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Abstract—Several studies have used the fingerprint, a mathe-
matical technique that generates a representation-independent
functional signature of a game playing strategy, to conduct
automated analyses of spaces of strategies. This study looks at
an even larger state space, namely a grid over the probabilistic
2-state finite transducers, as a representation for playing Pris-
oner’s Dilemma. Even using just a three-level {0, 0.5, 1} grid
amounts to 100,000 representable strategies, with an immense
40,679 unique strategies within. All strategies are fingerprinted
and all pairwise distances computed, then hierarchical clus-
tering reduces this dataset to around size 10,000 for further
analysis with multidimensional scaling. Results indicate that the
20-dimensional grid has no obvious cutoff scales of structure,
that we can quantify several important dimensions, and a high
level of similarity with past results on smaller state spaces. We
also find an interesting difference between complete playing
equivalence of deterministic versus probabilistic transducers.

I. INTRODUCTION

The mathematical game is a simple to understand model
for simulating interactions; however even the simplest non-
trivial game, a simultaneous, symmetric two-move game,
such as Prisoner’s Dilemma, is difficult to understand the-
oretically. In studies, the game is typically iterated, allowing
complex strategies of response and counter-response to your
opponent. One often-used way of experimenting is with
evolutionary game theory, which generates an unlimited
stream of arbitrarily complicated strategies.

A series of papers [1], [2], [3] presented the concept
of fingerprinting, which turns the strategies into normal
mathematical functions recording the strategy’s behaviour
against a reference opponent, after which they become easier
to handle. This has enabled previously unattainable studies
in evolutionary time and population size [4], the effect of
noise [5], [6] among others.

The model was updated in [7], generalizing the original
one in [1], which improves upon several limitations including
discontinuities and problems with indistinguishable pairs of
strategies. From [8], a metric has been defined on the space
of fingerprints, which allows mathematical quantification of
the distance between particular strategies.

From this, there is a structure imposed on sets of strategies,
especially those sets arising from spaces of representations
for game-playing strategies. Several studies [9], [10] have
demonstrated that the choice of representation used in an
evolutionary simulation can have a drastic effect on the
results, hence our interest in investigating the structure of
entire representations themselves. The basic dataset we can
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obtain from the fingerprint is the pairwise distance between
all possible pairs of strategies in the space.

However, computing it is difficult due to the exponential
number of possible strategies; with advances in technology
thanks to Moore’s law, we attempt here to again push the
numerical size limits available. We shall look into a proba-
bilistic 2-state finite transducer representation for Prisoner’s
Dilemma. There are a full 100,000 nominal strategies, and
even after removing all duplicates 40,679 unique strategies
remain, which is almost double the previous study [8].

Computing the distance matrix takes quadratic time; di-
mensionality reduction techniques can be cubic or worse.
Even then, we can attempt to use as many points as currently
possible to reduce any possible artifacts from clustering.
We can thus consider the global structure (in the genotype
space) imposed by the fingerprint distance (as phenotypic
differences), as well as the mutational connectivity network.

The rest of the paper is organized as follows: the finger-
print is defined and useful properties given in Section II, the
experiments are listed and described in Section III, the results
and interpretation follow in Section IV, finally the discussion
and conclusion are in Section V.

II. BACKGROUND

Prisoner’s Dilemma is a standard two-player, two-move
symmetric game studied widely in many contexts [11].
Both players on each round independently choose one of
two moves: cooperate or defect. If both cooperate, each
scores R; if both defect, each scores P ; if one defects
and the other cooperates, the defector scores T and the
cooperator S. The conditions of Prisoner’s Dilemma dictate
that T > R > P > S (the natural ordering of payoffs) and
2R > T + S (mutual cooperation is preferable to alternate
backstabbing). However, our study does not directly use the
payoff values.

A probabilistic finite state transducer (PFT) is a simple
extension of the more typical deterministic finite state trans-
ducer [12]. It consists of a finite nonempty set of states, finite
nonempty input and output alphabets, a transition/output
function (which takes as arguments the current state and input
letter, and returns a probability distribution over states and
output letters), and an initial state/output (another distribu-
tion over states/outputs).

In our case, both input and output alphabets are the
possible game moves. As a strategy, a PFT plays as follows:
first sample the initial state and output (which move it plays)
from the initializing distribution. Each subsequent round, it
looks up the transition/output distribution corresponding to
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its current state and the opponent’s last round move, and
samples from that its next state and output.

As developed in [7], the fingerprint operator used in
this study is based on the length-weighted probability of a
move pair occurring, when the given agent plays against a
parametrized k-state probabilistic finite state transducer. We
will restrict our consideration to a 1-state machine, which
can be parametrized as (x, y, z) ∈ [0, 1]3, where x is the
probability of cooperating on the initial move, y is the
probability of cooperating in response to a cooperate, and
z the probability of cooperating in response to a defect.

The operator takes as input a specification of a game
playing agent P , which is a function ρP that gives the
probability the agent plays as an input move history s (a
string of moves) up to its length, given that its opponent
plays as another input move history w (of length 1 shorter
due to the simultaneity of the game) as directed. That is,
ρP (s, w) = Pr(∀i P plays si in turn i | ∀j opponent plays
wj in turn j). Call the parametrized opponent O1(~v) with
~v = (x, y, z), and define ρO1(~v) similarly.

Denote by FP the output of the operator on P ; the
(m1,m2)th component of the fingerprint function is defined
as FP (~v)m1m2

=

∞∑
n=1

µ(n)
∑

(s,w) has length n−1

ρO1(~v)(wm2, s)ρP (sm1, w)

the first sum is the two-way probability the players play
(m1,m2) respectively on the nth move, weighting that by
a given function µ(n). For special properties, we will use
the family of geometric distributions: µ(n;α) = (1 −
α)αn−1, α ∈ [0, 1), at α = 0.8 in continuity with prior
work [7], [8].

To compute this for agents representable by finite state
transducers, create the following Markov chain: the state
space is Q × {C,D}2, the Cartesian product of states of
the agent with the last moves of P then O1. The transition
matrix T has entries (q1,m1,m2) → (q2,m3,m4) equal to
Pr(P transitions from q1 to q2 outputting m3 seeing m2) ×
Pr(O1 outputs m4 seeing m1).

The fingerprint function can be calculated as

FP (x, y, z;α)m1m2
= (1−α)χT

m1m2

(
I−αT (y, z)

)−1
Q0(x)

where χm1m2
is the indicator vector whose entry is 1 if the

state indexed has last move-pair (m1,m2), 0 otherwise, and
Q0(x) is the initial state probability vector.

Now that the strategies have been transformed into math-
ematical functions, we can define the distance between two
fingerprints using the L1 distance (also named total variation
[13]): ‖FP1 −FP2‖ =∫

[0,1]3

∑
m1m2

|(FP1 −FP2)(x, y, z)m1m2
| dxdy dz.

III. EXPERIMENTAL DESIGN

We shall consider a probabilistic 2-state finite transducer
representation for playing iterated Prisoner’s Dilemma. Since

the parameters are probabilistic and hence real numbers, the
space is continuous and we must use a sampling technique.
We will use a grid of 3 values {0, 12 , 1} as the allowed values
for all parameters.

The probabilistic transition/output (there are 5 of them:
initial, state 0 or 1 in response to a cooperate or defect) is
a distribution over 4 possible choices: cooperate or defect,
and transition to state 0 or 1. With the aforementioned grid,
there are 10 allowed choices for each distribution, and hence
105 = 100, 000 representable strategies.

The representation is a string of 10 characters of {0,1,2,3}.
0 represents cooperate and move to state 0, 1 represents
defect and move to state 0, 2 represents cooperate and
move to state 1, 3 represents defect and move to state 1.
Each adjacent pair of characters form both half-probability
possibilities for each transition, in order of initial, state 0
in response to cooperate, to defect, state 1 in response to
cooperate, to defect. We will require that the second character
in each pair be no less than the first, so for example 21 is
illegal (12 is equivalent).

Using standard state-minimization techniques, we can re-
duce this to 41,847 unique strategies under deterministic
equivalence. There are 2 copies each of the true 2-state
machines (as the two states can be completely mirrored,
else the machine isn’t actually 2-state), and 425–1192 copies
of each of the 27 1-state machines. However, due to the
peculiarities of probabilistic machines, there are actually only
40,679 unique strategies under full playing equivalence. This
phenomenon will be discussed further.

Each of the 40,679 strategies was fingerprinted, computed
using the matrix formula using the LAPACK linear algebra
package into a 4-component function of y, z for x = 0, 1
at α = 0.8, a value found in previous studies to have good
separation properties [14].

Approximate pairwise distances are calculated with a
composite third order product Gaussian cubature method (4
points at (±1/

√
3,±1/

√
3) for the region [−1, 1]2, see [15])

with a grid of 512 × 512 evenly spaced squares (1,048,576
evaluation points). These are summed in a binary divide-and-
conquer fashion to decrease roundoff error. From results in
previous studies [8], the integration error is at most on the
order of 10−10, where distances are generally on the order of
0.01–1. For all intents and purposes, the integral is basically
exact.

Hierarchical clustering with the unweighted pair group
with arithmetic mean method (UPGMA, [16]) is performed
on this 40, 679×40, 679 distance matrix. The closest pair of
clusters is repeatedly merged, and the distance between two
clusters is defined to be the average over all possible pairs,
one from each cluster.

Dimensionality reduction methods are generally cubic or
worse algorithms; hence doing it directly on a 40,679 square
matrix is still infeasible. However, with ever more powerful
computers, we have successfully scaled up to just under
10,000 points. That is, we pick a level of 9,952 clusters
(by reversing the 9,951 largest distance mergings as done
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Fig. 1. The strategy represented by the string 0312332303. Left: finite state
diagram. There are two half-probability possibilities for each transition; if
equal they are marked with double lined arrows. Labels on the arrows are
input/output; the initial transition, from below, has only output. Right: lifted
transition-only graph — this is a Markov chain.

by UPGMA), and use that (weighted) distance matrix for
analysis.

Metric multidimensional scaling is used to embed these
clusters into the Euclidean plane. This works by minimizing
the stress loss function∑

i,j

wi,j(δi,j − di,j)2

where wi,j is the product of the cluster sizes of i, j, δi,j is
the true distance between clusters i, j, and di,j is the distance
between the points on the plane representing clusters i, j.

The stress majorization SMACOF algorithm [17] is used
for this purpose, with the best fit chosen from over 1,000 runs
starting at initial points i.i.d. uniformly random in [0, 1]n.

We can define a simple mutation operator that takes any
one position in the string representation and changes it to
a different value. Note that the position specifies both a
transition and action; we shall require only one of them
change. That is, changes have to be adjacent in the ordering
0–1–3–2–0. This induces a mutational connectivity network
on the space that can be investigated, being an important
property of the representation. We take all 100,000 strategies
and find each of their 20 (not necessarily distinct) neighbours
1 mutation away, then display the propensity of a cluster to
mutate into each other cluster.

IV. RESULTS

The distance matrix required almost 4 CPU-years to
compute, and another 2 CPU-years was required to run the
various MDS calculations.

A. Colouring

Assigning a colour to each strategy allows extra dimen-
sions of information in a plot and perhaps we can find cor-
relations of position to colour. We will reuse the successful
schema from [8]:

Ignore the outputs for now and consider only the transition
graph of the automaton, which has 2 states and 10 edges total
(2 transitions from each state and the initializing transition;
each has two half-probability “edges”). Run the fingerprint
calculation (1−α)(I−αT )−1q0 assigning each edge except
the initializer a probability of 0.25, with the same α = 0.8;
q0 is the distribution of initial states. This gives a visitation
probability distribution on the 2 states. Multiply this by α.
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Fig. 2. The distance between clusters n and n+1 when combined in the
UPGMA hierarchical clustering tree. Note the logarithmic scale.

The four 1-state strategies are coloured as follows: ALLC
(always cooperate) is green, ALLD (always defect) is red,
TFT (tit-for-tat) is blue, and PSY (reverse tit-for-tat) is black.
Consider only the actions taken while at each state, as a
pair of probability distributions over cooperate/defect. Give a
state a mixture colour according to the product distribution:
the fraction of ALLC is the probability of cooperating in
response to cooperation times the probability of cooperating
in response to defect; the fraction of TFT is the probability of
cooperating in response to cooperation times the probability
of defecting in response to defect; and so forth for ALLD
and PSY.

Now weight the states according to the above probability
distribution (times α), plus the initial move coloured as
ALLC/ALLD only times 1 − α = 0.2. This average is the
colour of the automaton. Because the sum of all components
is 1, being a probability vector, assigning black (equivalently
no contribution) to PSY allows the nominally 4-dimensional
surface to be fit conveniently in 3-dimensional RGB colour
space.

For example, consider the strategy represented by the
string 0312332303. The finite state diagram and its lifted
transition-only graph is given in Figure 1.

We can calculate the visitation probability distribution of
the Markov chain, which works out to be (0.3,0.7). Next
we consider the action distributions at each state. From state
0, it cooperates/defects with half probability in response to
cooperation, and defects in response to defect. Hence the
“colour” of the state is 0.5 TFT and 0.5 ALLD. From state
1, it cooperates or defects in response to both cooperation
and defection; hence its colour is 0.25 ALLC, 0.25 TFT, 0.25
PSY and 0.25 ALLD. The initial move is either cooperate
or defect and hence is coloured 0.5 ALLC and 0.5 ALLD.

Weighting state 0 by 0.3 × α = 0.24, state 1 by 0.7 ×
α = 0.56 and the initial move by 1 − α = 0.2, we see that
this automaton is coloured 0.24 ALLC, 0.26 TFT, 0.14 PSY
and 0.36 ALLD, or (0.36,0.24,0.26) in RGB space, which is
visually .

The colour assigned to a cluster is simply the weighted
average of the colours of each constituent automaton.
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Fig. 3. Finite state diagrams for the strategies encoded by 0003333333 (left)
and 0202333333 (right). There are two half-probability possibilities for each
transition; if equal they are marked with double lined arrows. Labels on the
arrows are input/output; the initial transition, from below, has only output.

B. Hierarchical clustering

Recall that UPGMA repeatedly joins the two clusters with
the minimal inter-cluster distance; the distance between two
clusters is defined to be the average over all possible pairs
of points, one from the first cluster and one from the second.
The distance between the clusters that are combined at each
step is plotted in Figure 2. The distances do not exhibit
any significant jumps other than the final few, which is
to be expected. The rest of the distances are also loosely
logarithmic, which suggests an even dispersion of points
throughout the space.

One unexpected result, from clustering the 41,864 unique
strategies under deterministic state minimization (which form
the initial clusters) was finding 1,168 joinings with distances
on the order of 10−17. Given that the next joining was
at a distance of 10−5, this strongly suggests a completely
different effect — that these strategies are in fact identical,
even though they have different-looking representations.

We illustrate one such pair of strategies here, represented
by the strings 0003333333 and 0202333333. Finite state
diagrams for both are provided in Figure 3.

The first strategy is as follows: start at state 0 and
cooperate first move. While at state 0, if opponent cooperates,
either cooperate and stay at state 0 or defect and move to
state 1 with equal probability; if opponent defects, defect and
move to state 1. When in state 1 defect forever.

The second strategy reads: cooperate first move and start at
either state with half probability. While at state 0, if opponent
cooperate, cooperate and transition to either state with equal
probability; if opponent defects, defect and move to state 1.
When in state 1 defect forever.

Prima facie, these strategies clearly look different; however
in the probabilistic average sense, the distributions of the
these strategies’ moves are identical, at each and every
possible history (complete listing of opponent’s past moves).
We prove this directly. Both strategies cooperate first move.
If the opponent ever defects, both strategies will instantly
switch to unconditional defection.

Therefore we consider what these strategies do in the
face of continued cooperation from the opponent. The first
strategy moves to state 1 with probability 1/2 per cooperation,
hence after n cooperates it is in state 0 with probability 2−n.
It defects with probability 1/2 in state 0 (and always from
state 1), hence it defects after n cooperates with probability
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Fig. 4. The best-fit weighted root mean square error in embedding the
pairwise distance matrix for the 9,952 clusters into Rn, for various n. For
comparison, the root mean square of the distances themselves is 0.278773.

1 − 2−n−1. The second strategy begins in state 0 with
probability 1/2, and also moves out of state 0 with probability
1/2 per cooperation: after n cooperates it is in state 0 with
probability 2−n−1. Since it defects if and only if in state 1,
it also defects after n cooperates with probability 1−2−n−1!

C. Multidimensional scaling

In consideration of technical limitations, we decided to
attempt to use no more than 10,000 points; we chose a cutoff
at 9,952 clusters mostly arbitrarily as there are no clear levels
of structure in the data. The UPGMA algorithm is re-run until
9,952 clusters remain, then the reduced distance matrix (now
9, 952× 9, 952) is used for multidimensional scaling.

We can repeat the multidimensional scaling algorithm with
different numbers of dimensions allowed for the points:
clearly, the error monotonically decreases as we use more
dimensions, but when the improvement starts becoming
insignificant we can claim this is the essential dimension
of the dataset, a procedure also known as a scree plot [18].
This is shown in Figure 4.

3 dimensions account for most of the data; the 4th and
5th give a small improvement, 6th a tiny one, and further
contributions are negligible. A commonly quoted goodness-
of-fit statistic is Kruskal’s normalized stress, computed as√∑

i,j(δi,j − di,j)2∑
i,j δ

2
i,j

which is unity for the trivial solution for putting all the strate-
gies at the same position. Stress below 0.05 is considered
good [19]; our stress for embedding into R2 is 0.07235, into
R3 is 0.03134, into R6 is 0.02106.

The reason the error does not converge to 0 is that the data,
computed under L1, is inherently not Euclidean and cannot
be exactly embedded into Euclidean space of any dimension
whatsoever. This residual error, which is relatively small, is
a measure of the non-Euclideaness of our data.

A huge scatter plot in 3 dimensions is too difficult to
handle, and so we choose to use the best 2-dimensional fit,
knowing that there is a significant dimension in the data left
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undisplayed. These points, now explicitly in Euclidean space,
are rotated to the principal components.

The clusters are plotted in Figure 5, with the colour-
ing scheme described in Section IV-A. The first major
observation from the plot is that the colouring scheme is
clearly reflected in the position of the points: there is a
strong correlation with the colour green with the positive
y-direction, red with negative y, blue with positive x and
black with negative x.

We thus confirm that the colouring scheme works. Notice
also the 27 1-state strategies (which are the largest clus-
ters) form the outlines of a cubical structure in the space,
with ALLC, ALLD, TFT, D-TFT (defect first move, then
Tit-for-tat), PSY, C-PSY being outer corners. The clusters
corresponding to a non-deterministic parameter choice are
uniformly larger due to there being more ways to generate
that behaviour.

See also the clear symmetry of the configuration across
both the x and y axes. Replacing an automaton with one
that plays the opposite move at every step is a half-circle
rotation about the origin, while reversing the responses to
cooperate and defect per state is reflection across the y-axis.

D. Principal components

By comparison with [7], [14], [8] we see the high sim-
ilarity in structure with results on other representations,
even though these are all different representations. We thus
test the hypothesis that the principal components in the
embedded clusters correspond to cooperativity (probability
of cooperating minus that of defecting) and responsiveness
(the correlation between your move and your opponent’s last
move). We further make the hypothesis that the third com-
ponent corresponds to initialism (difference in cooperativity
in the first move vs. later moves).

We have a quantitative test available: we can measure the
Pearson linear correlation coefficient between the colours of
the clusters and their position. For our predictors, we will use
linear combinations of the colours of the clusters as defined
in Section IV-A. For cooperativity, we use the function
Green−Red (bounded between -1 and 1), for responsiveness
the predictor Blue− Black.

To predict initialism, we will separate out the normal
states vs. the initial move-state, de-weight them and subtract.
In the example given in Section IV-A, state 0 had weight
0.3 (we remove the weighting by α), and was coloured
0 ALLC and 0.5 ALLD (only these matter). State 1 had
weight 0.7 and was coloured 0.25 ALLC and 0.5 ALLD,
hence the normal-state cooperativity is 0.175 (ALLC) minus
0.5 (ALLD), or -0.325. The initial state was coloured 0.5
ALLC and 0.5 ALLD, cooperativity 0.5 − 0.5 = 0. Thus
our (unscaled) predicted value for its third coordinate is
−0.325− 0 = −0.325.

For the test itself, we will use the best-fit 6-dimensional
MDS embedding rotated to principal components (top di-
mensions extremely similar to the 2-D embedding; data
omitted). The Pearson correlation (bounded in [-1,1]) be-
tween Green− Red and the first principal component of the

points is 0.999164, between Blue − Black and the second
component 0.951350, between the initialism predictor and
the third component 0.992222. As 1 indicates a perfect linear
relationship, these values are extraordinarily high.

E. Cluster-wise mutation

To make the data easier to display, we reduce the number
of clusters to 302 the same way (removing the 301 largest
distance mergings done by UPGMA). As described in Sec-
tion III, each automaton has 20 neighbours in our string-
based representation.

We compute for each cluster i the probability distribution
of which cluster j it moves to in 1 mutation, by averaging
over all automata in the cluster. This can be displayed as a
heatmap in Figure 6. The ordering of the clusters is as the
hierarchical clustering tree: if two clusters would be merged
in the (removed) UPGMA, they are adjacent. The colour bar
displays each cluster’s colour and can be compared to the
colours of the points in Figure 5.

One salient feature of the map is that for most clusters,
the plurality (not necessarily majority) of mutations will stay
within the cluster, which is not completely surprising. A
key difference from comparison to [8] though, is that not
only are the 1-state automata far less dominating in the
space, they also no longer have an especial propensity for
null mutations. This illustrates one key difference in using
probabilistic automata: one main way of having a 1-state
automaton is to completely not use a state given, but as
more and more probability graduations are added, absolutely
avoiding a state becomes a vanishing proportion of the space.

Several larger-scale squares (groups of adjacent clusters)
can be discerned by their relative reachability under mutation
— a lot of mutations do not move you far from the diagonal,
hence to a nearby cluster. Interestingly, there is a space
between the close-by clusters and the next set of clusters
reachable — this is visualized by the black gap between the
diagonal and the scattered outer bands.

V. DISCUSSION AND CONCLUSION

Results from hierarchical clustering show that the space of
strategies is dispersed without obvious clumping. By pushing
the limits of multidimensional scaling, a huge 9,952 clusters
of strategies were embedded into the plane and exhibit a high
degree of symmetry across both principal component axes.

The colouring scheme developed in [8], based on the
fraction of time a strategy plays (for each move) as each
of the 1-state strategies when playing against a RANDOM
opponent, again is spectacularly successful is quantitatively
predicting the spatial coordinates of the clusters, as evidenced
by the smooth colour gradients in the scatterplot Figure 5.

We have thus quantified the top three principal coordinates
of this strategy space: the first one is average probability of
cooperation minus defection, the second is the correlation
between your move and your opponent’s last move, and the
third, a novel result, is the signed difference in cooperativity
between the first and later moves.
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Fig. 6. Single mutation connectivity heat-map: cluster width is proportional to size and clusters are listed in the hierarchical tree order. Rectangle (i, j)
has as value the (cluster average) probability of transitioning from cluster i to cluster j in one mutation: the colourmap is piecewise linear, black at 0, red
at 0.25, yellow at 0.5 and white at 1.0. The colour bar on the bottom displays each cluster’s colour as in section IV-A.
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In conclusion, we have found several interesting pairs
of automata that are indistinguishable probabilistically even
though they look different in a finite state diagram, finger-
printed a massive state space and placed the points into a
low dimensional space, then generated simple heuristics that
explain the most important dimensions of the space. The
results looks highly similar to past results on other state
spaces.

Given that the state spaces in this study and [8] are very
different, deterministic versus probabilistic transducers, there
is no a priori reason that they should have such a similar
structure in phenotypic (fingerprint) space; although as far
as the connectivity network goes, there seems to be a larger
contrast. The 1-state automata are no longer taking up a
dominant segment of the representation, and most clusters
have a similar propensity for null mutations.

With this level of structural similarity across disparate
spaces, it is promising to ask the question: are all repre-
sentations essentially similar? We can reaffirm this result
be exploring even more strategy spaces, especially larger
ones. At this point we can confirm that the mere presence
of probabilistic transitions do not create new dimensions of
difference between strategies.

The other way to encounter such extra complexity would
be to add more states to the automata. Unfortunately, this
directly causes the usual combinatorial explosion, therefore
some sampling technique has to be used. Technically, we
have already sampled to a rather sparse grid here; for even
larger spaces only randomized sampling will be feasible.

On the opposite tack, we may attempt to quantify exactly
how similar the current results on these spaces are. Because
of their substantial overlap, particularly in that the 1-state
automata are common to both, we may use them as anchors,
and their relative movement in the MDS projections is a test
against the null hypothesis that they are in the same absolute
position. We may also test the new-found predictor for the
third principal component on the other spaces, generating
more evidence that it works on all spaces.

Another direction for future work is replicating the analy-
sis for different choices of α, which was not done here due
to computational constraints.

ACKNOWLEDGMENTS

The author would like to thank Rajesh Pereira, University
of Guelph. This work was made possible by the facilities of
the Shared Hierarchical Academic Research Computing Net-
work (SHARCNET:www.sharcnet.ca) and Compute/Calcul
Canada.

REFERENCES

[1] D. Ashlock, E.-Y. Kim, and W. K. von Roeschlaub, “Fingerprints:
enabling visualization and automatic analysis of strategies for two
player games,” in 2004 IEEE Congress on Evolutionary Computation,
Jun. 2004, pp. 381–387.

[2] D. Ashlock and E.-Y. Kim, “Techniques for analysis of evolved Pris-
oner’s Dilemma strategies with fingerprints,” in 2005 IEEE Congress
on Evolutionary Computation, Sep. 2005, pp. 2613–2620.

[3] ——, “Fingerprinting: Visualization and automatic analysis of Pris-
oner’s Dilemma strategies,” IEEE Transactions on Evolutionary Com-
putation, vol. 12, no. 5, pp. 647–659, Oct. 2008.

[4] W. Ashlock and D. Ashlock, “Changes in Prisoner’s Dilemma strate-
gies over evolutionary time with different population sizes,” in 2006
IEEE Congress on Evolutionary Computation, Jul. 2006, pp. 297–304.

[5] D. Ashlock, E.-Y. Kim, and W. Ashlock, “Fingerprint analysis of the
noisy Prisoner’s Dilemma using a finite-state representation,” IEEE
Transactions on Computational Intelligence and AI in Games, vol. 1,
no. 2, pp. 154–167, Jun. 2009.

[6] ——, “Fingerprint analysis of the noisy Prisoner’s Dilemma,” in 2007
IEEE Congress on Evolutionary Computation, Sep. 2007, pp. 4073–
4080.

[7] J. Tsang, “The parametrized probabilistic finite-state transducer probe
game player fingerprint model,” IEEE Transactions on Computational
Intelligence and AI in Games, vol. 2, no. 3, pp. 208–224, Sep. 2010.

[8] ——, “The structure of a 3-state finite transducer representation for
Prisoner’s Dilemma,” in 2013 IEEE Conference on Computational
Intelligence in Games, Aug. 2013, pp. 307–313.

[9] D. Ashlock, E.-Y. Kim, and N. Leahy, “Understanding representational
sensitivity in the iterated Prisoner’s Dilemma with fingerprints,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C, vol. 36, no. 4,
pp. 464–475, Jul. 2006.

[10] D. Ashlock and E.-Y. Kim, “The impact of cellular representation on
finite state agents for Prisoner’s Dilemma,” in Proceedings of the 2005
Conference on Genetic and Evolutionary Computation, Jun. 2005, pp.
59–66.

[11] A. Rapoport and A. M. Chammah, Prisoner’s Dilemma. Ann Arbor,
MI: University of Michigan Press, Dec. 1965, vol. 165.

[12] T. L. Booth, Sequential Machines and Automata Theory. New York,
NY: John Wiley and Sons, 1967.

[13] A. L. Gibbs and F. E. Su, “On choosing and bounding probability
metrics,” International Statistical Review, vol. 70, no. 3, pp. 419–435,
Dec. 2002.

[14] J. Tsang, “The structure of a depth-3 lookup table representation for
Prisoner’s Dilemma,” in 2010 IEEE Conference on Computational
Intelligence in Games, Aug. 2010, pp. 54–61.

[15] A. H. Stroud, Approximate Calculation of Multiple Integrals, ser.
Prentice-Hall Series in Automatic Computation. Englewood Cliffs,
NJ: Prentice-Hall, 1971.

[16] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy: The Principles
and Practice of Numerical Classification, ser. A Series of Books on
Biology. San Francisco, CA: W. H. Freeman, Jun. 1973.

[17] J. de Leeuw, “Applications of convex analysis to multidimensional
scaling,” in Recent Developments in Statistics, J. R. Barra, F. Brodeau,
G. Romier, and B. van Cutsen, Eds. Amsterdam, Netherlands:
North-Holland Press, 1977, pp. 133–146.

[18] D. A. Jackson, “Stopping rules in principal components analysis:
a comparison of heuristical and statistical approaches,” Ecology,
vol. 74, no. 8, pp. 2204–2214, Dec. 1993.

[19] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp.
1–27, Mar. 1964.

1209




