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Abstract—The multidimensional multi-choice knapsack prob-
lem (MMKP) is NP-hard. Within the framework of solving this
problem, we suggest newer approaches. We not only propose
a multi-starts version of our previous works aproach using
surrogate constraint informations based choices [31][32], but also
we introduce another newer heuristic. The latter uses Lagrangian
relaxation informations in place of surrogate informations. Com-
pared with other literature known methods described so far, our
approaches experimentations results are competitive.

I. INTRODUCTION

T he MMKP is a combinatorial optimization problem, one
of the most complex members of the knapsack problem

family [7]. Let a set N={N1, . . . , Ni, . . . , Nn} of n disjoint
item groups, where each group i, i=1, . . . , n has ni items. Each
item j, j=1, . . . ni, of the ith group has a non-negative profit
value cij , and requires an amount of resources represented
by the weight vector aij=(a1

ij , a
2
ij , . . . , a

k
ij). Note that weight

terms akij (with 1 ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ ni) are
nonnegative. b=

[
b1, b2, . . . , bm

]
is the capacity vector of the

multi-constrained knapsack resources. It is worthy to note that
xij takes either 1 or 0, which means that item j of the ith

group is picked or not, respectively.
The goal of the MMKP is to pick exactly one item from each
group such that the resource constraints are not violated and
the selected items profit is maximized, as well. Formally the
problem can be stated as follows :

Max
n∑

i=1

ni∑
j=1

cijxij (1)

Subject to
n∑

i=1

ni∑
j=1

akijxij ≤ bk , k = 1, . . . ,m (2)

ni∑
j=1

xij = 1 , i = 1, . . . , n (3)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , ni (4)

To exclude trivial solutions, we assume that for all 1 ≤ j ≤ ni,
we have :

n∑
i=1

min{akij} ≤ bk ≤
n∑

i=1

min{akij} k = 1, . . . ,m (5)

Many real life problems, such as the telecommunications
[2][3], logistics [5], financial sectors [1], military strategy

[6][4], could be easily fomalized as an MMKP .
The first approaches described in the literature are derived

from multiple choice knapsack problem (MCKP) [15], a spe-
cial case of MMKP (m = 1) [44]. In this problem, a single ca-
pacity constraint must be satisfied. The MMKP is also closely
related to another non-standard variant, namely the multidi-
mensional knapsack problem (MDKP) [16][17][18][19]. The
latter is obtained from MMKP removing choice constraints
and considering the number of the n = 1 (all objects are
in the same group). In fact, the MMKP is considered like
a combination of MDKP and MCKP [47][44]. Counter to
MCKP and MDKP, little works are devoted to the MMKP
[46][48].

Different exact methods are described in the literature for
MCKP. Sinha and Zoltners [20] proposed a branch and bound
algorithm guided by the solutions of the linear programming
relaxation (LP) at each node. Numerical experiments con-
ducted by the authors on random instances show that the
computation time increases significantly with the number of
groups (or classes) then the number of objects. Armstrong et
al. [21] have improved this algorithm to reduce the required
storage space and computation time for larger instances.

Dyer et al. [45] proposed a hybrid algorithm combining
dynamic programming and branch and bound to solve the
MCKP. The authors use the Lagrangian duality [50] to com-
pute bounds at the branching nodes, and apply a reduction
procedure. The results of presented in [45] show the potential
of hybridization compared to conventional branch and bound
algorithms.

Pisinger [22] describes a partitioning algorithm with poly-
nomial complexity to find an optimal solution of the (LP)
linear relaxation. He also discussed the integration of this
method in a dynamic programming algorithm based on the
enumeration of a minimum number of groups. He proposes
a dynamic programming based on that adds (if necessary)
groups approach the core problem. With this mechanism, the
author improved the results obtained with other algorithms for
large instances with more than 100,000 variables.

The first results of the resolution of the MMKP are due to
Moser et al. [43]. The authors developed a heuristic based on
Lagrangian relaxation that starts from a feasible solution, and
switches repeatedly objects to reduce its ”non releasability”.
Their algorithm was later improved by Akbar et al. [23].
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Khan et al. [44] proposed a heuristic based on aggregation
constraints as by suggested Toyoda in [24] to solve the MDKP.
They have improved their approach using an object exchange
procedure. The heuristic has been compared to a branch and
bound algorithm and the approach of Moser et al. [43]. The
results of the calculations provided in [44] show that the
heuristic is considerably better than the other algorithms both
in terms of computing time and in terms of quality of solutions.

Parra-Hernandez and Dimopoulos [13] adapted algorithm
of Pirkul [25] for MKP to solve the MMKP. Initially, they
relax the constraints of choice and thus transform the MMKP
MKP with a generalized upper bounds (the choice constraints∑ni

j=1 xij = 1 is transformed into
∑ni

j=1 xij 6 1). In other
words, more than one object can be selected in each group.
One solution (not necessarily feasible) is then obtained and
improved by using a local search. Their algorithm produces
better solutions than those obtained by Akbar et al. [23]
penalized with a significant increase in computation time.

Hifi et al. [48] developed two constructive heuristics and
a method of guided local search to solve the MMKP. Their
approaches have led to better results than those obtained by
Moser et al. [43] and Khan et al. [44]. These results were
improved by the same authors in [52] using a reactive local
search algorithm .

Akbar et al. [26] described a heuristic for MMKP based
on the production of convex hulls and aggregation constraints
multidimensional capabilities in a single penalty using a
vector. The authors obtained encouraging results especially for
uncorrelated with those appearing in the Moser et al. [43] and
Akbar et al. [23] instances. In [27], Hiremath and Hill describe
two greedy heuristics for the MMKP and provide an empirical
study of instances of specific tests to show the performance
of their algorithms.

More recently, Cherfi and Hifi [51] described a branch
and bound algorithm for the MMKP using a variant of the
column generation algorithm and a heuristic rounding to assess
the connections of nodes. Different branching patterns were
explored. Their approaches were compared with CPLEX [28]
and heuristics described by Hifi et al. [52] on a set of test
instances from the literature. For 21 of the 33 instances , the
best known lower bounds have been improved.

In [29], Hanafi et al. applied three iterative heuristics-based
relaxation to solve the MMKP inspired by their previously
proposed approaches for Hanafi and Wilbaut [30]. The authors
considered two strategies for selecting subsets of variables
whose integrity constraints should be released. The lower
bounds are computed by solving a reduced problem obtained
by fixing some of the variables to their value in the linear
optimal solution. The authors compared their approach with
algorithms described by Cherfi and Hifi in [51].

By reference to Hanafi et al.[29], Crevits et al. [33] de-
veloped a heuristic based on a new relaxation that removing
integrity constraints and forcing variables close to 0 or 1.
This relaxation is more general than the PL and mixed
integers relaxation [29]. The authors improved their algorithm
by integrating a simple descent procedure as a local search

that attempts to preserve each iteration of the realizability of
solutions. His local search procedure uses the special structure
of MMKP based on the exchange of two objects in the same
group.

Other metaheuristics have also been recently proposed for
the MMKP [34][35]. In [35], Ren and Feng use an ant
colony optimization algorithm for the MMKP. Their algorithm
combines a constructive process with an efficient operator
used to repair infeasible solutions. Iqbal et al. [34] also
developed an ant colony optimization approach for MMKP.
The authors have improved the convergence of their approach
by integrating a conventional local search. The authors claim
that their method is able to find solutions very good (close to
optimal) in a relatively short computation time.
Htiouech et al. [31] [32] explore both sides of the feasi-
bility border that consists in alternating both constructive
and destructive phases in a strategic oscillating manner. In
order to strengthen the surrogate constraint information, the
authors enhance the method with constraints normalization.
Numerical results show that the performance of his approach
is competitive with previously published results.

This paper is organized as follows. Our heuristic for solv-
ing the MMKP using Lagrangian and surrogate relaxation
informations are described in section 2. The computational
results are reported in section 3. Section 4 summarizes the
contributions of this work and discusses directions for further
works.

II. METHOD IN DETAIL

In this section, we use a relaxation of the MMKP to define
a choice rules in order to determine which item to add,
drop or swap. This is accomplished by using respectively
the Lagrangian [50] and surrogate relaxation [54][55] of the
MMKP.

A. Foundation and basis

Glover and Kochenberger [16] introduced a critical-event
tabu search approach which assumes that the memory structure
is arranged around the feasibility border of the MDKP. This
heuristic (referred to GK) uses a strategic oscillation that
navigates both sides of the border to achieve a balance between
intensification and diversification procedures. A parameter
span is used to indicate the depth of the oscillation about
the boundary, measured in terms of the number of variables
added after crossing the boundary from the feasible side in
a constructive phase and the number of variables dropped
after crossing the boundary from the infeasible side in a
destructive phase. Starting by a minimum value, the span
is gradually increased to a maximum value. A series of
constructive and destructive phases is performed for each value
of the span parameter. When the span reaches the maximum
value, it is gradually decreased to the minimum value. Once
the span decreases to the minimum value, it is again gradually
increased to the maximum value, and this oscillation process
continues [16]. Hanafi and Freville [17] also demonstrated
special version of this method that balances the interaction
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between intensification and diversification strategies for the
MDKP. Tabu search fundamentals and strategies are widely
discussed in Glover and Laguna [53]. Htiouech et al. [31][32]
propose an adaptation of the oscillation strategy proposed by
Glover and Kochenberger [16] to solve the MMKP.

B. Constructive phase

The add move is the main stage of the constructive phase
of our oscillation approach. Add an object j of a group i
to a solution S corresponding to the decision variable xij
(initially equal to 0) to the current solution S∗, necessarily
involve assignment to 1. In the classical oscillation strategy
(like described in [16][17]), the constructive phase is divided
into two sub-phases, namely feasible construction phase and
unfeasible construction phase. In the case of MMKP, construc-
tive phase can run only if the solution is infeasible. Note that
in the case where the solution is feasible, any addition of a
new item involves the immediate cross of the boundary of
feasibility (choice constraint violated). Where the solution is
infeasible, two scenarios are possible :
• there is one (or more) group(s) not containing any se-

lected object in the current solution. In this case, the
constructive phase (through its additions movements) is
moving closer to the feasible region, since the number of
groups without assigned objects decreases with each new
insertion.

• each group i of n contains at least one item j selected.
In this case, the constructive phase (through its additions
movements) will increasingly distant from the border of
feasibility navigating in the infeasible space. Indeed, each
new insertion will cause a violation of the constraints of
the problem more particular constraints of choice.

C. Destructive phase

The drop move is the main stage of the destructive phase of
our oscillation approach. Remove an object from a solution,
involve the allocation of the corresponding decision variable
xij (initially equal to 1) to 0.

In the classical oscillation strategy, the destructive phase
is divided into two sub-phases, namely feasible destructive
phase and unfeasible destructive phase. In the case of MMKP,
destructive phase occurs if the solution is infeasible. Note that
in the case where the solution is feasible, any drop of an
item from the current solution involves immediate cross of the
boundary of feasibility (constraint violated choice). Where the
solution is impractical, two scenarios are possible :

1) there are groups containing more than one selected item.
In this case, the act of dropping items guide the research
to get closer to the border of feasibility in the direction
of the feasible space.

2) there are still groups containing no items selected in the
current solution. The act of dropping an item from this
solution distant the process of finding the feasible space.
Indeed, each new deletion will cause a violation of more
constraints of the problem.

D. Lagrangian relaxation based choice rules

The principle of Lagrangian relaxation is to dualise con-
straints of the original problem by introducing them multiplied
by Lagrange multipliers in the objective function [41]. In
other words, this relaxation technique is based to remove the
most difficult constraints, and integrate them into the objective
function by introducing weighting coefficients attempting to
influence research in respect to the maximum possible con-
straints released. The new problem will be easier to solve,
and its objective function will take into account the constraints
relaxed. This relaxation has been proven as an effective tool for
solving integer problems (Fisher [42]). Lagrangian relaxation
provides a good upper bound for the MMKP (Moser et al.
[43]). For more details, the reader may reference to [41][42].
In our approach, we relax the capacity constraints (2). Let
the vector λ ∈ Rm (called Lagrange multipliers vector). The
Lagrangian constraint relaxation associated to the resource
constraints (2) is written :

LK(λ)


Max

{ n∑
i=1

ni∑
j=1

(
cij −

m∑
k=1

λkakij

)
xij +

m∑
k=1

λkbk
}

s.c. (3)

(4)

(6)

The resulting problem is easy to solve, and the optimal
solution x∗ is given by :

x∗ij =

{
1 if j = j∗

0 else.
(7)

with :

j∗ = argmax
{
cij −

m∑
k=1

λkakij

}
(8)

for i = 1, . . . , n et j = 1, . . . , ni. Since the second term∑m
k=1 λ

kbk is a constant. Thus, the optimal value of the
Lagrangian relaxation L(λ) is written:

v(L(λ)) =
m∑

k=1

λkbk +

(
n∑

i=1

Max
{
cij −

m∑
k=1

λkakij

})+

(9)

for j = 1, . . . , ni. where (α)+=max(0, α). Knowing that each
vector λ provides an upper bound, the best value is obtained
by solving the Lagrangian dual expressed by:

Minv(L(λ)), λ ∈ Rk. (10)

The components of the vector λ are determined by three cases
adapted heuristic HGK Glover and Kochenberg [16], which
depend on the state of the solution (feasible or not) and the
direction of search.

We define the difference ∆k as the remaining amount of the
k resource after consumption needs of the current solution. In
all cases, the quantity ∆k is written:

∆k = bk −
n∑

i=1

ni∑
{j/xij=1}

akij or : ∆k = bk −
n∑

i=1

ni∑
j=1

akijxij

(11)
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for all k = 1, . . . ,m.
Note that if ∃k = 1, . . . ,m such that ∆k < 0 then k

constraint is violated, and the solution is not feasible. The
vector λ is determined by the following cases :
• Case 1 : if the solution is feasible (from constructive or

destructive phase), the value λk corresponding to the k
constraint is always equal to 1

∆k .
• Case 2 : when the solution is not feasible and research

is in the constructive phase, we define ∆k for all k =
1, . . . ,m as follows:

λk =

{
1

∆k if ∆k > 0,

2 + |∆k| if ∆k 6 0.

• Case 3 : if the solution is not feasible and research is in
the destructive phase, for all k = 1, . . . ,m, the multiplier
λk is given by :

λk =

{
0 if ∆k > 0,

|∆k|+ 1∑n
i=1

∑ni
{j/xij=0} a

k
ij

if ∆k < 0.

In the case where ∆k < 0, λk can be simplified to :

λk =
1∑n

i=1

∑ni

j=1 a
k
ij − bk

The choice rule for the constructive phase selects the
variable xij to switch from 0 to 1 in order to

Max

{
r1
ij = (cij −

m∑
k=1

λkakij)|xij = 0

}
(12)

The choice rule for the destructive phase of our approach
selects the variable xij to switch from 1 to 0 in order to

Min

{
r1
ij = (cij −

m∑
k=1

λkakij)|xij = 1

}
(13)

When the solution is feasible, swap moves are chosen to
improve the quality of the current solution. We do this by
selecting the variable xij to switch from 0 to 1. Otherwise
we select the variable xih to switch from 1 to 0. The feature
considered in our choice of xij and xih have to

Max

{
r1
ijh = (cij − cih −

m∑
k=1

(akij − akih)|xij = 0, xih = 1

}
(14)

Where items j and h are in the same group i.

E. Add, drop and swap moves

It is attempting to note that in all what below r is r1 when
delay with Lagrangian relaxation, and it refers to r2 when we
use surrogate relaxation [32].

1) Add move: The add move is the principal move of the
constructive phase of our approach. Adding a variable to the
current solution S (initially equal to 0) is equivalent to set it
up to 1. In this current step, the object added maximizes the
quantity rij as described in algorithm 1.

Algorithm 1 procedure addMove(S)

G∗ = Argmin
{∑ni

j=1 xij |i ∈ G
}

ri∗j∗ = max {rij |xij = 0, i ∈ G∗, j = 1, . . . , ni}
xi∗j∗ = 1
S∗ = S∗ + xi∗j∗

2) Drop move: The heuristic gradually chooses which
variables to drop during the destructive phase. Drop an object
from the current solution S (initially equal to 1) is equivalent
to reset it to 0. In this step, the dropped object minimizes the
quantity rij as described in algorithm 2.

Algorithm 2 procedure DropMove(S)

G∗ = Argmax
{∑ni

j=1 xij |i ∈ G
}

ri∗j∗ = min {rij |xij = 0, i ∈ G∗, j = 1, . . . , ni}
xi∗j∗ = 0
S∗ = S∗ − xi∗j∗

3) Swap move: When the solution is feasible, our approach
improves, step by step, its quality. The improvement should
respect the feasibility of the solution and it is done by swap
moves. Algorithm 3 shows how the objects to be swapped
from the same group maximizes the quantity rijh.

Algorithm 3 procedure SwapMove(S)
ri∗j∗h∗ = max {rijh|i ∈ G, j = 1, . . . , ni, h = 1, . . . , ni, }
such as xij = 0, xih = 1 and∑n

i=1

∑ni

j=1 a
k
ijxij − aki∗h∗ + aki∗j∗ ≤ bk, k = 1, . . . ,m,

and ci∗h∗ < ci∗j∗
xi∗j∗ = 1
xi∗h∗ = 0
S∗ = S∗ + xi∗j∗ − xi∗h∗

During the research, our approach can find several feasible
solutions generated from the constructive or destructive phase
of the research. Indeed, when this phase reaches its limits, the
algorithm remembers only the best solutions enhanced with
which he pursues research. The basic idea of this oscillation
version is to intensify even more promising area by storing
solutions found during the search intensification phase. We
thus obtaining a list of feasible solutions (probably pretty
good qualities ) that we will use later as solutions departures
for intensification (multi -start) the search area. This step
is repeated until a number of iterations is reached without
improvements .

III. EXPERIMENTATIONS AND TESTS

A. Experimental design

For our experimentations, we use the same benchmarks used
by Hemendez and Dimopoulos [13]. The available resources,
coefficients , were decreased by a factor f . First, no decrement
is performed (f = 1); then, a decrement of 10% (f = 0.9) is
allowed; finally, a decrement is done so that at least one of the
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heuristics fails in finding a feasible solution. Because of the
decrement factor used, a total of 90 problems were evaluated.
The results are given in Tables I, II and III. In this section, the
performance of OscLAgr and Oscsurr are determined on all
instances of the literature given by Hemendez Dimopoulos and
[13], offering themselves compare their approaches with those
of Moser [43] and Khan et al. [44]. The first five columns of
Tables I-III denote the number of the instance, the number of
groups of objects, the number of objects in each group, the
dimension of the vector capacity bk, and finally the reduction
factor f . We present the sixth column the results of Moser
[43] followed by those of Khan et al. [44] (Heu), Hemendez
and Dimopoulos [13] (Hmmkp). We provide in the last two
columns owed results OscLAgr and Oscsurr.
We set up our approach parameters as follow :
• Tabu list size t = 4
• Initial solution: every variable is 0 (xij = 0 for all i =

1, ..., n and j = 1, ..., ni )
• NumIter= n × ni : number of iterations. Iteration cor-

responds to a pass of both a constructive phase and a
destructive phase.

• IterAutorized=50 : number of iterations authorized with-
out amelioration

B. Experimental results

To better visualize the improvements in quality of solutions
we calculate the deviation value %dev given by the following
formula:

%dev =

(
1− Osc

Best

)
× 100 (15)

where Best is the best value found. Found results shows
that in relatively simple instances our approaches seems to
be equivalent to literature ones. But, it is significantly clear
to us that in the case of difficult instances our approaches
efficiency is well proved. For this reason, and for more clarity
we present, in our tables, only these difficult instances.

The values in bold indicate that our results are greater than
or equal to the best results. We initially noted in the tables II-
IV that our approaches oscillations could generate a feasible
solution for all instances. A top view also shows that the
quality of solutions is interesting. Greater than or equal to the
best solution among those Moser, Heu and Hmmkp solutions
are found in 72/90 cases, 80% of all instances. Improvements
are particularly noted for the 30 most difficult instances (with
the factor f is greater).

While algorithm Osclagr has made improvements on the
order of 3.33%, 2.4% and 2.2% from Hmmkp mcknap7
respectively for instances, and mcknap8 mcknap9 Oscsurr has
improved respectively 3.8%, 2.2% and 2.4%.

The Moser’s method was unable to find a feasible solution
for 30 instances, and for Heu, who could not find a feasible
solution for 27 of the 90 instances.

Note that the rate of improvement (%Dev) becomes more
significant for the last ten instances (larger reduction in re-
sources) considered to be the most difficult to resolve. The

rate of improvement has dyed 13.4% (for instance Mknapcb7-
6-0.84), while occasionally the algorithm produces results of
lower quality than Best (worst case a percentage of 1.77%
to Mknapcb7-4-0.9). For instances of medium size (Mck-
nap8), the improvement rate reached 12.32% (for instance
Mknapcb8-6-0.8), while the rate of degradation is the worst
of 0.23% (Mknapcb8-7-0.9). Finally, an observation on the
behavior of the algorithm for instances of larger sizes (mck-
nap9) allows us to note that we get the best solutions for
almost last ten instances (the most difficult) and reached a rate
improvement of 11.64% (instance Mknapcb9-3-0.75), with a
worst case degradation of 0.08% (for Mknapcb9-7-0.9). As
we already mentioned, the best improvement solutions are
recorded for the hardest instances. Indeed, the first 20 instances
of each file have the largest (including the first 10) available
for solving instances resources. And their resolution does
not require much effort and research converges quickly to
the same solutions in 25/30 case Oscsurr (83%) and 23/30
cases Osclagr (i.e 76.6%). These results are explained by the
fact that instances are not strongly correlated, and resources
for the first 20 instances are relatively widely available. The
research process and selects objects with a value selection
criteria very distinguished in relation to other objects, where
the immediate convergence to the same areas of research.
The last 10 instances are obtained by reducing the resources
available for the highest value of the factor f . Problems
generated will therefore values criteria much tighter selection
and then give more meaning to the memory frequency and
recency to influence research to more promising areas. This
is explained by the fact that the mechanisms of oscillations
strategy (among others those of tabu search) will have no
effect if whatever selection criteria is defined converges to
the same selections object. We believe that our approaches
differ especially if instances are relatively large size and if
the ratings of the selection criteria are similar. Thus the most
important improvements are recorded on average for the 10
most difficult instances and improves Osclagr Best 7.2%,
6.9% and 7.3% respectively for Mknapcb7, Mknapcb8 and
Mknapcb9. Similarly, the same bodies Oscsurr improves a
rate of 7.8%, 6.6%, and 7.9%. The results obtained show that
the solutions of Oscsurr improve those obtained by Osclagr
by an average rate of 0.3%.

IV. CONCLUSION AND FURTHER WORKS

In this paper, two new heuristics for the multichoice mul-
tidimensional knapsack problem Osclagr and Oscsurr are
presented. Firstly, we introduce a new oscillation approach
which explores both sides of the feasibility border to solve
MMKP. Surrogate constraint information and Lagrangian re-
laxation are used to build the choice rules. Based on the
computational results, better solutions than at other heuristics
in the literature. Our approaches would be a very good candi-
date for time-critical applications such as adaptive multimedia
systems where a near-optimal solution is acceptable, and fast
computation is more important than guaranteeing the truly
optimal value. Further works could be worthy, specially, we
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mknapcb7 Parameters Profiles solutions
n ni m f Moser Heu Hmmkp Osclagr Oscsurr

0 20 5 30 0.9 15183 17560 17510 18410 18459
1 20 5 30 0.9 16439 17335 17948 17693 17827
2 20 5 30 0.9 16229 16907 17049 17503 17503
3 20 5 30 0.9 15901 17341 17883 17518 17935
4 20 5 30 0.9 16724 18127 17315 18483 18483
5 20 5 30 0.9 17754 17824 18318 18561 18489
6 20 5 30 0.9 15774 17307 18045 17883 17886
7 20 5 30 0.9 16301 17117 17301 18122 18122
8 20 5 30 0.9 16583 18213 17563 18633 18633
9 20 5 30 0.9 16146 16511 16691 16995 17062
0 20 5 30 0.84 * * 15617 16842 17052
1 20 5 30 0.84 * 15885 15951 16728 16671
2 20 5 30 0.84 * * 14080 15059 15059
3 20 5 30 0.84 * * 14876 16708 16712
4 20 5 30 0.84 * * 15595 17028 17041
5 20 5 30 0.84 * * 15791 17520 17399
6 20 5 30 0.84 * * 15484 16968 16968
7 20 5 30 0.84 * * 14963 16342 16342
8 20 5 30 0.84 * * 16160 17285 17571
9 20 5 30 0.84 * 15437 13098 15889 16207

* no feasible solution found
TABLE I

MKNAPCB7 : PERFORMANCE COMPARISON OF MOSER, HEU,
HMMKP, Osclagr AND Oscsurr

mknapcb8 Parameters Profiles solutions
n ni m f Moser Heu Hmmkp Osclagr Oscsurr

0 50 5 30 0.9 44267 45535 45493 45937 45937
1 50 5 30 0.9 45963 47095 47130 47166 47166
2 50 5 30 0.9 42167 43810 45390 45589 45789
3 50 5 30 0.9 44732 45707 45810 45804 45804
4 50 5 30 0.9 43997 44669 45270 45170 45170
5 50 5 30 0.9 46579 46447 46611 46579 46579
6 50 5 30 0.9 45743 46224 46064 46261 46261
7 50 5 30 0.9 44038 44644 45450 45344 45387
8 50 5 30 0.9 46616 46939 47156 47138 47138
9 50 5 30 0.9 45195 45411 45859 45930 45930
0 50 5 30 0.8 * 41308 38523 42227 42530
1 50 5 30 0.8 * * 41185 44402 44143
2 50 5 30 0.8 * * 41259 42747 42638
3 50 5 30 0.8 * * 40066 42185 41975
4 50 5 30 0.8 * * 38262 42458 42579
5 50 5 30 0.8 * * 39670 42818 42164
6 50 5 30 0.8 * * 38547 43295 42704
7 50 5 30 0.8 * * 39445 41278 41411
8 50 5 30 0.8 * * 40954 43775 43565
9 50 5 30 0.8 * 40677 39834 42435 42018

* no feasible solution found
TABLE II

MKNAPCB8 : PERFORMANCE COMPARISON OF MOSER, HEU,
HMMKP, Osclagr AND Oscsurr
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mknapcb9 Parameters Profiles solutions
n ni m f Moser Heu Hmmkp Osclagr Oscsurr

0 100 5 30 0.9 90602 91879 92021 92004 92004
1 100 5 30 0.9 92371 92371 92371 92371 92371
2 100 5 30 0.9 93396 93294 93396 93367 93367
3 100 5 30 0.9 90137 91716 91815 91800 91800
4 100 5 30 0.9 92682 93150 93317 93257 93257
5 100 5 30 0.9 91002 91319 91547 91487 91487
6 100 5 30 0.9 90927 91322 91480 91430 91430
7 100 5 30 0.9 90861 91284 91672 91602 91602
8 100 5 30 0.9 93149 93034 93149 93149 93149
9 100 5 30 0.9 92562 93385 93528 93466 93466
0 100 5 30 0.75 * * 74927 81196 81835
1 100 5 30 0.75 * * 73570 78053 78762
2 100 5 30 0.75 * * 74739 79690 80846
3 100 5 30 0.75 * * 69813 77940 78284
4 100 5 30 0.75 * * 74323 80572 81587
5 100 5 30 0.75 * * 74303 81097 81154
6 100 5 30 0.75 * * 72018 77097 76766
7 100 5 30 0.75 * * 73777 78184 77484
8 100 5 30 0.75 * * 74376 78662 80180
9 100 5 30 0.75 * * 73496 80818 80888

* no feasible solution found
TABLE III

MKNAPCB9 : PERFORMANCE COMPARISON OF MOSER, HEU,
HMMKP, Osclagr AND Oscsurr

propose to apply our approaches in the telecommunications
problems like in [56].
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