known
as Fisher’s linear discriminant, attempts to find a linear trans-
formation 𝑦 = w𝑇X that gives maximal separation between
the projected instances of two classes. The probability distribu-
tion of each class (𝑖 = 1 and 𝑖 = 2) is assumed to be normal,

1142

characterized by mean 𝝁𝑖 and covariance S𝑖, which become
w𝑇𝝁𝑖 and w𝑇S𝑖w in the projected space. The separation in
the projected space is defined by the ratio of variance between
classes to the variance within classes, i.e.,

𝑆(w) =
(w𝑇𝝁1 −w𝑇𝝁2)

2

w𝑇S1w +w𝑇S2w
=

w𝑇SBw

w𝑇SWw
. (12)

Here, SB = (𝝁1−𝝁2)(𝝁1−𝝁2)
𝑇 and SW = S1+S2. It can be

shown that 𝑆(w) is maximized when w = SW
−1(𝝁1 − 𝝁2).

LDA can be generalized to 𝐾 classes using 𝐾 − 1 projec-
tions, which can be calculated individually as above or more
gracefully by arranging w1,w2, . . . ,w𝐾−1 as columns of the
projection matrix W. In this case, the separation is defined by,

𝑆(W) =
∣W𝑇SBW∣
∣W𝑇SWW∣

, (13)

where, SB =
∑𝐾

𝑖=1(𝝁𝑖 − 𝝁)(𝝁𝑖 − 𝝁)𝑇 , 𝝁 is the mean of
class means and SW =

∑𝐾
𝑖=1 S𝑖. Again it can be shown

that multi-class separation is maximized by the eigenvectors
corresponding to the largest eigenvalue of SW

−1SB. A new
instance X is assigned to the class whose projected mean
(W𝑇𝝁𝑖) is closest to W𝑇X.

H. Quadratic Discriminant Analysis

Quadratic discriminant analysis (QDA) uses a generalized
form of LDA in which the covariances of different classes
are not equal. As a result more flexible decision boundaries
between the classes can be obtained. However, since QDA
estimates more parameters, the variances can be high.

I. Random Forests

A random forest is basically a collection of classification
trees. Each classification tree uses the complete training set
with the only difference that at each node the feature to be
used in the split criterion is not chosen from the complete set
of features but from a randomly selected subset of the feature
vector. For classification problems the recommended size of
this subset is

√
𝐷. The predicted class for a given instance is

the mode of class predictions of all classification trees in the
forest. In this study, we choose the number of trees as 10.

J. Ensemble

The ensemble method used in this paper predicts the
mode (most frequent) of class predictions of the above nine
classifiers and a random classifier. Assuming the classifiers are
run parallely, the training time is taken to be the maximum of
all the classifiers.

IV. EXPERIMENTAL METHODOLOGY

As discussed before, the performance of the above de-
scribed classification algorithms is studied with respect to (i)
problem size, and (ii) class skewness. For varying the problem
size, we use the ZDT test suite [20] with different number of
variables, i.e. 𝑛 = 5, 10, 15 and 20. In a future study, the
number of objectives can also be varied using an appropriate
test suite. Optimization is performed using NSGA-II [16] with
the following parameter settings:

1) Population size = 100
2) Number of generations = 100
3) SBX crossover probability 𝑝𝑐 = 0.9,

distribution index 𝜂𝑐 = 15
4) Polynomial mutation probability 𝑝𝑚 = 1/𝑛,

distribution index 𝜂𝑚 = 20

Since we are concerned with the performance of classification
algorithms and not that of NSGA-II, we consider one particular
NSGA-II run for some random seed. Each classification algo-
rithm is trained and tested at different stages of optimization,
i.e. at 𝑔𝑒𝑛 = 2, 20, 40, 60, 80 and 100, to study the effect of
class skewness. At each of these stages, the Pareto-dominance
relations obtained through pairwise comparisons performed by
the non-dominated sorting routine are recorded for training and
testing.

A. Cross-validation

Many different cross-validation methods are available in
literature. We use the popular 𝑘-fold cross-validation to es-
timate the generalization performance of each classification
algorithm. The pairwise comparisons recorded above are ran-
domly divided into 𝑘 nearly equally sized parts (or folds)
with stratification, which ensures that the class proportions in
each fold are roughly the same. The first fold is held-out and
the remaining 𝑘 − 1 folds are used to train the algorithm in
question. The performance of the trained algorithm is then
evaluated for the first fold. This process is repeated 𝑘 times,
each time holding-out one fold for evaluation and using the
other folds to train the classifier. The 𝑘 performance metrics
thus obtained are averaged to get the mean estimate of the
performance for that particular classifier, for the test problem
under consideration at a given problem size and optimization
stage. We use 𝑘 = 10 in this study.

B. Performance Criteria

The ten classification algorithms are compared with respect
to two estimated performance metrics, the misclassification
rate or error rate (𝜖) and the training time (𝜏). The former
measures the accuracy, i.e. 𝜖 = misclassified test instances

total test instances ,
while the latter measures the speed of the algorithm in seconds.
It has been argued in machine learning literature, whether
or not misclassification rate is a good accuracy measure,
especially when dealing with datasets having considerable
class skew [21]. However, other performance measures [22]
are equally susceptible to class skew [21]. An alternate scalar
measure that is unattenuated by skewed class distributions is
the area under the ROC (Receiver Operating Characteristic)
curve, often abbreviated as AUC (Area Under Curve) [23].
However, there are two reasons why we don’t use AUC in
this paper. Firstly, the generation of ROC curves requires a
class-discrimination threshold, which is not available for all
classification algorithms. Secondly, the generalization of ROC
(and AUC) to multi-class classification is still debated. Hence,
despite its shortcomings, we have chosen to use misclassi-
fication rate, accompanied by the misclassification rate of a
random classifier to serve as baseline.

C. Feature Vector and Output

Note that in the proposed approach the feature vector X of
length 𝐷 is simply a juxtaposition of the two solution vectors,

1143

TABLE II. LEGEND FOR PARETO CHARTS

Algorithm Symbol
Random Classifier ∘

Multinomial Logistic Regression ×
Support Vector Machine +

Neural Networks +×
Classification Tree □

Naive Bayes Classifier ♢
𝑘 Nearest Neighbors ▽

Linear Discriminant Analysis △
Quadratic Discriminant Analysis ⊲

Random Forest ⊳
Ensemble ✰

0 0.2 0.4
Misclassification Rate

Time
(sec)

0.6 0.8

0

1

2

3

4

5

6

7

8

9

Fig. 2. Misclassification rate vs training time at 𝑔𝑒𝑛 = 2 for all algorithms
with test problem size 𝑛 = 5.

i.e. X =

[
xi

xj

]
, and therefore 𝐷 = 2𝑛. The outputs relations

≺, ∥ and ≻ are assigned categorical labels.

V. RESULTS

The estimated mean misclassification rates and training
times obtained after 𝑘-fold cross validation can be shown on
Pareto charts. Figures 2-5 show the trade-off between the two
performance criteria at the second generation of NSGA-II for
ZDT1, ZDT2 and ZDT3 with 𝑛 = 5, 10, 15 and 20 variables.
Table II shows the legend used for the algorithms:

The Pareto-efficient classification algorithms in all cases
are connected using (i) a continuous line for ZDT1, (ii) a
dashed line for ZDT2 and (iii) a dotted line for ZDT3. The
dominated algorithms clearly stand out as points to the right
of the Pareto-efficient front. Some important observations from
these figures are as follows:

1) The random classifier has the worst performance
among all algorithm with respect to accuracy. This
assures us that the learning algorithms are being
trained properly. Even with significant class skew,
as shown in Table I, the implemented algorithms
perform better than the baseline random classifier,
which is expected.

0 0.2 0.4
Misclassification Rate

0.6 0.8

0

1

2

3

4Time
(sec)

5

6

7

8

Fig. 3. Misclassification rate vs training time at 𝑔𝑒𝑛 = 2 for all algorithms
with test problem size 𝑛 = 10.

0 0.2 0.4 0.6 0.8

0

1

2

3

4

Misclassification Rate

Time
(sec)

5

6

7

8

9

10

Fig. 4. Misclassification rate vs training time at 𝑔𝑒𝑛 = 2 for all algorithms
with test problem size 𝑛 = 15.

2) LDA is the worst performing algorithm among all
learning algorithms. However, it is also the fastest.

3) Neural networks and the ensemble approach provide
the best accuracy but are also the most time taking
of all algorithms.

4) Random forest performs better than neural networks
in terms of training times. They are second best when
it comes to classification accuracy.

5) Multinomial logistic regression is a dominated algo-
rithm for all three ZDT problems considered here.
Thus, it should never be used with the mono-
surrogate approach proposed in this paper.

6) The algorithms found on the knee region of the

1144

0 0.2 0.4 0.6 0.8
0

5

Misclassification Rate

Time
(sec)

10

15

20

25

Fig. 5. Misclassification rate vs training time at 𝑔𝑒𝑛 = 2 for all algorithms
with test problem size 𝑛 = 20.

Pareto-efficient curve are SVM, classification trees,
𝑘-NN and to some extent QDA. For the purpose
studied in this paper, these algorithms should be the
most preferred.

The Pareto-efficient charts discussed above show sufficient
trade-off between accuracy and training time in the initial
generations. Thus, if more accurate predictions are required,
neural networks and random forests may be used at the expense
of additional training time. However, it is observed that this
trade-off vanishes in subsequent generations. For example,
consider the Pareto-efficient plot at 𝑔𝑒𝑛 = 20 as shown in
Figure 6. Clearly, the choice of classification algorithm should
be one of those at the knee region, since those at the extremities
do not offer better accuracy or training times.

Next, we consider the individual performance of each
algorithm with generations for different problem sizes. For
illustration we choose SVM, since it is the only classifica-
tion algorithm studied previously for surrogate modeling, as
discussed in Section I. Moreover, from the discussion above
SVM should be one of the preferred algorithms in the present
mono-surrogate approach. Figure 7 shows the misclassification
rate with generations for various problem sizes of ZDT3. Now
consider a similar plot for training time as shown in Figure 8.
From Figures 7 and 8 it is observed that problem size does not
effect the accuracy of SVM as much as it effects the training
time. Another interesting observation from Figure 8 is that a
higher increase in SVM training time (with problem size) is
required in the initial generations when the class proportions
are not too skewed. Similar analysis can be performed on other
algorithms to choose the best classification algorithm when
training time is not an issue. For example, neural networks are
highly parallelizable and, as observed in the Pareto-efficient
charts, more accurate than other learning algorithms.

0 0.2 0.4 0.6 0.8

0

1

2

3

4

Misclassification Rate

Time
(sec)

5

6

7

Fig. 6. Misclassification rate vs training time at 𝑔𝑒𝑛 = 20 for all algorithms
with test problem size 𝑛 = 5.

2 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Generations

M
is

cl
as

si
fic

at
io

n
R

at
e

n=20
n=15
n=10
n=5

Fig. 7. SVM misclassification rate vs generations for various problem sizes
of ZDT3.

VI. CONCLUSIONS

In this paper, we proposed a new mono-surrogate strategy
which uses multi-class classification algorithm to establish
Pareto-dominance relations between pairs of individuals from
a population. The surrogate can be used to rank solutions
without the need to evaluate expensive objective functions and
perform Pareto-dominance tests. The misclassification rates
and training times of ten popular classification algorithms were
obtained though systematic experimentation, which involved
scaling the number of variables for ZDT problems and train-
ing and testing the algorithms at various stages during the
optimization with NSGA-II. The results of this study show
that as far as modeling the optimization objectives and Pareto-

1145

2 20 40 60 80 100
0

1

2

3

4

5

6

7

Generations

T
ra

in
in

g
T

im
e

(s
ec

)

n=20
n=15
n=10
n=5

Fig. 8. SVM misclassification rate vs generations for various problem sizes
of ZDT3.

dominance tests is concerned, some classification algorithm are
clearly better than others in terms of both accuracy and speed.
Among them are SVM, 𝑘-NN and classification trees. Random
forests expectedly require more training time, however, the
voting from multiple trees improves its prediction accuracy.
The biggest revelation for the authors is that logistic regression
is dominated in terms of both performance criteria. Through
the use of Pareto charts we have quantitatively shown the
relative performance of all algorithms.

The immediate extension to this study is the integration
of the proposed mono-surrogate with an MOEA. Also, as
discussed previously, scaling the number of objectives in-
creases class skew significantly. Studying the performance of
these algorithms under such conditions will be crucial for
the proposed mono-surrogate approach to be used in many-
objective optimization. In this study, we overcame the weak-
ness of misclassification rate as a performance measure using
a baseline random classifier. However, as and when a better
performance indicator for algorithm accuracy is proposed, it
should be used in place of the misclassification rate.

REFERENCES

[1] Y. Jin, “A comprehensive survey of fitness approximation in evolution-
ary computation,” Soft Computing, vol. 9, no. 1, pp. 3–12, Oct. 2003.

[2] ——, “Surrogate-assisted evolutionary computation: Recent advances
and future challenges,” Swarm and Evolutionary Computation, vol. 1,
no. 2, pp. 61–70, Jun. 2011.

[3] T. P. Runarsson, “Constrained Evolutionary Optimization by Approxi-
mate Ranking and Surrogate Models,” PPSN VIII, pp. 401–410, 2004.

[4] T. Runarsson, “Ordinal regression in evolutionary computation,” in
PPSN IX, 2006, pp. 1048–1057.

[5] R. Herbrich, T. Graepel, and K. Obermayer, “Large Margin Rank
Boundaries for Ordinal Regression,” in Advances in Large Margin Clas-
sifiers, A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
Eds. Cambridge, MA: {MIT} Press, 2000, pp. 115–132.

[6] I. Loshchilov, M. Schoenauer, and M. Sebag, “Comparison-based
optimizers need comparison-based surrogates,” PPSN XI, pp. 364–373,
2010.

[7] ——, “Dominance-based pareto-surrogate for multi-objective optimiza-
tion,” in Simulated Evolution and Learning, 2010, pp. 230–239.

[8] J. Knowles and H. Nakayama, “Meta-modeling in multiobjective opti-
mization,” Multiobjective Optimization, vol. 5252, pp. 245–284, 2008.

[9] A. Smola and B. Schölkopf, “A tutorial on support vector regression,”
Statistics and computing, vol. 14, pp. 199–222, 2004.

[10] T. W. Simpson, J. D. Poplinski, P. N. Koch, and J. K. Allen, “Metamod-
els for computer-based engineering design: Survey and recommenda-
tions,” Engineering with Computers, vol. 17, no. 2, pp. 129–150, 2001.

[11] Y. Yun, H. Nakayama, and M. Arakava, “Generation of Pareto frontiers
using support vector machine,” in MCDM04, 2004.

[12] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, a. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribu-
tion.” Neural computation, vol. 13, no. 7, pp. 1443–71, Jul. 2001.

[13] I. Loshchilov, M. Schoenauer, and M. Sebag, “A mono surrogate
for multiobjective optimization,” GECCO ’10 Proceedings of the 12th
annual conference on Genetic and evolutionary computation, pp. 471–
478, 2010.

[14] M. Emmerich, K. Giannakoglou, and B. Naujoks, “Single- and multi-
objective evolutionary optimization assisted by Gaussian random field
metamodels,” IEEE Transactions on Evolutionary Computation, vol. 10,
no. 4, pp. 421–439, Aug. 2006.

[15] C.-W. Seah, Y.-S. Ong, I. W. Tsang, and S. Jiang, “Pareto Rank Learning
in Multi-objective Evolutionary Algorithms,” in 2012 IEEE Congress
on Evolutionary Computation. Ieee, Jun. 2012, pp. 1–8.

[16] K. Deb, S. Agarwal, A. Pratap, and T. Meyarivan, “A fast and elitist
multi-objective genetic algorithm: {NSGA-II},” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, 2002.

[17] H. Aytu and S. Sayn, “Using support vector machines to learn the
efficient set in multiple objective discrete optimization,” European
Journal of Operational Research, vol. 193, no. 2, pp. 510–519, Mar.
2009.

[18] S. Kotsiantis, I. Zaharakis, and P. Pintelas, “Supervised machine learn-
ing: A review of classification techniques,” Informatica, vol. 31, pp.
249–268, 2007.

[19] C. Chang and C. Lin, “LIBSVM: a library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology (TIST), pp.
1–39, 2011.

[20] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective
evolutionary algorithms: empirical results.” Evolutionary computation,
vol. 8, no. 2, pp. 173–95, Jan. 2000.

[21] L. Jeni, J. Cohn, and F. D. L. Torre, “Facing Imbalanced Data–
Recommendations for the Use of Performance Metrics,” Affective
Computing and . . . , 2013.

[22] C. Ferri, J. Hernández-Orallo, and R. Modroiu, “An experimental com-
parison of performance measures for classification,” Pattern Recognition
Letters, vol. 30, no. 1, pp. 27–38, Jan. 2009.

[23] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition
letters, vol. 27, pp. 861–874, 2006.

1146

