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Abstract— This paper introduces an ACO model and associ-
ated algorithm, called Coupled EigenAnt, for the problem of
finding the shortest of  paths between a source and a desti-
nation node. It is based on the recently introduced EigenAnt
algorithm, the novelty being that it allows probabilistic path
choice on both the forward and return journeys, as well as the
fact that it introduces decay of pheromone deposition following
a geometric progression. Equilibrium points of the model are
calculated and the local stability of the two path synchronous
version analyzed. Simulations illustrate the main features of the
algorithm.

I. INTRODUCTION

IT is only a mild exaggeration to say that ant colony
optimization (ACO) algorithms are almost as varied as

species of biological ants. However, some paradigms have al-
ready been established. For practical computational reasons,
Dorigo and Stützle [1, p.11] propose simple-ACO or S-ACO
ants featuring probabilistic path selection on the forward
journey, with path choice probabilities given by relative
pheromone concentrations, and deposition of pheromone
only on the return journey, thus assuming that, once a path
has been chosen for the forward voyage (also referred to
as source to destination, or nest to food), it is necessarily
chosen for the return journey. This is a common assumption
for many ACO algorithms, although Dorigo and Stützle
[1, p.6, ff.] write: “if we consider a model in which ants
deposit pheromone only during the forward or only during
the backward trip, then the result is that the ant colony is
unable to choose the shortest branch. The observation of real
ant colonies has confirmed that ants that deposit pheromone
only when returning to the nest are unable to find the shortest
path between their nest and the food source [2].” Motivated
by this observation, in this paper, we propose a simple model
that allows probabilistic path selection, as well as pheromone
deposition on both the forward and return journeys.

The amount of artificial pheromone deposited on a path
depends on its length: the shorter the path, the greater the
amount of added pheromone. This dependence is usually
achieved by making the deposition parameter of each path
inversely proportional to its length. In order to achieve plas-
ticity (the ability to switch to a shorter path when it becomes
available), the deposited pheromone is subjected either to
evaporation, which corresponds to pheromone removal at a
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fixed rate on all paths, or, in more recent work, removal
that is only caused by ant traffic on a given path. It should
be emphasized that although all the features, mentioned in
this and the preceding paragraph, bear some resemblance to
the behavior of real ants, their main justification is that they
enable artificial ants to carry out some useful computation,
typically finding the solution of a shortest path problem.

In recent work, Jayadeva et al. [3] proposed the EigenAnt
dynamics for deposition and removal of pheromone by a
single ant that is required to find the shortest of  paths
between a source and a destination. They maintained the
usual assumption of deposition only on the return journey,
but introduced a dependency on normalized pheromone con-
centration in the deposition term. Deterministic (averaged)
EigenAnt dynamics was shown to have only one stable
equilibrium point, and the EigenAnt algorithm based on this
discrete-time dynamics was simulated, indicating that, even
under the usual probabilistic asynchronous implementation,
convergence occurs to the equilibrium that corresponds to the
shortest path. A model similar to EigenAnt was also studied
in [4]. Later, Bliman et al. [5] established global asymptotic
stability of this equilibrium for continuous-time deterministic
EigenAnt dynamics.

The EigenAnt algorithm was aptly referred to as a bare
bones algorithm in [6], which successfully incorporated it
into the larger setting of ACO metaheuristics for solving
multiple node shortest path problems such as the sequential
ordering problem. The reason for the bare bones terminology
is that EigenAnt has only two parameters and, crucially,
because of the global convergence property for all parameter
choices, its performance is not critically dependent on these
parameters.

This paper proposes to examine some of the basic assump-
tions in the ACO literature from a bare bones EigenAnt-
like perspective. Specifically, we consider once again the
simple paradigmatic one ant, two node shortest path problem.
The discrete-time dynamics that we propose constitutes a
new variant of the EigenAnt dynamics and is referred to as
the coupled EigenAnt model, since it couples EigenAnt-like
dynamics at the source and destination nodes by permitting
probabilistic path selection at both source and destination, in
accordance with the biological motivation mentioned above.
We assume that paths are chosen probabilistically, using
roulette wheel selection (RWS) based on path pheromone
concentrations. Moreover, RWS can occur only at the source
(in this case, the return journey occurs on the same path as
the forward journey, as in the EigenAnt model), or at both
the source and the destination, which constitutes one of the
novelties in the Coupled EigenAnt model being proposed in
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Source node, S D, destination node

Path 1: length L1

Path i: length Li

Path n: length Ln

Roulette wheel selection
of forward path (S→D)

: pheromone evaporation

: pheromone deposition

path length L

αpathlength, α ∈ (0, 1)

Roulette wheel selection
of return path (D → S)

Fig. 1: Shortest path problem set up.

this paper.
Although the equilibrium point structure of EigenAnt is

maintained, the unique equilibrium that corresponds to the
shortest path is no longer globally stable, so that, in the
Coupled EigenAnt model, there exist deposition and removal
parameters for which convergence to a local minimum may
not occur. Also, analogously to the results in [3], the coupled
EigenAnt model is compared to a coupled S-ACO type
model and shown to have better performance. Specifically,
our simulations indicate that the following performance
hierarchy exists Coupled EigenAnt (RWS at source and
destination)  Coupled EigenAnt (RWS at source only) 
S-ACO (RWS at source and destination)  S-ACO (RWS at
source only).

Section II sets up the basic problem and defines notation.
Section III introduces the basic model as well as the as-
sociated algorithm. Section IV calculates the equilibria of
the proposed dynamics, and then discusses local stability
analysis for the two-node, two-path problem. Section V
presents simulation results. Finally, section VI makes some
concluding remarks.

II. PROBLEM SETUP AND NOTATION

A. Notation
• pheromone concentration is abbreviated pc.
• Source: S.
• Destination: D.
• pc at S on path : .
• pc at D on path : .
• pc vector at S is denoted σ.
• pc vector at D is denoted τ .
• trip counter: 
• length of path : .
• number of paths:  .
• Pheromone deposition parameter: .
• Pheromone removal parameter: .
• Integers  proportional to path lengths .
• Roulette wheel selection: RWS
• 11 ∈ R : vector of ones.

III. THE COUPLED EIGENANT MODEL

In their seminal paper on chemical communication,
Bossert and Wilson [7] wrote “The essential goals of a short-
lived recruitment trail have been intuited as follows. The

amount of material emitted at any instant of time must not
be very great, because in a typical circumstance the material
must be emitted over a relatively long distance out of a
reservoir of finite capacity.” Inspired by this as well as the
ACO literature, we propose a simple model of an artificial
ant which deposits a quantity of pheromone that decreases in
geometric progression as the ant proceeds along the trail. In
addition, the usual ingredients of removal and probabilistic
path selection are present.

Suppose that a pheromone deposition rate is given in
the following manner. Starting from a full reservoir of
pheromone (say 1 unit), as the ant proceeds along the trail,
in the first step after starting out from the nest, it deposits
1 −  units and, in the th subsequent step, a quantity of
pheromone that has decreased in geometric progression, i.e.,
(1− ). Suppose that  is the exponent associated to the
th path in the sense that, after one trip on this path, starting
from a full reservoir (1 unit) of pheromone at one end,
the ant deposits (1 − ) units of pheromone on reaching
the other end. Let the exponent vector be denoted k, i.e.,
k = [1 2 · · ·  ].

In order to define pheromone deposition and removal, it is
necessary to make some assumption on the exponents  and,
for simplicity, we make the assumption that  = , which
implies that pheromone deposition decreases in geometric
progression in accordance with the path length, so that longer
paths have less pheromone deposited at their end points.

The program (algorithm/environment) has knowledge of
the vector k, but the ant itself does not. We postulate, in
common with the literature on ACO, that an ant has the
capacity to distinguish between relative pheromone concen-
trations. More precisely, we assume that if the pheromone
concentration vector τ = [1 · · · ] is associated to
the  paths, then an ant chooses path  with probability

P

  . Suppose that path  is chosen for the forward (S
to D) journey and path  for the return (D to S) journey and
that the superscript + denotes the update of a pheromone
concentration.

The model of pheromone deposition and removal dynam-
ics that we propose in this paper is as follows. The Coupled
EigenAnt model

+ = (1− ) + (1− )
P
 

(1)

+ = (1− ) + (1− )
P
 

 (2)

The procedure that we propose, for a single ant carrying
out  trips (the journey S → D, D → S counts as 1 trip) is
then described, for the Coupled EigenAnt model, in the two
roulette case, as follows:

1) The ant emerging from node S chooses path  with
probability 

P
  (RWS at S). Having chosen path

, it deposits, at the node D, when it gets there, the
quantity (1 − ) times the normalized pheromone
concentration at S. Pheromone removal (1−) occurs
at D only on the th path. Summing the concentration
due to deposition and that remaining after removal, the
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overall concentration at D, on path , is updated to + ,
which is (1).

2) On emerging from D to return to S, it chooses a path
probabilistically (say the th) as in step 1 (RWS at D),
using the updated pheromone concentrations. Having
chosen path , it deposits, at the node S when it gets
there, the quantity (1 − ) times the normalized
pheromone concentration at D. The corresponding
removal (1 − ) occurs at S on the th path only.
The pheromone concentration vector at S, on path ,
is updated by the summation analogous to the one
described in the previous item, i.e., (2).

3) Steps 1 and 2 are repeated  times.
4) The program keeps track of how many times each path

is chosen, as well as ranking the paths in order of
pheromone concentration.

5) The program outputs a path counter vector that indi-
cates how many times each path is chosen, as well
as the normalized pheromone concentrations at source
and destination (which are equal at equilibrium).

The pseudocode corresponding to this procedure is shown
as Algorithm 1.

To exemplify the use of this procedure to solve a shortest
path problem, in which the program plays the part of the
environment (black box), suppose that we grid  and  and to
each pair 1− , we associate the smallest value of number
of steps found in  executions of the program, called low.
The surface plot of 1 −   versus low has a minimum
called min, which is declared to be the number of steps
corresponding to the shortest path (which we can translate
into an estimate of the length min, in accordance with the
relationship assumed to hold between  and ).

In the algorithm below, comments appear to the right of
the symbol .

Algorithm 1 Coupled EigenAnt algorithm with S & D
roulettes

1:  := 0  Trip counter initialized
2: Path trip counter initialized to zero for all paths.
3: σ = τ = (1)11.  Initialize pc at S & D
4: while  6= maximum number ( ) of trips do
5: Choose path index  by RWS based on pc at S.
6: Increment path  trip count by 1.
7:  ← (1− )  pc update at D
8:  ←  + (1− ) P

 
 pc update on path 

9: Choose path index  by RWS based on pc at D.
10: Increment path  trip count by 1.
11:  ← (1− )  pc update at S
12:  ←  + (1− )

P
 

.  pc update on path 
13: ←  + 1
14: end while
15: Return σ and path trip counter vector.

Connections with existing models: Algorithm 1, with all
exponents  = 1, 1 −  =  and only the S roulette
(so that the return path  is equal to the forward path )

Algorithm 2 S-ACO algorithm with S & D roulettes
1:  := 0  Trip counter initialized
2: Path trip counter initialized to zero for all paths.
3: σ = τ = (1)11.  Initialize pc at S & D
4: while  6= maximum number ( ) of trips do
5: Choose path index  by RWS based on pc at S.
6: Increment path  trip count by 1.
7:  ← (1− )  pc update at D
8:  ←  + (1− )  pc update on path 
9: Choose path index  by RWS based on pc at D.

10: Increment path  trip count by 1.
11:  ← (1− )  pc update at S
12:  ←  + (1− ) .  pc update on path 
13: ←  + 1
14: end while
15: Return σ and path trip counter vector.

is equivalent to the EigenAnt algorithm proposed in [3].
Algorithm 2, with all exponents  = 1, (1 −  = 
and only the S-roulette is equivalent to the S-ACO algorithm
described in [1], [8].

IV. ANALYSIS OF EQUILIBRIA AND THEIR STABILITY

This section is devoted to determining the equilibrium
points for the coupled EigenAnt model described by (1), (2)
and Algorithm 1, assuming that pheromone concentrations
on all paths are updated simultaneously (synchronously) for
the forward and return journeys. Let us denote the constants

 = (1− ) (3)
 = (1− ) (4)

and define the diagonal matrices A = diag(1      ) and
R = diag(1      ). Then, writing

P
  as 11Tx for

typographical convenience when necessary, we can write the
synchronous fixed point equation corresponding to (1), (2)
as follows:

τ = Rτ + (111Tσ)Aσ (5)
σ = Rσ + (111Tτ )Aτ (6)

Solving (5) for τ in terms of σ yields:

τ = (111Tσ) (I−R)−1Aσ (7)

Using the fact that diagonal matrices commute, the equation
to be satisfied by any equilibrium point σ is:µ

I− (I−R)−2A2P
 

P
 

¶
σ = 0 (8)

Suppose that the th fixed point σ∗ is given by e, where
 is an arbitrary scalar to be determined and e is the th
canonical vector in R . Plugging this guess, inspired by [3],
into (8), straightforward calculation shows that (8) is indeed
satisfied if:

 =


1− 
(9)
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and, furthermore, that the equilibria of the synchronous
version of the model are given by σ∗ = τ ∗ = e. The nat-
ural interpretation of this is that the equilibrium pheromone
concentrations for this model are the same at source and
destination and, since they are multiples of the canonical
vectors, occur by singling out one of the  paths on which
there is a nonzero concentration, with all other paths having
zero concentrations. The stability analysis that follows will
indicate how to calculate ranges of the parameters for which
local stability of the desired equilibrium, for which all the
pheromone is concentrated on the shortest path.

A. Local stability analysis for the two path problem
For the two path problem, we can write the synchronous

version of model (1), (2) explicitly as the following system
of four coupled discrete-time systems:

1( + 1) = 11() + 1(1()(1() + 2()))

2( + 1) = 22() + 2(2()(1() + 2()))

1( + 1) = 11() + 1(1()(1() + 2()))

2( + 1) = 22() + 2(2()(1() + 2()))

It is easy to check that the two equilibria are indeed given
by e, where  is given by (9). In order to check local
stability, we compute the Jacobian matrix (σ τ ) which is:

 =

⎡⎢⎢⎢⎣
1 0 12

(1+2)2
− 11
(1+2)2

0 2 − 22
(1+2)2

21
(1+2)2

12
(1+2)2

− 11
(1+2)2

1 0

− 22
(1+2)2

21
(1+2)2

0 2

⎤⎥⎥⎥⎦
If all the magnitudes of the eigenvalues of  :=
(σ∗  τ

∗
 )  = 1 2 are less than unity, this implies the local

stability of the equilibrium σ∗ = τ ∗   = 1 2.

V. NUMERICAL SIMULATIONS

In this section, we show the behavior of the model
implemented in its asynchronous, probabilistic version, as
shown in Algorithm 1. For illustrative purposes, we con-
sider a ten path problem with the path length vector  =
[7 4 8 9 6 2 3 5 10 11], we choose  ∈ [001 1],  ∈
[001 1]. The simulations are carried out for 100 ant trips.
In order to calculate the probability of successfully finding
the shortest path, we use the following procedure. The path
counter vector used in both Algorithms 1 and 2, counts the
number of times the shortest path is the one that is traversed
the most often, over a set of 100 trials, and this number is
reported as the success probability.
Comments on the simulations:

From the simulations of success probabilities, the follow-
ing indications are clear:

1) For both the Coupled EigenAnt and S-ACO algorithms,
it is always better to use roulettes at both S and D,
rather than only at S. To see this, compare Figure 3
with Figure 7 and Figure 5 with Figure 9, as well as
Figure 2 with Figure 6; and Figure 4 with Figure 8.

2) The Coupled EigenAnt algorithms have a better perfor-
mance than that of the S-ACO algorithms, following
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Fig. 2: Success probability as a function of removal and
deposition rates for the Coupled EigenAnt algorithm, with
flat initial conditions (= no initial bias), RWS at S only, and
approximate probabilities based on 100 runs, for the 10 path
problem (Elevation view). Simulation horizon of 100 trips.
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Fig. 3: Success probability as a function of removal and
deposition rates for the Coupled EigenAnt algorithm, with
flat initial conditions (= no initial bias), RWS at S only, and
approximate probabilities based on 100 runs, for the 10 path
problem (Plan view). Simulation horizon of 100 trips.

the hierarchy Coupled EigenAnt (RWS at source and
destination)  Coupled EigenAnt (RWS at source
only)  S-ACO (RWS at source and destination) 
S-ACO (RWS at source only). To see this, compare
Figure 7 with Figures 3, Figure 9, Figure 5 in the order
specified.

3) As the simulation horizon (= number of trips) in-
creases, performance of all the algorithms improves,
with the Coupled EigenAnt improving its lead over
the S-ACO algorithms. A sample of this can be seen
by comparing Figures 11 with 13 as well as Figure 10
with 12.
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Fig. 4: Success probability as a function of removal and
deposition rates for the S-ACO algorithm, with flat initial
conditions (= no initial bias), RWS at S only, and approx-
imate probabilities based on 100 runs1, for the 10 path
problem (Elevation view). Simulation horizon of 100 trips.
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Fig. 5: Success probability as a function of removal and
deposition rates for the S-ACO algorithm, with flat initial
conditions (= no initial bias), RWS at S only, and approxi-
mate probabilities based on 100 runs, for the 10 path problem
(Plan view). Simulation horizon of 100 trips.

VI. CONCLUDING REMARKS

This paper introduced a new ACO model called the
Coupled EigenAnt model, based on the recently introduced
EigenAnt model, but allowing probabilistic path choice on
both the forward and return journeys, in an attempt to
capture similar behavior of real ants. This was shown, by
simulation results, to result in better performance than a
single probabilistic path choice only on the forward journey.
Furthermore, as with the EigenAnt model [3], the Coupled
EigenAnt model also exhibits better performance than S-
ACO versions which permit one or two probabilistic path
choices (i.e., at source and/or destination). The Coupled
EigenAnt model proposed in this paper has potential for
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Fig. 6: Success probability as a function of removal and
deposition rates for the Coupled EigenAnt algorithm, with
flat initial conditions (= no initial bias), RWS at S and D,
and approximate probabilities based on 100 runs, for the 10
path problem (Elevation view). Simulation horizon of 100
trips.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Coupled EigenAnt with RWS at S and D

Evaporation rate: ρ

D
ep

os
iti

on
 r

at
e:

 (
1−

α)

Fig. 7: Success probability as a function of removal and
deposition rates for the Coupled EigenAnt algorithm, with
flat initial conditions (= no initial bias), RWS at S and D,
and approximate probabilities based on 100 runs, for the 10
path problem (Plan view). Simulation horizon of 100 trips.

“real” implementations in which lengths are not known, but
there is a signal available indicating that an end node (food
or nest) has been reached (the ant must only bookkeep the
amount of pheromone it has left in its “bladder” to mark
path endpoints. Adjustment of deposition and removal rates,
which enter calculations in the algorithm after exponentia-
tion, is important because the resulting values should not
become too small (numerically indistinguishable from zero).
The model opens up possibilities for many variations that
follow the same basic design and some of these will be
followed up in future work.
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Fig. 8: Success probability as a function of removal and
deposition rates for the S-ACO algorithm, with flat initial
conditions (= no initial bias), RWS at S and D, and approxi-
mate probabilities based on 100 runs, for the 10 path problem
(Elevation view). Simulation horizon of 100 trips.
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Fig. 9: Success probability as a function of removal and
deposition rates for the S-ACO algorithm, with flat initial
conditions (= no initial bias), RWS at S and D, and approxi-
mate probabilities based on 100 runs, for the 10 path problem
(Plan view). Simulation horizon of 100 trips.
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no initial bias), RWS at S only, and approximate probabilities
based on 100 runs (Elevation view). Simulation horizon of
1000 trips.
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Fig. 13: Success probability as a function of removal and
deposition rates for the S-ACO, with flat initial conditions (=
no initial bias), RWS at S only, and approximate probabilities
based on 100 runs. (Plan view). Simulation horizon of 1000
trips.
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