
 
 

 

 

Abstract—Iterated prisoner’s dilemma (IPD) games have 
been frequently used for examining the evolution of cooperative 
game strategies. It has been pointed out in some studies that the 
choice of a representation scheme (i.e., coding mechanism) has a 
large effect on the evolution. A choice of a different 
representation scheme often leads to totally different results. In 
those studies on IPD games, a single representation scheme is 
assigned to all players. That is, all players have the same 
representation scheme. In our former studies, we reported 
experimental results in an inhomogeneous setting where a 
different representation scheme was assigned to each player. 
The evolution of cooperation among different types of game 
strategies was examined. In this paper, we report experimental 
results in another interesting setting where each player is 
assumed to have multiple strategies with different 
representation schemes. The next action of each player is 
determined by a majority vote by its strategies. That is, each 
player is assumed to have an ensemble decision making system. 
Experimental results in such an ensemble IPD model are 
compared with those in the standard IPD model where each 
player has a single strategy. 

I. INTRODUCTION 

HE prisoner’s dilemma (PD) is a well-known non-zero 
sum game. Its iterated version (IPD: iterated prisoner’s 

dilemma) has been frequently used to examine the evolution 
of cooperation among independent players since the 1980s 
[1]-[3]. It has been demonstrated that various factors are 
related to the evolution of cooperative IPD game strategies. 

One important factor is the choice of a representation 
scheme (i.e., coding mechanism). Ashlock et al. [4] examined 
a variety of representation schemes such as binary strings, 
neural networks, decision trees and finite state machines. It 
was demonstrated that totally different results were obtained 
from each representation scheme. In their experiments [4], a 
single representation scheme was selected and assigned to all 
players in each run as in many studies on IPD games [1]-[3]. 
That is, all players had the same representation scheme. This 
homogeneous setting was extended to an inhomogeneous 
setting in our former studies [5]-[7] where a different 
representation scheme was assigned to each player. 

In this paper, we examine another interesting setting where 
each player is assumed to have multiple IPD game strategies 
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with different representation schemes. We further assume 
that each player decides its next action by a majority vote by 
its strategies. In our computational experiments, we use three 
types of binary strings with different string length and 
memory length as representation schemes: 3-bit binary 
strings with memory length 1, 7-bit binary strings with 
memory length 2, and 15-bit binary strings with memory 
length 3. Each player can have a 3-bit string, a 7-bit string, 
and a 15-bit string. The next action is decided by a majority 
vote by the strings. In a noise-free version of our simulations, 
the result of such an ensemble decision making is always used 
as the actual action. In a noisy version, the result of the 
majority vote is changed with a pre-specified probability. The 
aim of this paper is to examine the potential benefit of having 
multiple strategies for the evolution of cooperative IPD game 
strategies. 

Another important factor is a spatial structure of players 
[8]-[11]. The use of a different structure leads to different 
results with respect to the evolution of cooperative IPD game 
strategies. Recently, network structures have been actively 
studied as spatial models in evolutionary computation 
[12]-[15]. In this paper, we use a ring graph with additional 
edges as a spatial structure. Each player is assigned to a node 
of the graph. The neighbors of each player are defined by 
edges from its node. In this spatial model, the number of 
additional edges is an important parameter since it defines the 
neighborhood size. These edges are randomly added to a ring 
graph in this paper. 

This paper is organized as follows. We first explain our 
ensemble IPD in Section II. Next we explain our spatial 
genetic algorithm for the evolution of IPD game strategies in 
Section III. Then we show experimental results in Section IV. 
Finally, we conclude this paper in Section V. 

II. IPD GAME WITH OUR ENSEMBLE MODEL 

A.  Ensemble Action Selection in the IPD Game 

The prisoner’s dilemma (PD) is a two-player non-zero sum 
game. The player and the opponent choose either cooperation 
(“C”) or defection (“D”), simultaneously. We use a standard 
payoff matrix in Table I. The player receives the largest 
payoff 5 when the player defects and the opponent cooperates. 
This payoff is larger than the payoff 3 from the mutual 
cooperation (i.e., the payoff 3 when both the player and the 
opponent cooperate). The player receives the smallest payoff 
0 when the player cooperates and the opponent defects. This 
payoff is smaller than the payoff 1 from the mutual defection. 
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From Table I, it is clear that the defection is a better action 
for the player independent of the action of the opponent. That 
is, the player always obtains a higher payoff by choosing D 
than C in Table I. This is also the case for the opponent. 
However, their rational actions lead to the payoff 1 from the 
mutual defection, which is smaller than the payoff 3 from the 
mutual cooperation. This is the dilemma in the PD game.  

In an iterated version of the PD game (i.e., IPD: iterated 
prisoner’s dilemma), the PD game is iterated between the 
same pair of the player and the opponent. Each of them 
continues to play the IPD game to maximize its own total 
payoff over a number of rounds of the PD game.  

Each player usually has a single strategy in many studies 
on the IPD game. However, in our ensemble IPD game model, 
each player has three strategies. This setting can be easily 
generalized to the case of an ensemble decision making based 
on more strategies. Table II illustrates how the final action is 
decided by a majority vote by three strategies. For example, 
when the suggested actions by the three strategies are “C”, 
“D” and “C”, the result of their majority vote is “C”. 

TABLE I 
PAYOFF MATRIX OF OUR IPD GAME 

Opponent’s Action 
Player’s Action 

C: Cooperation D: Defection 

C: Cooperation 
Player Payoff: 3 

Opponent Payoff: 3 
Player Payoff: 0 

Opponent Payoff: 5 

D: Defection 
Player Payoff: 5 

Opponent Payoff: 0 
Player Payoff: 1 

Opponent Payoff: 1 

TABLE II 
ILLUSTRATION OF ENSEMBLE ACTION SELECTION 

Player’s action D D D C D C C C
Strategy 1 D D D D C C C C
Strategy 2 D D C C D D C C
Strategy 3 D C D C D C D C

B. Binary String Strategies 

We use 3-bit, 7-bit and 15-bit binary strings to represent 
player’s strategies. In those binary strings, “0” and “1” mean 
“D” and “C”, respectively. Table III shows how a player with 
a 3-bit binary string “x1 x2 x3” plays the IPD game. The first bit 
x1 determines the player’s action in the first round. The other 
bits x2 and x3 determine the player’s actions in the subsequent 
rounds. When the opponent’s action is “D” (“C”) in the 
(t1)th round, x2 (x3) is used to determine the player’s action 
in the t-th round. For example, the 3-bit binary string “101” 
chooses “C” in the first round, and chooses the same action as 
the opponent’s action in the previous round. As shown in 
Table III, 3-bit strategies have a memory of length 1, which 
contains the opponent’s action in the previous round.  

Table IV explains the action selection by a 7-bit binary 
string “x1x2x3x4x5x6x7”. The first three bits “x1x2x3” are used 
in the same manner as in Table III in the first two rounds. The 
other four bits “x4 x5 x6 x7” are used to determine the player’s 
actions in the subsequent rounds. As shown in Table IV, 7-bit 
strategies have a memory of length 2, which contains the 

opponent’s actions in the previous two rounds. Table V 
shows the action selection by a 15-bit string. As shown in 
Table V, 15-bit strategies have a memory of length 3, which 
contains the opponent’s actions in the previous three rounds.  

In this paper, the PD game is iterated for 100 rounds 
between the same pair of players. In a noise-free setting, each 
player chooses the suggested action by its strategy. In a noisy 
setting, each player chooses a different action from the 
suggested one with a pre-specified error probability. In this 
paper, we examined the following five specifications of the 
error probability: 0.00, 0.01, 0.03, 0.05, and 0.10. The error 
probability 0.00 means a noise-free setting. Each value shows 
an error probability with respect to each action selection.  

 
TABLE III 

BINARY STRATEGY OF LENGTH 3 
Opponent’s action at the (t1)th round - D C 

Player’s action at the t-th round x1 x2 x3

TABLE IV 
BINARY STRATEGY OF LENGTH 7 

Opponent’s action at the (t2)th round - - - D D C C
Opponent’s action at the (t1)th round - D C D C D C

Player’s action at the t-th round x1 x2 x3 x4 x5 x6 x7

TABLE V 
BINARY STRATEGY OF LENGTH 15 

(t3)th round - - - - - - - D D D D C C C C
(t2)th round - - - D D C C D D C C D D C C
(t1)th round - D C D C D C D C D C D C D C
Player’s action x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

III. STRATEGY EVOLUTION 

In our standard IPD model with a single strategy, one of the 
three representation schemes (i.e., 3-bit, 7-bit and 15-bit 
binary strings) is chosen and assigned to all players. In our 
ensemble IPD model with three strategies, a combination of 
three representation schemes is chosen and assigned to all 
players. We examine ten different combinations of three 
representation schemes in Table VI where the length of each 
binary string is shown for each combination. For example, 
Combination B has three 7-bit strings while Combination J 
has a single 3-bit, a single 7-bit, and a single 15-bit string. 
One of those combinations is selected and assigned to all 
players. Initial strategies are generated by randomly assigning 
0 and 1 with the same probability to each value in binary 
strings of the specified length. 

 
TABLE VI 

COMBINATIONS OF THREE BINARY STRINGS OF DIFFERENT LENGTH 
Ensemble Model A B C D E F G H I J

Strategy 1 3 7 15 3 3 3 7 3 7 3
Strategy 2 3 7 15 3 3 7 7 15 15 7
Strategy 3 3 7 15 7 15 7 15 15 15 15

 
Each player has its neighbors which are specified by a 

graph structure. If the player i is connected to the player j by 
an edge, the player j is a neighbor of the player i (and vice 
versa). The IPD game is played by each player against all its 
neighbors. After the execution of the IPD game is completed 
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for all players, the fitness of each player is calculated as the 
average payoff per round over all executions of the IPD 
game. 

For each player, two neighbors (including the player itself) 
are selected by binary tournament selection with replacement. 
In our standard IPD model with a single strategy, one-point 
crossover is applied to the strategies of the selected two 
neighbors with a pre-specified crossover probability (which 
is 1.0 in this paper). One of the generated offspring is 
randomly selected, to which bit-flip mutation is applied to 
generate a new strategy. In our ensemble IPD model with 
three strategies, each neighbor has three strategies. One-point 
crossover is applied to the first strategies of the selected 
neighbors, their second strategies, and their third strategies, 
separately (e.g., to the first strategy of one neighbor and the 
first strategy of the other neighbor). One of the generated 
strategies is randomly selected, to which bit-flip mutation is 
applied to generate the first strategy in a new ensemble 
strategy. The same procedure is applied to the second and the 
third strategies, separately. 

Bit-flip mutation is applied to each bit of the generated 
offspring with a pre-specified mutation probability. In our 
standard IPD model, we specify the mutation probability as 
1/NL where N is the number of players and L is the string 
length. This means that only a single bit is mutated in a 
population of N binary strings of length L on average. In our 
ensemble IPD model, we specify the mutation probability 
separately for each of the three strategies in the same manner. 
After new strategies are generated for all players, their current 
strategies are replaced with the newly generated ones in a 
synchronized manner. The generation update is iterated 1000 
times in this manner (i.e., for 1000 generations). 

IV. EXPERIMENTAL RESULTS 

We use a ring graph as the basic graph structure. A number 
of edges are randomly added to the basic ring graph. The 
basic ring graph structure and the addition of random edges 
are illustrated for the case of 16 nodes in Fig. 1. In our 
computational experiments, we use a ring graph with 1024 
nodes and its five modifications with 8, 64, 512, 1024, and 
2048 random edges. 

 

            
(a) Ring graph with 16 nodes.     (b) Addition of eight edges. 

Fig. 1.  Illustration of a ring graph and the addition of random edges. 

The random addition of edges is performed as follows. 
First, we randomly choose a node from the nodes with the 
smallest number of edges in the graph. Next we connect the 
selected node to another node, which is randomly chosen 

from the unconnected nodes to the selected node. This 
procedure is simply iterated to add a pre-specified number of 
random edges to the basic 1024-node ring graph.   

We examine the following 13 settings in this paper: 

Standard model: 3 choices of the string length (3, 7, 15), 
Ensemble model: 10 combinations in Table VI. 

In each setting, five specifications of the error probability 
(0.00, 0.01, 0.03, 0.05, and 0.10) are examined for each of the 
six graph structures (1024-node ring graphs with 0, 8, 64, 512, 
1024, and 2048 random edges). That is, we examine 5 x 6 
cases for each of the 13 settings of the representation schemes. 
This means that we examine 390 different cases in total. For 
each case, the evolution of cooperative IPD game strategies is 
examined by 100 runs of our genetic algorithm. Since we use 
1024-node graphs, the population size is 1024. The average 
payoff for each case is calculated over those 100 runs.  

From Table I in Section II, we can see that the highest 
average payoff for the player and the opponent is 3, which is 
obtained from the mutual cooperation. The lowest average 
payoff in Table I is 1, which is obtained from the mutual 
defection. In the other situations where one cooperates and 
the other defects, the average payoff is 2.5. These average 
payoff values are used for interpreting experimental results. 
Our experimental results are summarized in Figs. 2-17. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 2.  Standard IPD model with 3-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 3.  Ensemble IPD model with (3, 3, 3)-bit binary strings.  
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 4.  Standard IPD model with 7-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 5.  Ensemble IPD model with (7, 7, 7)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 6.  Standard IPD model with 15-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 7.  Ensemble IPD model with (15, 15, 15)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 8.  Ensemble IPD model with (3, 3, 7)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 9.  Ensemble IPD model with (3, 3, 15)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 10.  Ensemble IPD model with (3, 7, 7)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 11.  Ensemble IPD model with (7, 7, 15)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 12.  Ensemble IPD model with (3, 15, 15)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 13.  Ensemble IPD model with (7, 15, 15)-bit binary strings. 
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(a) Average Payoff.     (b) Standard Deviation. 

Fig. 14.  Ensemble IPD model with (3, 7, 15)-bit binary strings. 
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(a) With no random edge.     (b) With 512 random edges.    (c) With 1024 random edges.     (d) With 2048 random edges. 

Fig. 15.  Effects of random edges on the standard IPD model with a single 3-bit binary strategy and the three ensemble IPD models (3, 3, 3), (3, 3, 7) and (3, 3, 
15). Average payoff is calculated at each generation for each IPD model under the error probability 0.01. The black line shows the results by the standard IPD 
model with a single 3-bit binary strategy. The dashed bold gray line shows the results by the ensemble IPD model with three 3-bit binary strategies: (3, 3, 3). The 
dotted red line shows the results by the ensemble IPD model with two 3-bit and a single 7-bit binary strategies: (3, 3, 7). The dashed blue line shows the results 
by the ensemble IPD model with two 3-bit and a single 15-bit binary strategies: (3, 3, 15). 
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Fig. 16.  Effects of random edges on the standard IPD model with a single 7-bit binary strategy and the three ensemble IPD models (7, 7, 7), (3, 7, 7) and (7, 7, 
15). Average payoff is calculated at each generation for each IPD model under the error probability 0.03. The black line shows the results by the standard IPD 
model with a single 7-bit binary strategy. The dashed bold gray line shows the results by the ensemble IPD model with three 7-bit binary strategies: (7, 7, 7). The 
dotted red line shows the results by the ensemble IPD model with a single 3-bit and two 7-bit binary strategies: (3, 7, 7). The dashed blue line shows the results 
by the ensemble IPD model with two 7-bit and a single 15-bit binary strategies: (7, 7, 15). 
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(a) With no random edge.     (b) With 512 random edges.    (c) With 1024 random edges.     (d) With 2048 random edges. 

Fig. 17.  Effects of random edges on the standard IPD model with a single 15-bit binary strategy and the three ensemble IPD models (15, 15, 15), (3, 15, 15) and 
(7, 15, 15). Average payoff is calculated at each generation for each IPD model under the error probability 0.03. The black line shows the results by the standard 
IPD model with a single 15-bit binary strategy. The dashed bold gray line shows the results by the ensemble IPD model with three 15-bit binary strategies: (15, 
15, 15). The dotted red line shows the results by the ensemble IPD model with a single 3-bit and two 15-bit binary strategies: (3, 15, 15). The dashed blue line 
shows the results by the ensemble IPD model with a single 7-bit and two 15-bit binary strategies: (7, 15, 15). 

In Figs. 2-14, the standard deviation shows the variation of 
the average payoff among the 100 trials. First, let us compare 
Fig. 2 with Fig. 3. Fig. 2 uses a single 3-bit binary strategy 
while Fig. 3 uses three 3-bit binary strategies. In the 
noise-free case (i.e., when the error probability is specified as 
0.00), the average payoff is close to 3.0 in all settings in Fig. 2 
and Fig. 3. This means that the mutual cooperation is almost 
always achieved in early generations. However, high average 
payoff is not obtained in any settings in Fig. 2 and Fig. 3 in 
the noisy cases. This is because 3-bit binary strategies with 
memory length 1 cannot distinguish the two types of 
defection: One is the intentional defection based on the 
suggestion by the strategy of the opponent, and the other is 
the unintentional defection by accident due to the error 
probability.  

From the comparison between Fig. 2 and Fig. 3, we can 
observe that the use of three 3-bit binary strategies in the 
ensemble IPD model in Fig. 3 slightly increases the average 
payoff and slightly decreases the standard deviation from the 
case of the standard IPD model in Fig. 2 with a single 3-bit 
binary strategy. 

However, the difference between Fig. 4 with a single 7-bit 
strategy and Fig. 5 with three 7-bit strategies is unclear. That 
is, we cannot observe any clear effects of the use of three 7-bit 
strategies in comparison with a single 7-bit strategy. The 
difference between Fig. 6 with a single 15-bit strategy and Fig. 
7 with three 15-bit strategies is unclear, too.  

Figs. 2-7 show that there is no clear difference between the 
standard IPD model with a single strategy and the ensemble 
IPD model with three strategies of the same type. This may be 
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consistent with well-known results of ensemble classifiers: 
The use of similar classifiers does not significantly improve 
the classification performance of each individual classifier.  

In ensemble classifier design, it is often observed that an 
ensemble classifier of totally different classifiers has higher 
classification ability than each individual classifier. We have 
some corresponding observations in Figs. 2-14. For example, 
the average payoff from the ensemble IPD model (3, 3, 3) in 
Fig. 3 is clearly improved by replacing one of three 3-bit 
binary strategies with a 7-bit binary strategy in Fig. 8 with the 
ensemble IPD model (3, 3, 7) and a 15-bit binary strategy in 
Fig. 9 with the ensemble IPD model (3, 3, 15). It is interesting 
to observe that high average payoff is obtained even in the 
noisy setting from those ensemble models. A majority of 
strategies in those ensemble IPD models are still 3-bit binary 
strategies that cannot handle the noisy setting as shown in Fig. 
2 and Fig. 3.  

In order to further examine the effect of including a 
different type of a strategy (i.e., a different representation 
scheme) in our ensemble IPD models, we calculate the 
average payoff at each generation of our genetic algorithm. 
Experimental results on the noisy setting with the error 
probability 0.01 are shown in Fig. 15 for the standard IPD 
model with a 3-bit binary strategy and the three ensemble IPD 
models (3, 3, 3), (3, 3, 7), and (3, 3, 15). It is clearly shown in 
Fig. 15 that higher average payoff is obtained from the 
ensemble IPD models (3, 3, 7) and (3, 3, 15) than (3, 3, 3) and 
the standard model with a single 3-bit strategy.  

Similar observations are obtained from Fig. 16 (a) and Fig. 
17 (d). In those plots, higher average payoff is obtained from 
the ensemble IPD models with two different representation 
schemes than the models with a single representation scheme. 
For example, higher average payoff is obtained from the 
ensemble IPD model (7, 7, 15) than (7, 7, 7) in Fig. 16 (a). 

We can also observe clear effects of adding random edges 
in Figs. 15-17. For example, we can see from the 
experimental results by the standard IPD model with 3-bit 
binary strategies in Fig. 15 (i.e., continuous black line in each 
plot in Fig. 15) that the increase in the number of randomly 
added edges makes the evolution of cooperative IPD game 
strategies fast and unstable. The same observation is obtained 
from Fig. 16 and Fig. 17 for the standard IPD models with 
7-bit and 15-bit binary strategies (i.e., continuous black line 
in Fig. 16 (a)-(c) and Fig. 17 (a)-(c)). This is because 
randomly added edges make the propagation of good 
strategies throughout the entire network easier, which leads to 
faster evolution of cooperative IPD game strategies. At the 
same time, they disturb the locality in the spatial IPD game, 
which leads to unstable evolution of game strategies.  

Among 12 plots in Figs. 15-17, totally different results are 
obtained in Fig. 16 (d) from the other results. Except for Fig. 
16 (d), the average payoff obtained from the ensemble IPD 
models is clearly higher than or almost equal to that from the 
standard IPD models. However, the average payoff from the 
ensemble IPD model (7, 7, 15) is clearly lower than that of the 
standard IPD model with a single 7-bit strategy. This is a 
strange observation, which cannot be easily explained. 
Moreover, the experimental results by the standard IPD 

model with a single 7-bit strategy in Fig. 16 are different from 
those by a single 3-bit strategy in Fig. 15 and a single 15-bit 
strategy in Fig. 17. The increase in the number of randomly 
added edges from 512 to 1024 and 2048 decreases the 
average payoff of the standard IPD models in Fig. 15 and Fig. 
17 (see the continuous line in each plot). However, the same 
increase has a positive effect on the average payoff of the 
standard IPD model with a single 7-bit binary strategy in Fig. 
16. This is also a strange observation, which cannot be easily 
explained.  

In order to further examine the evolution of cooperative 
IPD game strategies, we count the number of rounds where 
each player chooses the cooperation in various situations with 
respect to the previous actions of the opponent. Table VII 
shows the average percentage of choosing the cooperation 
after each of the eight cases of the previous three actions of 
the opponent. For example, “91.1” in the last cell in the 
bottom row shows that the ensemble IPD model (3, 7, 15) 
chooses “C” in 91.1% rounds (and “D” in 8.9% rounds) after 
the three actions “CCC” of the opponent in the previous three 
rounds. This model chooses “C” in 20.4% rounds after 
“DDD”. All of those percentages are calculated from our 
computational experiments on the 1024-node ring graph with 
512 randomly added edges under the error probability 0.05. 
This error probability “0.05” can be viewed as being high in 
the IPD model since each player makes an error every 20 
rounds on average. The evolution of cooperative IPD game 
strategies is very difficult under such a high error probability. 
This is because occasional defection of each player by 
accident based on such a high error probability disturbs the 
evolution of cooperative IPD game strategies.  

In Table VII, cooperation percentages larger than 50% are 
highlighted in boldface. In general, IPD game strategies tend 
to cooperate when the opponent cooperates in the previous 
round. This is shown by large cooperation percentages in the 
four columns of Table VII with “C” as the opponent’s 
previous action in the (t1)th round. However, the largest 
cooperation percentage “97.8” is obtained in Table VII by the 
single 7-bit model when “D” is the opponent’s previous 
action in the (t1)th round (and “C” in the (t2)th round). 
This large cooperation probability after the opponent’s 
previous action “D” may be related to the strange behavior of 
the single 7-bit model in Fig. 16. 
 

TABLE VII 
PERCENTAGE OF CHOOSING THE COOPERATION OF EACH IPD MODEL IN 

EACH OF THE EIGHT CASES OF THE PREVIOUS THREE ACTIONS OF THE 

OPPONENT 
 Opponent’s previous actions 

(t3)th round D D D D C C C C
(t2)th round D D C C D D C C
(t1)th round D C D C D C D C

Single 3-bit 39.0 68.5 39.0 68.5 39.0 68.5 39.0 68.5
Single 7-bit 0.5 77.5 97.8 67.4 0.5 77.5 97.8 67.4Standard

Single 15-bit 8.6 60.2 59.3 65.9 88.8 59.5 16.8 80.3

Ensemble (3, 7, 15) 20.4 74.5 65.5 71.4 71.8 68.7 26.6 91.1

V. CONCLUSION 

In this paper, we first proposed the use of an ensemble 
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decision making scheme based on multiple strategies in the 
IPD game. Then we examined the evolution of multiple game 
strategies of each player in the ensemble IPD game model and 
that of a single game strategy of each player in the standard 
IPD game model in ring graphs. Our computational 
experiments were performed under various settings with 
respect to the choice of representation schemes of strategies, 
the error probability in the action selection, and the number of 
randomly added edges to a ring graph.  

Some expected observations were obtained in this paper. 
For example, the average payoff was increased by the use of 
different representation schemes in the ensemble IPD model 
from the case with the same representation scheme. The 
increase in the error probability decreased the average payoff. 
The increase in the number of random edges made the 
evolution of cooperative IPD game strategies fast and 
unstable. However, some observations were counter-intuitive. 
For example, when we used 7-bit binary strategies, the 
increase in the number of random edges made the evolution 
of cooperative IPD game strategies fast and stable. Further 
studies are needed to discuss these counter-intuitive 
observations from our computational experiments in this 
paper.  
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