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Abstract— With the increasing availability of gene sets and
pathway resources, novel approaches that combine both re-
sources to reconstruct networks from gene sets are of interest.
Currently, few computational approaches explore the search
space of candidate networks using a parallel search. In par-
ticular, search agents employed by evolutionary computational
approaches may better escape false peaks compared to previous
approaches. It may also be hypothesized that gene sets may
model signal transduction events, which refer to linear chains or
cascades of reactions starting at the cell membrane and ending
at the cell nucleus. These events may be indirectly observed as
a set of unordered and overlapping gene sets. Thus, the goal
is to reverse engineer the order information within each gene
set to reconstruct the underlying source network using prior
knowledge to limit the search space.

We propose the Gene Set Cultural Algorithm (GSCA) to
reconstruct networks from unordered gene sets. We introduce
a robust heuristic based on the arborescence of a directed
graph that performs well for random topological sort orderings
across gene sets simulated for four E. coli networks and five
Insilico networks from the DREAM3 and DREAM4 initiatives,
respectively. Furthermore, GSCA performs favorably when
reconstructing networks from randomly ordered gene sets for
the aforementioned networks. Finally, we note that from a set
of 23 gene sets discretized from a set of 300 S. cerevisiae
expression profiles, GSCA reconstructs a network preserving
most of the weak order information found in the KEGG Cell
Cycle pathway, which was used as prior knowledge.

I. INTRODUCTION

Recently, a wave of publications has emerged incorpo-
rating pathway topologies into the analysis of molecular
profiling data sets and their derivatives including Paradigm
[1], SubpathwayMiner [2], and TEAK [3]. These approaches
and others use existing pathway database resources such
as Reactome [4] and KEGG [5]. Given the abundance of
gene expression data sets and their derived gene sets, novel
algorithms that reliably infer biological pathways topologies
may be of use. Furthermore, reconstructing a biological
network may be an important piece for further analysis such
as network partitioning and network querying.

Previous approaches to reconstruct biological networks
include Probabilistic Boolean networks [6], Bayesian net-
works [7], mutual inference based methods [8], and ordinary
differential equations [9]. While useful, these approaches
may not exploit signaling cascades as illustrated in Figure 1.
In Figure 1, the underlying signaling pathway may have dif-
ferent components activated in response to various biological
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Fig. 1. 1) The underlying signaling pathway. 2) A signaling pathway
may consist of several overlapping signaling transduction events that may
be best represented using ordered and linear chains of genes. These signal
transduction events whose orders are known are denoted as ordered gene
sets. 3) The indirect observed measurements are available as unordered gene
sets. 4) Using the unordered gene sets in (3), the goal is to reconstruct the
underlying network found in (1). This figure originally appeared in [11].

conditions. Various components may be activated through
linear signaling cascade mechanisms. In one paradigm, a
cell membrane receptor is bounded by a growth factor. This
in turn causes a signal to be transmitted to the nucleus,
which results in a change in gene expression levels [10].
In particular, linear signaling cascades may be thought of
as ordered sets of genes but are observed as unordered sets
of genes. Approaches that are specifically designed for gene
sets may be of use.

Gene Set Enrichment Analysis [12] and Gene Set Analysis
[13] are some of the many approaches currently available that
focus on the analysis of gene sets, which may be obtained
via databases such as the Molecular Signatures Database [12]
or by discretizing time series data [14] and steady state data.
Gene sets are more interpretable as they correspond to lists
of biological processes [15] and may be thought of as derived
sample features that succinctly summarize the original gene
expression data [16]. Furthermore, by using gene sets, data
sets from multiple platforms may be integrated [16]. These
previous approaches, however, may focus only on gene sets
individually in relation to gene expression data sets and may
not necessarily focus on the interactions that various gene
sets may have with one another. In particular, for a set of
highly overlapping gene sets, sufficient information may be
present that allows for the reconstruction of the underlying
biological network that may have emitted the gene sets.

Prior knowledge may also be exploited and used to reduce
the search space and to improve the reconstructed networks.
In the work of Liu and Zhao [17], gene expression data was
utilized to better delineate the pathway components of the S.
cerevisiae MAPK signaling pathway found in protein-protein
interaction data. In the work of Hashemikhabir et al [18], the
problem of reconstructing a signaling pathway was framed
as finding the minimum number of operations to modify a
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Fig. 2. Reynolds’ cultural algorithm framework. Elements in the belief
space influence the next generation in the population space. Elements in the
population are then perturbed, and their fitness is evaluated. Some elements
in the population are then selected to influence the belief space, which in
turn may then be adjusted. The process repeats until algorithm termination.
Adapted from [19]. This figure originally appeared in [11].

reference pathway that bests corresponded to the input RNAi
data. For the Gene Set Cultural Algorithm (GSCA) (a pre-
liminary version that was less streamlined and did not exploit
prior knowledge was presented in [11] available at http:
//dx.doi.org/10.1145/2506583.2506650), prior
knowledge via the KEGG pathways may be used to hierar-
chically order the genes using a topological sort ordering.

II. GSCA

At the heart of Gene Set Cultural Algorithm (GSCA) is
Reynolds’ cultural algorithm framework [20], [21]. The cul-
tural algorithm framework is an evolutionary computational
model consisting of three major components: the population
space, the belief space, and the communication protocol
that allows the population space to influence the belief
space and vice-versa as illustrated in Figure 2. Furthermore,
newer versions of the cultural algorithm framework may
exploit a total of five sources of knowledge [19], [22]. The
first knowledge source is situational knowledge, which is
responsible for keeping track of the most fit solutions found
at each generation. Normative knowledge is then used to
provide guidelines and standards for individual behaviors.
Domain knowledge is similar to situational knowledge except
that it is not updated at the end of each generation. As such,
prior knowledge may serve as domain knowledge. History
knowledge maintains information about changes within the
search space and may be modeled via the use of a tabu
list [23]. Finally, topographical knowledge represents the
population space as a multi-dimensional grid. Topographical
knowledge can thus be used to guide a search towards
unexplored areas. GSCA is able to use situational knowledge,
domain knowledge, and history knowledge.

The overall framework of GSCA is presented in Algo-
rithm 1. In addition to using the cultural algorithm frame-
work, GSCA uses topological sort orderings to reconstruct
a network from unordered linear gene sets. It also uses the
KEGG pathways as prior knowledge to reconstruct the latent

Algorithm 1: GSCA

1: Input: The unordered gene sets U , the number of
search agents/ beliefs B, the number of elites
T , and the number of generations J .

2: Output: The directed acyclic graph G of the most fit
belief.

3: Randomly initialize B beliefs of length N (the
number of unique genes/nodes in U ) in the belief
space (Use domain knowledge if available).

4: Set the exploration status E of all beliefs to false.
5: Decompose the unordered gene sets U into a set of

unique pairs R.
6: for j = 1, ..., J do

/* Population Space */
7: for i = 1, ..., B do
8: if Ei is true then
9: Continue

10: end
11: Let the set S be the empty set.
12: Sort U according to a belief Bi.
13: Add Bi to the set S.
14: Find the fitness of Bi.
15: Set the top belief BT as Bi.
16: for k = 1, ..., R do
17: Swap a pair of nodes in Bi specified by

Rk to generate a new belief Bik.
18: if fitness(Bik) > fitness(BT ) then
19: BT = Bik.
20: Empty S.
21: Add Bik to S.
22: else if fitness(Bik) = fitness(BT ) then
23: Add Bik to S.
24: end
25: end
26: With uniform probability, randomly select BT

from S to replace Bi.
27: if BT = Bi then
28: Set Ei to true.
29: else
30: Bi = BT

31: end
32: end

/* Belief Space */
33: Select the top T beliefs with best fitness values

for the next generation.
34: Randomly generate B − T new beliefs to be

added to the belief space (Use domain knowledge
if available).

35: Set the exploration status E of the new beliefs as
false.

36: end
37: Repeat the steps of the Population Space.
38: Reconstruct the output graph G from the most fit

belief.
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networks. It should be noted that GSCA makes an additional
assumption that the unordered gene sets originated from a
directed acyclic graph. While this assumption may lead to
loss of representative power (for example, feedback loops
cannot be represented by a directed acyclic graph), it is not
overly restrictive.

Briefly, a topological sort ordering is a partial linear or-
dering of a network’s vertices or nodes such that all directed
edges go from left to right [24]. Searching over topological
sort orderings has been successfully applied to Bayesian
networks [25] and is applicable for reconstructing networks
from gene sets if the original network was a directed acyclic
graph. Once the true topological sort ordering is known,
reconstructing the network becomes straightforward since a
topological sort ordering contains the ordering information
that has been previously lost. Thus, by employing an addi-
tional assumption, the problem of reconstructing a network
from unordered gene sets may now be casted as finding a
topological sort ordering of the original network.

The major parameters for GSCA are the number of gen-
erations or iterations J , the number of independent search
agents/ beliefs B, and the number of elite beliefs to retain
T . Both J and B play a role in the algorithm’s complexity
whereas T helps to determine the number of random topo-
logical sort orderings to be introduced into the population
each generation. It should also be noted that T plays the
role of the size of the situational knowledge preserved at the
end of each generation in GSCA where a smaller value of
T will lead to greater exploration as B− T new topological
sort orderings are introduced. However, a smaller value of T
may also lead to lack of exploitation of fit topological sort
orderings. A balance between exploration and exploitation is
sought by fixing T to be B/2.

III. THE BELIEF AND POPULATION SPACES

GSCA proceeds by dividing the unordered gene sets
U into a set of unique pairs R. R is bounded by
O(N(N − 1)/2) where N is the number of unique
nodes or genes in U . Via the use of R, one is able to
define a neighborhood for a topological sort ordering
by randomly swapping a pair of nodes in a topological
sort ordering. For example, if the unordered gene sets
are {(1, 2, 3, 4), (2, 3, 4, 5)}, then R consists of the pairs
{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5)}.
If the topological sort ordering is (1 → 2 → 3 → 4 → 5)
and the pair from R is (1, 2), the topological sort ordering
is then changed to (2 → 1 → 3 → 4 → 5). Furthermore,
by limiting the pair swaps to R, one may avoid swapping
a pair of genes that are not present together within at least
a single gene set. Using the example above, (1, 5) will be
considered an invalid swap since 1 and 5 are not present
together in at least one gene set.

GSCA then proceeds to initialize the belief space. The
belief space is represented by B topological sort orderings,
which are then transferred into B search agents whose neigh-
borhoods are explored. In the absence of prior knowledge, the

Fig. 3. An example graph (left) and its transitive closure (right). In the
beginning, the only root in the transitive closure is 1. 1 is added to the
start of the topological sort ordering. After removing 1 and all of its edges,
the vertices 2 and 3 are roots. With uniform probability, one of them is
selected to be added to the topological sort ordering. Suppose 3 was added
to yield the partially constructed topological sort ordering (1 → 3). Then,
3 and all of its edges are removed. At the next step, 2 is the root, so it is
added to yield (1→ 3→ 2). After removing 2 and all of its edges, only 4
remains. After adding 4, the topological sort ordering is (1→ 3→ 2→ 4).
The algorithm terminates as no vertices remain in the graph. It should be
noted that using the aforementioned procedure, another valid topological
sort ordering, (1→ 2→ 3→ 4), can also be generated.

belief space is randomly initialized to B different topolog-
ical sort orderings. If prior knowledge were available from
pathway databases such as KEGG, any cycles or strongly
connected components are first removed from the pathway.
In particular, the heuristic from Query Structure Enrichment
Analysis (QSEA) [26] is used. After removing any applicable
cycles, the transitive closure of the prior knowledge is
calculated and stored. A topological sort ordering based on
prior knowledge is then constructed by iteratively selecting
one of the roots of the prior knowledge’s transitive closure
with uniform probability. Upon selecting a root, the root and
all of its edges are removed. The root is then added to the
end of a topological sort ordering. The process of repeatedly
selecting a root with uniform probability and removing all
applicable edges is repeated until all edges are removed. By
using this procedure, a topological sort ordering that obeys
prior knowledge is extracted and retrieved. A simple example
illustrating this procedure is illustrated in Figure 3.

At this point, GSCA enters its population space. In the
population space, each search agent/ belief Bi or topological
sort ordering has its neighborhood explored by applying
a unique pair from R one at a time and swapping the
corresponding nodes in Bi. If a pair swap from R leads
to neighboring belief that contradicts with prior knowledge,
the neighboring belief is discard. To achieve this goal, the
transitive closure of the prior knowledge matrix is calculated.
For a neighbor of a Bi, it is first reversed. Then all weak
orders in the reversed belief are checked against the transitive
closure of the prior knowledge matrix. If any weak order
from the reversed belief is found to exist in the transitive
closure of the prior knowledge, it is determined that random
belief goes against prior knowledge and is thus discarded.

For each belief Bi and its applicable neighbors, the fitness
is calculated by sorting the unordered gene sets U according
to each topological sort order. A transition matrix

M = [cxy]N×N (1)
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is first reconstructed from the ordered gene sets where cxy is
the count of node x appearing directly before node y across
all ordered gene sets. The matrix M is very similar to the
transition probability matrix Π used by the GSGS and GSSA
algorithms except that its rows are not normalized to sums of
1. The rationale behind this action is to preserve magnitude
information found in the counts, which is otherwise lost if
M is transformed into a transition probability matrix.

After reconstructing M , a heuristic based on the Chu-
Liu [27] and Edmonds’ algorithms [28] is used. Briefly, the
Chu-Liu and Edmonds’ algorithms allow one to find the
maximum weighted arborescence of a directed graph. An
arborescence is a graph where for a root vertex x and its
descendant y, there is exactly one path from x to y. As
such, an arborescence may take the form of a directed rooted
tree where all edges point away from a root x. Based on the
implementation used by GSCA, it also possible to generate a
forest of directed trees. It should be noted that the concept of
arborescences for directed graphs is analogous to the concept
of spanning trees for undirected graphs. Since a reconstructed
M corresponds to a directed acyclic graph, there is no need
to check for cycles. The fitness score FS is calculated as

FS =
ΣN

n=1(max(Mn·) + max(M·n))

|ME |
(2)

where Mn· corresponds to the nth row of M , M·n corre-
sponds to the nth column of M , and |ME | corresponds to
the number of edges or nonzero elements in M . As such,
Equation 2 can be interpreted as calculating the sum of the
arborescences of M and its transpose while dividing by the
number of edges in M to favor more sparse networks.

The searching in the population space thus influences the
belief space where a belief Bi or its neighbor with highest
fitness score FS is promoted to the belief space B to
influence the next generation. At this stage, both history and
domain knowledge, if available, may be used to guide the
choice of random topological sort orderings. For the history
knowledge component, a tabu list is used to keep track of
all beliefs or topological sort orderings last seen within a
window of fixed size. The use of the tabu list thus helps to
avoid visiting recently explored beliefs and in turn yields a
more efficient search. Domain knowledge may be available
through the use of the KEGG pathways, for example. Thus,
using both history knowledge in the form of a tabu list and
domain knowledge in the form of prior knowledge may better
guide the search for the underlying network. The belief space
B is then exited after introducing B−T random topological
sort orderings to avoid being trapped in local peaks.

GSCA concludes after J−1 generations or iterations have
been reached. Since GSCA begins with the belief space, the
steps for the population space are undertaken one more time.
After entering the population space for the last time, the
output graph G may be reconstructed using a number of
ways. For the purposes of this paper, the most fit belief Bi

or topological sort ordering is used to order the unordered
gene sets U . After ordering U , one can simply trace the linear
paths in U to add edges to reconstruct the output graph G.

TABLE I
DREAM3 AND DREAM4 NETWORK STATISTICS

Network |V |a |E|b Diameterc Maxd |U |e % Usedf

E. coli 1 27 33 4 5 125 100%
E. coli 2 30 35 3 4 34 100%
E. coli 3 48 53 4 5 141 100%
E. coli 4 42 47 3 5 114 100%
Insilicog1 82 107 5 7 150 41.10%
Insilico 2 93 178 6 7 150 28.90%
Insilico 3 98 173 10 17 150 3.56%
Insilico 4 97 176 9 14 150 3.02%
Insilico 5 93 171 9 11 150 5.33%
a the number of vertices in the network
b the number of edges in the network
c the network diameter
d the length of the longest gene set in the network
e the number of gene sets available for the network
f the percentage of the gene sets used for the network
g Feedback arcs sets were removed for all Insilico networks.

IV. HEURISTIC FITNESS FUNCTION JUSTIFICATION

We now justify the choice of Equation 2. To test the
performance of Equation 2, four E. coli networks and five
Insilico networks were extracted from GeneNetWeaver [32]
corresponding to gold standard networks from DREAM3 and
DREAM4 [29], [30], [31]. Furthermore, it should be noted
that the heuristic for QSEA [26] was used to preprocess and
remove feedback arc sets for the Insilico networks. After
exhaustively generating all simple paths of the DREAM3 and
DREAM4 gold standard networks, all gene sets of length 2
(pairs) were removed. The networks were then reconstructed
from the pruned gene sets. All gene sets for the E. coli
networks were used whereas 150 gene sets for the Insilico
networks were randomly sampled. Some summary statistics
of the reconstructed networks are displayed in Table I.

In Figure 4, 1, 000, 000 random topological sort orderings
were generated (with replacement), and the gene sets were
ordered according to a random topological sort ordering
and scored. The two score functions used include GSCA’s
Equation 2 as well as the log of the maximum likelihood
function used by both GSSA and GSCA. For GSCA’s Equa-
tion 2, only the E. coli 2 network had 0.2959% of random
topological sort orderings dominating the true topological
sort ordering whereas for all other networks, none of the
scores of the random topological sort orderings dominated
the scores of the true topological sort orderings. For the
maximum likelihood function, on the other hand, the number
of random topological sort orderings dominating the score of
the true topological sort orderings were 0.7631%, 1.8777%,
0.3938%, 2.1189%, and 0.0001% for the E. coli 1, E. coli 2,
E. coli 3, E. coli 4, and Insilico 2 networks, respectively. As
such, it may be inferred that when ample or sparse gene sets
are available, Equation 2 performs similarly to the maximum
likelihood function.

V. SIMULATED DATA ANALYSIS

In Figure 5, the performances of GSGS and GSCA were
compared. GSSA was not used since knowing the end
terminals of gene sets in conjunction with GSCA’s DAG
assumption may be sufficient to reconstruct the underlying
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Fig. 4. GSCA’s Equation 2 versus the log of the maximum likelihood function used by both GSSA and GSGS for four E. coli and five Insilico networks
from the DREAM3 and DREAM4 initiatives [29], [30], [31]. 1, 000, 000 random topological sort orderings were generated for all networks. After sorting
the gene sets according to a given topological sort ordering, both GSCA’s fitness score and the maximum likelihood score were calculated for the underlying
network topologies. GSCA’s scores were scaled to (0, 1] by dividing by the maximum score for each network for each plot. The log of the maximum
likelihood scores were scaled to [0, 1] by shifting the scores by the maximal likelihood score to the right and by then dividing by the maximum score of
the shifted scores for each network for each plot. The fitness of random topological sort orderings are represented as red dots whereas the fitness of the
true topological sort ordering is represented by a solid blue line. Equation 2 performs similarly to the log of the maximum likelihood across all networks.
Compared to the figure presented in [11], the figure presented here involves a total of nine networks versus the three networks presented earlier.

network in the presence of ample gene sets. The primary
parameters for GSGS are the number of iterations for the
burn-in stage and the number of samples to collect after the
burn-in stage is completed. Briefly, the burn-in stage is part
of the Gene Set Gibbs Sampler algorithm that discards the
results of the initial iterations as the joint distribution of gene
sets moves to what is hoped to be the true distribution. As for
GSCA, the relevant parameters are the number of generations

J , the number of beliefs/search agents B, and the number of
elite beliefs to retain after each generation T .

For each network in Figure 5, GSGS and GSCA were
run 10 times each on randomly ordered gene sets of sizes
described in Table I. The parameters for the GSGS algorithm
were 5, 000 iterations each for both the burn-in state and for
sample collection for a total of 10, 000 iterations for each run.
For the 5, 000 iterations of sample collection, networks were
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Fig. 5. A comparison of the performance of GSGS and GSCA. On the y-axis, the F -score = 2 ∗ Sensitivity ∗ PPV/(Sensitivity + PPV ) is
measured. On the x-axis, snapshots of the performance of the GSGS and GSCA algorithm at varying number of iterations or generations is presented.
Overall, GSCA outperforms (the E. coli networks) or performs similarly to the GSGS algorithm. It should be noted that a version of this figure was
presented earlier in [11] consisting only of three networks.

Fig. 6. Additional results for GSCA for three Insilico networks. GSGS was
unable to run on a workstation with 4 GB of RAM due to lacking memory.

reconstructed after the collection of 1, 000, 2, 000, 3, 000,
4, 000, and 5, 000 samples. For GSCA, it was run for a total
of 5, 000 generations or iterations for each run. The number
of search agents/ beliefs B was set to 10, and the number
of elite solutions T preserved after each generation was set
to 5. The size of the tabu list was set to 100, 000 beliefs.
Similar to GSGS, 5, 000 generations were run, and the F -
score = 2 ∗ Sensitivity ∗ PPV/(Sensitivity + PPV ) for
the most fit belief was calculated after 1, 000, 2, 000, 3, 000,
4, 000, and 5, 000 generations. Sensitivity is calculated as
the number of true positives, i.e., the number of predicted
edges agreeing with true edges, divided by the total number

of true edges. PPV or the Positive Predictive Value is the
number of true positives divided by the total number of
predicted edges. In particular, additional iterations for sample
collection do not lead to vastly improved results for the
GSGS algorithm as illustrated in Figure 5. For the GSCA
plots, a “learning curve” may be observed for the E. coli 1,
2, and 4 networks. As seen in Figure 5, GSCA outperforms
GSGS across all four E. coli networks and performs similarly
for two Insilico networks. In addition, for three Insilico
networks, results were presented only for GSCA in Figure 6
as the memory requirements for GSGS were cost prohibitive
for a workstation with 4 GB of RAM. Finally, the use of
prior knowledge for the DREAM3 and DREAM4 networks
may be seen in Figure 7.

VI. REAL DATA ANALYSIS

For real data analysis, the well-studied compendium of
5,350 genes and 300 expression profiles corresponding to
diverse mutations and chemical treatments in the budding
yeast S. cerevisiae [33] was used. Using the MTBA toolbox
[34], the Cheng and Church algorithm [35] was used on the
non-log scaled fold change data matrix to produce three bi-
clusters. In particular, the bicluster consisting of 4,826 genes
and 274 samples was selected for further analysis. Prior
knowledge corresponding to the largest weakly connected
component of the KEGG Cell Cycle pathway was used.
Genes present in the weakly connected component were dis-
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Fig. 7. The use of prior knowledge for the nine DREAM3 and DREAM4 networks. Prior knowledge was obtained by randomly sampling the specified
percentage of edges from the networks presented in Table I. On the y-axis, the F -score = 2 ∗Sensitivity ∗PPV/(Sensitivity+PPV ) is measured.
On the x-axis, snapshots of the performance of the GSCA algorithm at varying number of generations is presented. The lines in red represent no prior
knowledge. The lines in green represent 20% prior knowledge. The lines in pink represent 40% prior knowledge. The lines in black represent 60% prior
knowledge, and the lines in blue represent 80% prior knowledge. As can be seen overall, prior knowledge leads to an overall better performance for GSCA.

Fig. 8. Left: From KEGG the following S. cerevisiae Cell Cycle Pathway was used as prior knowledge. Right: The network reconstructed by GSCA
using the prior knowledge and the 23 out of the 300 S. cerevisiae samples [33] consisting of 25 genes. GSCA preserves 17 weak order pairs extracted
from the prior knowledge in its reconstructed network. Namely, it preserves the following: YDR451C to YAL040C, YAL040C to YGR109C, YBL016W to
YGR109C, YBR160W to YGR109C, YDR451C to YGR109C, YJL157C to YGR109C, YLR182W to YGR109C, YBL016W to YJL157C, YAL040C to
YLR182W, YDR451C to YLR182W, YBL016W to YML027W, YBR160W to YML027W, YJL157C to YML027W, YBL016W to YMR199W, YJL157C
to YMR199W, YBL016W to YPL256C, and YJL157C to YPL256C.

cretized as 1 if the absolute value of their log10 fold change
ratios were greater than or equal to log10(2) and 0 otherwise.
After converting the discretized data into gene sets, 23 gene
sets with lengths ranging from 2 to 6 were extracted and in
conjunction with the prior knowledge present in the KEGG
Cell Cycle weakly connected component, GSCA was run for
50,000 iterations. As seen in Figure 8, GSCA preserves most
of the weak order information found in the prior knowledge.

VII. CONCLUSION

In this paper we presented GSCA for reconstructing net-
works from unordered sets of genes. The primary focus of
GSCA is to search the space of topological sort orderings that
may represent the underlying network from which the gene
sets may have originated. We presented a simulation study of
the performance of the heuristic used as the fitness function
algorithm for nine DREAM3 and DREAM4 networks. We
also presented simulation studies for the performance of
GSCA across nine simulated sets of gene sets for the afore-
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mentioned networks from the DREAM initiatives. Finally,
we presented a case study involving the use of 300 gene
expression profiles. The network reconstructed using GSCA
preserved most of the weak order information found in the
KEGG network utilized as prior knowledge.

The approach presented here is useful since it robustly
incorporates and exploits prior knowledge. Furthermore, each
search agent/belief acts independently of one another in the
search space allowing for a rather straightforward extension
to threaded programming. The results produced by GSCA
may also be thought of a set of weak orders. From this angle,
the output of GSCA may then be used by other algorithms,
such as the Bayesian based K2 algorithm, that rely upon
a robust starting point to produce good results. As such,
future hybrid algorithms may examine the data both from the
aspects of gene sets (column view of the data) as well as the
individual genes (row view of the data). Furthermore, future
work may consist of examining in detail the relationships
between the number of generations J , the number of beliefs
B, and the number of elite beliefs T in hopes of finding
an automated method of tuning the parameters based on the
data set being used.
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