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Abstract—Various evolutionary multiobjective optimization 
(EMO) algorithms have been proposed in the literature. They 
have different search mechanisms for increasing the diversity of 
solutions and improving the convergence to the Pareto front. As 
a result, each algorithm has different characteristics in its 
search behavior. Multiobjective search behavior can be visually 
shown in an objective space for a test problem with two or three 
objectives. However, such a visual examination is difficult in a 
high-dimensional objective space for many-objective problems. 
The use of distance minimization problems has been proposed to 
examine many-objective search behavior in a two-dimensional 
decision space. This idea has an inherent limitation: the number 
of decision variables should be two. In our former study, we 
formulated a four-objective distance minimization problem 
with 10, 100, and 1000 decision variables. In this paper, we 
generalize our former study to many-objective problems with 
an arbitrary number of objectives and decision variables by 
proposing an idea of specifying reference points on a plane in a 
high-dimensional decision space. As test problems for 
computational experiments, we generate six-objective and 
eight-objective problems with 10, 100, and 1000 decision 
variables. Our experimental results on those test problems show 
that the number of decision variables has large effects on 
multiobjective search in comparison with the choice of an EMO 
algorithm and the number of objectives. 

I. INTRODUCTION 

number of evolutionary algorithms have been proposed 
for solving multiobjective optimization problems [1]-[4]. 

Those algorithms are often called evolutionary multiobjective 
optimization (EMO) algorithms. In the design of an efficient 
EMO algorithm, it is important to strike a balance between 
convergence and diversity. Especially for many-objective 
problems with four or more objectives, the realization of a 
good convergence-diversity balance is very important because 
Pareto dominance-based selection pressure is very weak 
[5]-[8]. A variety of convergence improvement methods have 
been proposed for many-objective optimization [9]. However, 
convergence improvement often decreases the diversity of 
solutions due to convergence-diversity tradeoff in the search 
for many-objective optimization [10]. Thus it is important to 
understand the search behavior of each EMO algorithm when 
we try to improve its search ability.  

For the visual examination of the search behavior of EMO 
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algorithms, the use of distance minimization problems in a 
two-dimensional decision space has been proposed [11]-[15]. 
Distance minimization in a high-dimensional space was also 
discussed for performance evaluation of EMO algorithms in 
[16]-[18]. In a distance minimization problem, each objective 
is defined by the distance between a solution and a reference 
point in the decision space. Thus the number of objectives is 
the same as the number of reference points. This means that 
we can easily specify an arbitrary number of objectives.  

By specifying reference points on a two-dimensional plane, 
we can visually observe the search behavior of each EMO 
algorithm in the decision space. Fig. 1 shows an example of a 
four-objective problem with four reference points (red 
circles) and 100 solutions at the 100th generation in a single 
run of NSGA-II [19]. We can visually examine the 
distribution of solutions in the decision space. Fig. 2 shows 
100 solutions at the 10th, 20th, and 100th generations in a 
single run of MOEA/D [20] on the same test problem. In this 
manner, we can visually monitor the search behavior of EMO 
algorithms in the two-dimensional decision space.  
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Fig. 1.  A four-objective distance minimization problem and solutions at the 
100th generation of NSGA-II.  

Reference Point
Solution

x1

x2

10th Generation

-50 -25 0 25 50
-50

-25

0

25

50

Reference Point
Solution

x1

x2

20th Generation

-50 -25 0 25 50
-50

-25

0

25

50

Reference Point
Solution

x1

x2

100th Generation

-50 -25 0 25 50
-50

-25

0

25

50

 
Fig. 2.  Solutions at the 10th, 20th, and 100th generations of MOEA/D. 

The visual examination in the decision space in Fig. 1 and 
Fig. 2 has an inherent limitation: the number of decision 
variables is two. It is easy to generate a many-objective 
distance minimization problem in a high-dimensional 
decision space. However, the use of a high-dimensional 
decision space makes the visual examination very difficult. In 
our former study [18], we generated four-objective distance 
minimization problems with 10, 100, and 1000 variables. 
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Four reference points A, B, C, and D were specified so that 
the relation vAB + vAD = vAC held among the three vectors vAB, 
vAC, and vAD. Under this relation, the four reference points are 
on the same plane. All Pareto-optimal points P can be 
represented by the following formulation: vAP = w1vAB + 
w2vAD in the decision space where w1 and w2 are weights in 
the closed interval [0, 1]. 

In this paper, we generalize our former study [18] by 
proposing a simple specification method of an arbitrary 
number of reference points on a plane in a high-dimensional 
decision space. Our idea in this paper is to transform a 
two-dimensional decision space with a number of reference 
points to a plane in a high-dimensional decision space. In this 
manner, we can easily generate a distance minimization 
problem with an arbitrary number of objectives and decision 
variables. Using the generated test problem, we can visually 
examine the behavior of EMO algorithms. 

This paper is organized as follows. In Section II, we 
explain many-objective distance minimization problems with 
two decision variables. In Section III, we propose an idea of 
generating many-objective distance minimization problems 
with an arbitrary number of decision variables. We show 
experimental results on six-objective and eight-objective test 
problems with 10, 100, and 1000 decision variables in 
Section IV. This paper is concluded in Section V. 

II. TWO-VARIABLE DISTANCE MINIMIZATION PROBLEMS 

An m-objective distance minimization problem with two 
decision variables can be generated by specifying m points in 
a two-dimensional decision space. Let us denote those m 
points by Ai, i  =  1, 2, ..., m. The ith objective is the Euclidean 
distance from the ith reference point Ai to a solution x, which 
is a point in the decision space. For example, a six-objective 
problem with a regular hexagonal Pareto-optimal region is 
shown in Fig. 3, which is defined by the following reference 
points for m = 6: 
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where Ai is a reference point corresponding to a vertex of the 
hexagon, m is the number of vertices (m = 6 in Fig. 3), r is the 
radius of the hexagon (r = 25 in Fig. 3), and c is the position 
vector of the center of the hexagon ( 2c ; c = 0 in Fig. 3).  
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Fig. 3.  A hexagon obtained by (1) with m = 6, r = 25, and c = 0. 

III. MANY-VARIABLE DISTANCE MINIMIZATION PROBLEMS 

An m-objective distance minimization problem with n 
decision variables can be generated by specifying m reference 
points in an n-dimensional decision space [18]. For the sake 
of the visual examination of many-objective search behavior, 
we propose an idea of specifying reference points on a plane 
in an n-dimensional decision space. In this section, we 
explain how to specify those reference points in detail. 

A. Transformation of the Plane 

Our idea is to transform a two-dimensional decision space 
to a plane in an n-dimensional decision space. We specify the 
plane by a vector space with a basis {v1, v2} where v1 and v2 are 
independent n-dimensional vectors. That is, the plane is the 
vector space spanned by v1 and v2. 

A point a = (a1, a2)
T in a two-dimensional decision space is 

represented by  
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We map this point to a point b = (b1, b2, ..., bn)

T on the plane 
(i.e., the vector space with the basis {v1, v2}) in the 
n-dimensional decision space as follows: 
 

2211 vvb aa  .                                                                           (3) 
 

It is clear from (3) that the point b is on the plane spanned 
by v1 and v2. When multiple points in the two-dimensional 
decision space are mapped by (3), all points are on the same 
plane after the mapping. Geometric relations among those 
points in the two-dimensional decision space are preserved on 
the plane in the n-dimensional decision space when v1 and v2 
are orthogonal and their length is the same. 

It is also clear from (3) that the origin (0, 0, ..., 0)T of the 
n-dimensional decision space is always on the plane. That is, 
the plane spanned by v1 and v2 always passes through the 
origin of the n-dimensional decision space. To move the plane 
away from the origin, we modify the mapping in (3) as  
 

tvvb  2211 aa ,                                                                     (4) 
 
where t is an n-dimensional vector to move the plane away 
from the origin. The vector t can be also viewed as a point in 
the n-dimensional decision space to which the origin of the 
two-dimensional decision space is mapped by (4). By 
specifying the three vectors v1, v2, and t in (4), we can generate 
an m-objective distance minimization problem with n decision 
variables from a two-dimensional m-objective problem. 

For example, let us assume that v1, v2, and t are specified as 
v1 = (1, 0, 1, 0)T, v2 = (0, 1, 0, 1)T, and t = (0, 0, 0, 0)T. In this 
case, a four-dimensional problem is generated by mapping 
reference points in the two-dimensional decision space. A 
reference point a = (a1, a2)

T is mapped to b = (a1, a2, a1, a2)
T. 

B. Visual Examination in the Decision Space 

One very simple method for visualizing the n-dimensional 
decision space is to project it into a two-dimensional plane 
using two decision variables. However, it is difficult to 
examine the distribution of solutions in the entire decision 
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space since such a simple visualization uses only two 
decision variables. Moreover, the Pareto-optimal region is 
not always shown nicely for all combinations of two decision 
variables. For example, let us assume that reference points are 
in the form of b = (a1, a2, a1, a2)

T as in the above-mentioned 
example. In this case, they are projected to (a1, a1)

T if we use 
the first and third decision variables. That is, all the projected 
reference points are on the same line. This means that the 
Pareto-optimal region is projected to a line even when it has 
some area on a plane in the four-dimensional decision space.  

Our idea is to project all solutions to the plane spanned by 
the basis {v1, v2}, which is used to generate an n-dimensional 
m-objective distance minimization problem. Let us denote a 
solution in the n-dimensional decision space by x, which is an 
n-dimensional vector. We project x to the plane spanned by v1  
and v2. The coordinates of the projected x on the plane are 
calculated with respect to the basis {v1, v2} as 2

11 / vvx   and 
2

22 / vvx   using the inner product operation. By using the 
calculated coordinates as the coordinates with respect to the 
standard two-dimensional basis {(1 0)T, (0 1)T}, the 
n-dimensional solution x is mapped to the following 
two-dimensional vector y for visualization: 
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C. Some Extensions 

Our m-objective distance minimization problem with n 
decision variables can be further generalized in several ways. 
One idea is to formulate n-dimensional test problems with 
multiple equivalent Pareto-optimal regions in the decision 
space in the same manner as in the case of two-dimensional 
test problems [13]-[15]. An example of those test problems is 
shown in Fig. 4 where four sets of six reference points are 
specified from (1) with m = 6, r = 10, and different settings of 
c: Ai from c = (30, 30)T, Bi from c = (30, -30)T, Ci from c = 
(-30, -30)T, and Di from c = (-30, 30)T. The ith objective is the 
distance from x to the nearest point among Ai, Bi, Ci, and Di. 
All points in each hexagon are Pareto-optimal. That is, this 
problem has the four equivalent Pareto-optimal regions. By 
transforming the two-dimensional decision space into a plane 
in an n-dimensional decision space, we can generate an 
n-dimensional six-objective test problem with the four 
hexagonal equivalent Pareto-optimal regions. 
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Fig. 4.  Four equivalent Pareto-optimal regions on a single plane. 

It is also possible to generate equivalent Pareto-optimal 
regions on different planes in an n-dimensional decision 
space. This can be done by using a different basis for the 
mapping of a different group of reference points. Let us 
explain this idea for the test problem with the four sets of six 
reference points in Fig. 4. We use a different basis for a 
different group of six reference points. For example, those 
bases can be as follows for a 100-dimensional decision space 
(all of them are constructed by repeating a sequence of four 
values):  

Ai : {(1, 0, 1, 0, ..., 1, 0, 1, 0)T, (0, 1, 0, 1, ..., 0, 1, 0, 1)T} 
Bi : {(1, 0, 0, 1, ..., 1, 0, 0, 1)T, (0, 1, 1, 0, ..., 0, 1, 1, 0)T} 
Ci : {(1, 0, -1, 0, ..., 1, 0, -1, 0)T, (0, 1, 0, -1, ..., 0, 1, 0, -1)T} 
Di : {(1, 0, 0, -1, ..., 1, 0, 0, -1)T, (0, 1, -1, 0, ..., 0, 1, -1, 0)T} 

Each group of six reference points in Fig. 4 is mapped to a 
different plane in the 100-dimensional decision space. Those 
points are shown in Fig. 5 by projecting them to each plane.  
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Fig. 5.  Four equivalent Pareto-optimal regions on the four different planes. 

When we formulate a test problem with multiple 
equivalent Pareto-optimal regions, the distance between 
reference points in the same group should be small in 
comparison with the distance between different groups. For 
example, if the four groups of reference points in Fig. 4 are 
very close to each other, Pareto-optimal regions can be not 
only inside each hexagon but also between different 
hexagons. 

IV. COMPUTATIONAL EXPERIMENTS 

In this section, we show experimental results of NSGA-II 
[19] and MOEA/D [20] on six-objective and eight-objective 
distance minimization problems. Each test problem has 10, 
100, or 1000 decision variables. First we generated those test 
problems using the proposed method in Section III. More 
specifically, we generated three six-objective test problems 
with 10, 100, and 1000 decision variables from the test 
problem in Fig. 3. The six reference points were mapped to 
high-dimensional decision spaces using the basis {v1, v2} = 
{(1, 0, 1, 0, ..., 1, 0)T, (0, 1, 0, 1, ..., 0, 1)T}. For generating 
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eight-objective test problems, we first generated a test 
problem in a two-dimensional decision space by specifying 
the eight reference points by (1) with m = 8, r = 25, and c = 0. 
Then those reference points were mapped to high- 
dimensional decision spaces using the same basis as in the 
case of the six-objective test problems. 

Our computational experiments were performed under the 
following settings: 

The range of the decision space: [-50, 50]n, 

The number of variables: n = 10, 100, and 1000, 
Initial solutions: Random real vectors in [-50, 50]n, 

Crossover probability: 1.0 (SBX with c = 15) , 
Mutation probability: 0.5 (Polynomial mutation m = 20). 
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Fig. 6.  NSGA-II on the six-objective problems (f1-f2 Space). 
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Fig. 7.  MOEA/D on the six-objective problems (f1-f2 Space). 

The population size in NSGA-II was specified as 100 for the 
six-objective and eight-objective test problems. Due to the 
combinatorial nature of the number of uniform weight vectors, 
the population size in MOEA/D was specified as 126 for the 
six-objective test problems and 120 for the eight-objective 
test problems. MOEA/D with the weighted Tchebycheff 
function was implemented with no archive population. A 
reference point for the Tchebycheff function calculation was 
updated after the evaluation of each solution using the 
minimum value of each objective. The neighborhood size 
was specified as 10% of the population size (i.e., 13 for the 
six-objective problems and 12 for the eight-objective 
problems). 
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Fig. 8.  NSGA-II on the six-objective problems (f1-f3 Space). 
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Fig. 9.  MOEA/D on the six-objective problems (f1-f3 Space). 
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Figs. 6, 8, and 10 show all solutions in the objective space 
at the 10th, 1000th, and 100000th generations of NSGA-II on 
the three six-objective test problems. Experimental results by 
MOEA/D are shown in Figs. 7, 9, and 11. The six points A1, 
A2, A3, A4, A5, and A6 are also projected to each plot as the 
red points. Some of the projections (e.g., f2-f3 space) are 
omitted because similar results are visually observed from 
different projections with the same shape of the projected six 
points. From Figs. 6-11, we can see that the increase in the 
number of decision variables has a severe negative effect on 
the diversity of solutions in NSGA-II and MOEA/D. This 
observation is consistent with our previous study [18]. 
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Fig. 10.  NSGA-II on the six-objective problems (f1-f4 Space). 
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Fig. 11.  MOEA/D on the six-objective problems (f1-f4 Space). 

The same experimental results are shown in the decision 
space in Fig. 12 and Fig. 13 using our visualization method in 
Subsection III.B. From the results in the objective space and 
the decision space, we can obtain similar observations for the 
diversity of solutions. For the distribution of solutions, we 
may be able to obtain more detailed understanding from the 
results in the decision space (e.g., see the bottom-left plot in 
Fig. 13). However, with respect to the convergence of 
solutions to the Pareto front, the results in the decision space 
can be misleading. For example, the top-right plot in Fig. 12 
seems to show that all solutions are in the Pareto-optimal 
region. This is not the case in Fig. 10.  
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Fig. 12.  NSGA-II on the six-objective problems (Decision Space).  
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Fig. 13.  MOEA/D on the six-objective problems (Decision space). 

2637



 
 

 

In the same manner as in Figs. 6-11 for the six-objective 
test problems, experimental results for the eight-objective test 
problems are shown in the objective space in Figs. 14-21 for 
NSGA-II and MOEA/D. The eight reference points in each 
test problem are shown by red circles in each plot. Whereas 
the number of objectives is increased from six in Figs. 6-11 to 
eight in Figs. 14-21, similar experimental results are obtained. 
For example, Fig. 6 and Fig. 14 are similar to each other. The 
diversity of solutions is severely degraded by the increase in 
the number of decision variables from 10 to 1000 in both Fig. 
6 and Fig. 14.  
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Fig. 14.  NSGA-II on the eight-objective problems (f1-f2 Space).   

MOEA/D on
10-D Problem

10th
Generation

f2

f10 30 60 90 120
0

30

60

90

120

MOEA/D on
100-D Problem

10th
Generation

f2

f10 100 200 300 400
0

100

200

300

400

MOEA/D on
1000-D Problem

10th
Generation

f2

f1

A

A

A

A

A

A
A

A

1

2

3

4

5

6
7

8

0 300 600 900 1200
0

300

600

900

1200

 
MOEA/D on
10-D Problem

1,000th
Generation

f2

f10 30 60 90 120
0

30

60

90

120

MOEA/D on
100-D Problem

1,000th
Generation

f2

f10 100 200 300 400
0

100

200

300

400

MOEA/D on
1000-D Problem

1,000th
Generation

f2

f10 300 600 900 1200
0

300

600

900

1200

 
MOEA/D on
10-D Problem

100,000th
Generation

f2

f10 30 60 90 120
0

30

60

90

120

MOEA/D on
100-D Problem

100,000th
Generation

f2

f10 100 200 300 400
0

100

200

300

400

MOEA/D on
1000-D Problem

100,000th
Generation

f2

f10 300 600 900 1200
0

300

600

900

1200

 
Fig. 15.  MOEA/D on the eight-objective problems (f1-f2 Space). 

In our former studies, we obtained similar observations 
from two-objective and four-objective distance minimization 
problems with 10, 100, and 1000 variable. These 
observations suggest that the number of decision variables 
has a dominant effect on the search behavior of NSGA-II and 
MOEA/D in our computation experiments.  

We can also see that similar results were also obtained 
from NSGA-II and MOEA/D (e.g., in Fig. 14 and Fig. 15). 
This observation suggests that the number of decision 
variables has a larger effect than the choice of the EMO 
algorithm in our computational experiments. 
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Fig. 16.  NSGA-II on the eight-objective problems (f1-f3 Space).  
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Fig. 17.  MOEA/D on the eight-objective problems (f1-f3 Space). 
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Fig. 18.  NSGA-II on the eight-objective problems (f1-f4 Space).  
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Fig. 19.  MOEA/D on the four-objective problems (f1-f4 Space). 

Our experimental results on the eight-objective problems 
are also shown in Fig. 22 and Fig. 23 in the decision space 
using the proposed method. The distribution of solutions can 
be further examined in Fig. 22 and Fig. 23. Comparison 
between Fig. 12 and Fig. 22 (Fig. 13 and Fig. 23) shows that 
similar distributions of solutions are obtained for our test 
problems with six and eight objectives. Fig. 22 and Fig. 23 
also show that the number of decision variables has a 
dominant effect on the behavior of NSGA-II and MOEA/D. 
Of course, if we use test problems with a huge number of 
objectives (e.g., 100 and 1000 objectives), we may observe 
that the number of objectives has a dominant effect.  
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Fig. 20.  NSGA-II on the eight-objective problems (f1-f5 Space). 
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Fig. 21.  MOEA/D on eight-objective problems (f1-f5 Space). 

V.  CONCLUSIONS 

We proposed an idea of generating many-objective and 
many-variable distance minimization problems. We also 
proposed a visual examination method of the search behavior 
of EMO algorithms on the generated distance minimization 
problems. The point of the proposed two methods was the use 
of a plane in a high-dimensional decision space. Such a plane 
was defined by two independent vectors (i.e., a basis of a 
vector space). Reference points in a two-dimensional distance 
minimization problem were mapped to those on a plane in a 
high-dimensional decision space. Solutions at each 
generation were observed by projecting them to the plane. 
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Fig. 22.  NSGA-II on the eight-objective problems (Decision Space). 

MOEA/D on
10-D Problem

10th
Generation

-50 -25 0 25 50
-50

-25

0

25

50
MOEA/D on
100-D Problem

10th
Generation

-50 -25 0 25 50
-50

-25

0

25

50
MOEA/D on
1000-D Problem

10th
Generation

A
A

A

A

A
A

A

A 1
8

7

6

5
4

3

2

-50 -25 0 25 50
-50

-25

0

25

50

 
MOEA/D on
10-D Problem

1,000th
Generation

-50 -25 0 25 50
-50

-25

0

25

50
MOEA/D on
100-D Problem

1,000th
Generation

-50 -25 0 25 50
-50

-25

0

25

50
MOEA/D on
1000-D Problem

1,000th
Generation

-50 -25 0 25 50
-50

-25

0

25

50

 
MOEA/D on
10-D Problem

100,000th
Generation

-50 -25 0 25 50
-50

-25

0

25

50
MOEA/D on
100-D Problem

100,000th
Generation

-50 -25 0 25 50
-50

-25

0

25

50
MOEA/D on
1000-D Problem

100,000th
Generation

-50 -25 0 25 50
-50

-25

0

25

50

 
Fig. 23.  MOEA/D on the eight-objective problems (Decision Space). 

Through computational experiments on the six-objective 
and eight-objective distance minimization problems, we 
showed that the number of decision variables had a dominant 
effect on the search behavior of EMO algorithms. It was also 
shown that the distribution of solutions can be examined in 
more detail in the decision space than the objective space.   
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