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Abstract—In previous work, we investigated the performance 

of Cultural Algorithms (CA) over the complete range of system 

complexities in a benchmarked environment. In this paper the 

goal is to discover whether there is a similar internal process going 

on in CA problem solving, regardless of the complexity of the 

problem.  We are to monitor the “vital signs” of a cultural system 

during the problem solving process to determine whether it was 

on track or not and infer the complexity class of a social system 

based on its “vital signs”. We first demonstrate how the learning 

curve for a Cultural System is supported by the interaction of the 

knowledge sources. Next a circulatory system metaphor is used to 

describe how the exploratory knowledge sources generate new 

information that is distributed to the agents via the Social Fabric 

network. We then conclude that the Social Metrics are able to 

indicate the progress of the problem solving in terms of its ability 

to periodically lower the innovation cost for the performance of a 

knowledge source which allows the influenced population to 

expand and explore new solution possibilities as seen in the 

dispersion metric. Hence we present the possibility to assess the 

complexity of a system’s environment by looking at the Social 

Metrics.  

Keywords—Cultural Algorithm, Complex Systems, 

Optimization, problem solving process. 

I. INTRODUCTION 

Complex systems are an important research topic in all of the 
sciences [1, 2]. Cultural Algorithms[3, 4] can provide a flexible 
framework in which to study the emergence of organizational 
complexity of any social systems using Multi-Agent System 
(MAS) approaches. As shown in Fig. 1, a Cultural Algorithm is 
a dual inheritance system that characterizes evolution in human 
culture at both the macro-evolutionary level that takes place 
within the Belief Space; and, at the micro-evolutionary level, 
that occurs in the Population Space. Knowledge produced in the 
Population Space is selectively accepted or passed to the Belief 
Space and used to adjust the knowledge structures there. This 
knowledge can then be used to influence the changes made by 
the population in the next generation. In this way, the population 
component and the Belief Space interact with, and support each 
other, in a manner analogous to the evolution of human culture 
[5, 6].  Previously, Peng[7] found that the similarities in social 
structures that emerge in similar cultures, are produced as a 
result of the integration of  knowledge sources in the problem 
solving process.  Ali[8] expanded on the ability of a knowledge 
source to influence a population through a “Social Fabric” which 
represents the extent to which the influence of a knowledge 

source can spread throughout a population via a temporary 
interconnecting “social  network”  between agents in the 
population. 

In order to study the relationship between system 
performance, social structure, and problem complexity in a 
complex social system, Che [9] adopted a generalized complex 
system environment: a cones world framework taken from the 
work of De Jong [11], and based upon theoretical models of 
complex systems by Langton and others [12]. The cones world 
is composed of resource cones juxtaposed on a landscape and 
the combination of the surfaces of these cones will produce a 
functional landscape that can be explored by a population.  Che 
also extended the “Social Fabric” approach by allowing the 
networks to have a memory with which the network 
organization can sustain over the whole problem solving 
process.  Che found the organization of the social structure for a 
culture does reflect the nature and number of problems presented 
to it by its environment [9], which has been suggested by other 
researchers such as Barabási [13] that the prevalence of small 
world networks in biological systems may reflect an 
evolutionary advantage of such an architecture. One possibility 
is that small world networks are more robust to perturbations 
than other network architectures. If this were the case, it would 
provide an advantage to biological systems that are subject to 
damage by mutation or viral infection.        

The fact that networks of a similar structure appear in 
different environments suggest that there are underlying 
similarities within which cultural formation processes take 
place.  If one uses certain metrics to monitor the status of a living 
organism and if cultural systems can be viewed as living 
organisms, we can develop certain metrics that can be used to 
track the well-being of such a cultural evolution process. It is 
suggested that these metrics can be applied to all cultural 
systems, since the underlying computational processes are the 
same across the board in our Cultural Algorithms model. 

In this paper we introduce four metrics that we use to 
monitor the culture system’s vital signs in a given problem 
environment and use them to assess the expression of the social 
networks on the functional landscape produced by the Cultural 
Algorithms. The metrics assess the extent to which the influence 
function is able to generate diversity at each of its several stages. 
These metrics are used as a vehicle to estimate the entropy, pre-
determined by the generator function, of the problem solving 
system used to find the optimal solution. These metrics relate to 
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the dispersion of individuals in problem space and the dispersal 
of knowledge within a social network composed of these 
individuals.   

 

 
 

Fig. 1 Cultural Algorithm Frameworks [9] 

 
In section II we introduce social metrics to assess the impact 

that the various components of the Social Fabric influence 
function have on the problem solving process.  Next in section 
III the experimental framework is presented. In that framework, 
the Cones World, problem landscapes are constructed by the 
overlaying of cones on a multi-dimensional landscape. The 
generator processor can vary in terms of entropy or 
predictability from static to chaotic. Sample outoput including 
social metrics summary table and knowledge sourlce learning 
curve are presented. In Section IV we provide an example of the 
vital signs produced in a successful run for a complexity of 
A=1.01. In Section V we propose a metric based process model 
based on the experiment results and analysis. Section VI 
provides the conclusion and future work. 

II. SOCIAL METRICS 

In this section we describe the four metrics that we will use 
to monitor the Culture’s vital signs in a given environment. We 
expect that each Knowledge Source is learning during the search 
process. Our assumption is that the Social Fabric is able to 
distribute performance information about each knowledge 
source to its directly connected set of neighbors. 

The metrics assess the extent to which the influence function 
is able to generate diversity at each of its several stages. The 
influence function affects the decision making of each 
individual in the population space at each generation with the 
following steps: 

1) The update function which adjusts the Knowledge Sources 
based upon agent experiences. Adjustments were made here 
to increase the diversity of the certain Knowledge Source 
(e.g., Situational Knowledge Source  whose data also 
influenced other Knowledge Sources) 

2) The MVT (Marginal Value Theorem) [7, 24] as 
implemented via a roulette wheel mechanism assigns each 
population agent a knowledge source. That Knowledge 
Source is said to be the agent’s direct influence. The MVT 

is also a co-evolutionary device that associated Knowledge 
Sources with predators and the population of agents as prey 
spread out over a functional landscape. 

3) The direct influence for each agent is distributed to its 
neighbors.  

4) With multiple Knowledge Sources providing conflicting 
decision choices, each individual agent adopts a vector 
voting scheme based a weighted voting (bidding) 
mechanism in which the Knowledge Source with the 
highest weighted-total is the winner.  The winning 
Knowledge Source then is able to control the behavior of 
the individual at that time step.   Depending on the weighs 
for each knowledge source, there might be two different 
winning scenarios:  “majority win” in which the majority 
Knowledge Source wins the bidding and “minority win” in 
which the minority of Knowledge Source wins the bidding 
when the drop in performance associated with the need to 
experiment with new solutions. 

Here we employ metrics that assess the vital signs of the 

system in terms of steps 2 and 4 above. This is because step 2 

reflects the impact of step 1, and step 4 reflects the impact of 

step 3 above.  

A. The Dispersion Coefficient 

The metric associated with step 2 is called the Dispersion 
Coefficient. It measures the distance on the functional landscape 
over which directly connected individuals are spread.  A real 
world analog for this metric would be the following:  the current 
economy may force related individuals to search for work in 
places distant from each other. That is viewed as producing a 
social tension or disconnect between related individuals so that 
their experiences are now potentially much different. 

The definition of the Dispersion Coefficient for one 
generation in a certain social environment, ST, is defined as the 
sum of the Euclidean Distances between each individual (𝑋1, 

𝑋2, … 𝑋𝐷𝑖𝑚) and its immediate neighbors in the Social Fabric(𝑎1, 

𝑎2, … 𝑎𝑀).  It is described as follows: 

ST = ∑ ∑ √∑ (𝑋𝑖,𝑘 − 𝑎𝑖,𝑗,𝑘)2𝐷𝑖𝑚
𝑘=1

𝑀
𝑗=1

𝑁
𝑖=1  

Here, N is total number of individuals,  

Dim is total number of dimensions of this environment,  

M is the number of neighbors directly adjacent to each 

individual,  

𝑋𝑖,𝑘 represents the coordinate on dimension k for individual i,  

and 

𝑎𝑖,𝑗,𝑘  is the coordinate of jth neighbor of individual i on 

dimension k.  

B. Minority/Majority Win Scores and Innovation Cost 

There are three metrics associated with step 4. They are: 

Majority Win Score – the average value of the score when 
the majority Knowledge Source wins the bidding in a time step. 
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Minority Win Score – the average score for the time period 
when a minority Knowledge Source wins the bidding.The 
Innovation Cost – The difference between 2 and 1 above 
assuming that the majority Win Score will be greater than the 
minority win score. This represents the drop in performance 
associated with the need to experiment with new solutions. For 
maximization problems, the score is an index that reflects the 
cost of innovation in terms of the reduction in performance that 
results when the majority does not win in a given situation  

The Innovation Cost index is computed to represent the loss 
of performance revenue that results from initially allowing a 
minority Knowledge Source to win. This will happen when a 
Knowledge Source with few individuals finds a new promising 
region and as a result is average performance for that time period 
that is high enough to beat the sum of the majority influences.  

Like the Dispersion Coefficient these three metrics are 
calculated in each time step. However, they are only used to 
distribute information in designated time steps in all of our 
experiments when share information every three time steps. This 
gives us time to evaluate the changes to each knowledge source, 
so that new weights based upon performance are less noise and 
a better index of relative performance.  

The dispersion coefficient and the innovation cost 
coefficient can reflect the entropy of the Population Space and 
the Belief Space respectively. This will allow us to assess the 
changes in system behavior in entropic-like terms in response to 
changes in the complexity of the environment. Hence we 
suggest that the values and cycles associated with the 
“information pumping” action of the extended influence 
function can be a useful technique for understanding and 
predicting system behavior in a variety of environments. 

III. EXPERIMENTAL FRAMEWORK 

The experimental framework uses an implementation of a 
Cultural Algorithm Tool Kit [3,8,9] in  a Repast Agent Based 
simulation Integrate Development  Environment 

A. Cultural Algorithm Implementation in Repast 

The Cultural Algorithm as described earlier has four major 
components: the Population Space, the Belief Space, the 
problem landscape, and the communication protocol. Each of 
the components will now be described. 

1. The Population Space: 
The population space can support any population-based 

computational model, such as Genetic Algorithms, Evolutionary 
Programming, Genetic programming, PSO, ACO, and agent-
based systems. Here we employ the Genetic Algorithm 
population framework. 

2. The Belief Space: 
In the belief space, we have five basic types of knowledge 

sources: Normative, Situational, Domain, Topographic, and 
History knowledge. Although for specific problems, we might 
need more specific domain knowledge, we are most interested 
in studying system behavior relative to changing problem 
complexity. These knowledge sources drive the problem solving 
process. 

3.  The Problem Landscape:  

The performance of an individual agent in the population 
space for a given problem is evaluated within a real-valued 
performance environment obj(). In this paper this performance 
environment is a problem landscape generator that produces a 
problem landscape by the placement of cones of varying within 
a multi-dimensional landscape. This environment is called the 
Cone’s World. It is adapted from the work of DeJong and 
Morrison [11].   Although problems can be expressed in terms 
of many dimensions, we focus on the optimization problems 
defined over a two-dimensional real-valued landscape which is 
easy to visualize. Peng [7, 23] coined the term Cones World 
when she employed it to test various Cultural Algorithm 
configurations. When Ali[9] extended Peng’s Cultural 
Algorithm framework in his CAT system, he employed the 
Cones World as one of the problems available to system users 
along with the traditional benchmark problems.  

 

 
Fig. 2 Logistic Function with characteristic A values 

 

The Cones World Generator generates a problem landscape, 
in which a field of resource cones of different heights and 
different slopes that are randomly scattered across a multi-
dimensional landscape. The Cones-World algorithm generates a 
dynamic cones-world in two steps:  

First step is to specify a baseline static landscape of the 
desired morphological complexity, and then add the desired 
dynamics. The base landscape is given by: 

) 

Where: 

k : the number of cones, 

n : the dimensionality, 

Hj: height of cone j, 

Rj : slope of cone j, and  

Cj,i: coordinate of cone j in dimension i. 

The values for each cone (Hj, Rj, and Cj,i) are randomly 

assigned based on the following user specified ranges: 

Hj  (Hbase, Hbase + Hrange) 

Rj  (Rbase, Rbase + Rrange)  

Cj,i  (-1, 1) 

 
Each of these independently specified cones are “blended” 

together using the max function, i.e., if two cones overlap, the 
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height at a point is the height of the cone with the largest value 
at that point.   

After the initial random landscape generation, the second 
step is to specify the dynamics. For each cone j, its every single 
parameter (every dimension Cj,i, height Hj, and, and slope Rj) can 
be changed individually and independently. In order to control 
the complexity of a landscape, we use the logistics function 
given as: 

Yi = A * Yi-1 * (1 - Yi-1) 

where A is a constant  and Yi is the value at iteration i.  

A bifurcation map of this function is provided in Fig. 2 which 
shows the values of Y that can be generated in each iteration of 
the logistic function given values of A between 1.0 and 4.0.  The 
particular value of A chosen for each of the dynamic features 
specifies whether the movement will be small same-sized steps, 
large same-sized steps, steps of few different sizes, or 
chaotically changing step sizes. We are particularly interested in 
characteristic points in terms of the complexity in the cones 
world as shown in Fig. 2.  Here we pick A = 1.01, 3.35 and 3.99 
for our test environment complexity as marked with vertical 
mark line in green. From left to right we have A = 1.01, 3.35, 
3.99 corresponding to one step change, two steps change and 
totally chaotic step size change. Each of these represents one of 
the computational classes proposed by Langton as discussed 
below. Based upon that he established several basic 
computational classes as follows: 

 

Fixed - For problems of low entropy a fixed set of rules can be 

given to each cell in order to allow them to exchange the 

information needed to solve the problem. In our case this is 

equivalent to having a fixed topology over which information 

is exchanged, around 1. 

Periodic – For problems of this nature the cells need to switch 

from one set of rules to another depending on the number of 

bifurcations. 

Chaotic – Problems for which the number of bifurcations is so 

large the system is inherently chaotic. Thus, there are no 

specific rule sets that apply. 
 

Fig. 3[9] shows example landscapes with k = 15, Hbase = 1, 

Hrange = 9, Rbase = 8, and Rrange = 12 and A = 1.01. 

 

 
 

Fig. 3 [9] Example Landscapes displayed in 3D and 2D  

x  (-1.0, 1.0), y  (-1.0, 1.0), H(1, 10), and R (8, 20) 

 

 

4. The Communication Protocol: 
The communication protocol of a Cultural Algorithm 

System is composed of two functions: the acceptance function 
which determines which individuals are used to impact the 
Belief Space; and the influence function which determines how 
the Belief Space influences the population space in generating 
new solutions. 

Acceptance Function: 
The acceptance function determines which individuals and 

their behaviors can update the Belief Space knowledge. It is 
often expressed as a percentage of the number of current 
individuals ranging between 1% and 100% of the population 
size, based upon selected parameters such as performance. In 
our case, we employ 50 individuals and a landscape constructed 
of 500 cones. Given the small size of the population relative to 
the potential complexity of the environment, we use 100% of the 
information gathered by the agents in our version here.  

Influence Function: 
The key activity of the influence function is to integrate the 

multiple knowledge sources together in the early system. The 
influence function affects the decision making of each 
individual in the population space at each generation with the 4 
steps described in Section II.  

The network topologies supported are: lbest (degree of two 
for each agent), square (degree of 4 for each agent), hexagon 
(degree of 6 for each agent), octagon (degree of 8 for each 
agent), hexadecagon (degree of 16 for each agent) and gbest 
(degree of n-1 nodes for each agent).  

B. Social Metrics Summary Tables 

These tables give the statistics for the social metrics that are 
used to generate the vital signs for a given run. For a given 
complexity class, basic statistics for the metrics produced by 
each topology for the 50 runs are given.  Table I presents the 
social metrics results for runs with A=1.01, in which: 

Dispersion_Run_Ave: The average Dispersion metric for each 

run 

MajorityWinScore: the average winning score when everyone 

conforms, i.e. the average fitness value of the winning KS when 

everybody agree with each other.   

MinorityWinScore: the average fitness of the winning KS when 

there is a conflict between an individual and its neighbors.   The 

conflict will be solved by bidding .i.e. incentive-based majority 

win.  

Innovation Cost Index: the difference of Conformity mean and 

conflict mean reflects the opportunity of innovation 

C. Knowledge Source Learning Curve Graphs 

Based on the raw data we recorded for each generation, we 
are able to reproduce the real time learning curve graph over 
generations relative to each knowledge source. Fig.4 is an 
example graph for one single run showing how best-overall 
fitness and best Knowledge source individuals change over 
generations.  
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TABLE I SOCIAL METRIC SUMMARY TABLE 

 

Topology Minimum Maximum Mean Std.Dev 

lBest Dispersion_Run_Ave .42 1.00 .6642 .12334 

MinorityWinScore .10 .10 .1028 .00047 

MajorityWinScore .18 .19 .1823 .00266 

InnovationCost .08 .08 .0794 .00235 

square Dispersion_Run_Ave .44 .92 .6375 .12219 

MinorityWinScore .19 .20 .1954 .00204 

MajorityWinScore .25 .26 .2553 .00260 

InnovationCost .05 .07 .0598 .00350 

Hexagon Dispersion_Run_Ave .43 .91 .6302 .10194 

MinorityWinScore .23 .24 .2322 .00242 

MajorityWinScore .33 .35 .3389 .00420 

InnovationCost .10 .11 .1061 .00345 

Octagon Dispersion_Run_Ave .40 .96 .6370 .13252 

MinorityWinScore .30 .31 .3047 .00328 

MajorityWinScore .40 .43 .4141 .00624 

InnovationCost .10 .12 .1070 .00677 

16-gon Dispersion_Run_Ave .41 .85 .6115 .10013 

MinorityWinScore .50 .54 .5164 .00751 

MajorityWinScore .67 .73 .7045 .01377 

InnovationCost .14 .18 .1595 .01093 

Global Dispersion_Run_Ave .39 .92 .6013 .12445 

MinorityWinScore .92 1.34 1.2088 .10424 

MajorityWinScore 1.50 2.09 1.8033 .13089 

InnovationCost .03 .08 .0529 .00892 

 

IV. OBSERVATION OF AN EXEMPLARY RUN 

 In Fig.4, at the top of the figure is the change in best 
value found over the course of the run. Notice the incremental 
character of the process. There is an initial increase, around time 
step 6 in performance, and then a plateau is reached at a false 
peak. Then, additional exploration causes a second wave of the 
learning curve around time step 41. Additional small increments 
take place after that as process focuses in on the optimal peak. 

 This learning process is precipitated by the distribution 
of knowledge through the Social Fabric initially by the 
exploratory knowledge sources. The new knowledge is 
produced by the explorer knowledge sources, normative and 
topographic. We view this as the ‘heartbeat”. This is the 
process that injects innovation and new knowledge into the 
system through the Social Fabric. The best way to read these two 
graphs is to look for a downward spike. That reflects the 
movement of the bounding box to another region based upon the 
Marginal Value Theorem. Generally the movement is into the 
most promising area at that time. Notice that the sharp drops or 
downward spikes for both knowledge sources are not in 
synchrony. They complement each other. For example, in the 
first learning episode we see an initial downward spike in 
topographic knowledge around timestep 2 which triggers a 
series of lesser ones in normative knowledge in time steps 8 and 
9. Subsequently in the middle of the first learning step 

topographic knowledge has another spike around 18 followed 
by a major spike in normative knowledge around time step 20. 

  
Fig.4 Knowledge Source Learning Curve Graphs (A=1.01) 

There is a second learning activity that starts around 

generation 38.  First with a spike in topographic knowledge 

which corresponds to a shift in its bounding box. It results in an 

improvement that then reduces the share of normative 

knowledge, causing it to move its bounding box.  As a result, 

we see a large spike in topographic knowledge around 

generation 73 followed by spikes in normative knowledge. This 

suggests another but much smaller learning adjustment. 

The other three knowledge sources focus on the exploitation 

of promising regions: historic, domain, and situational. Each of 

them focusses on a promising area and therefore has a  more 

stable curve. Still, in each of the two major learning steps here 

we notice a downward spike which precipitates the movement 

of their corresponding bounding boxes. The spikes take place 

in general during the rise of the curve instead of anticipating the 

rise.  Once the explorative knowledge sources have found a 

promising area, these knowledge source tend to move their own 

bounding boxes in order to track the new findings. This process 

has been called “knowledge swarming” [7] and it is clearly 

taking place in the successful runs here. 

V. A METRICS BASED PROCESS MODEL 

In order to tie these learning “events” together, we adopt a 
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metaphor from the human circulatory system in order to model 

how the exploratory processes “pumped” information into the 

system. In terms of this metaphor, the influence function pumps 

new information into the population. The Social Fabric serves 

as the circulatory network over which the information is 

pumped. We suggested that certain changes in the search results 

can be anticipated in terms of changes in the underlying 

knowledge sources that produced them. In this section we look 

at how changes in the Social Metrics can be used to track these 

internal knowledge source changes as well. That is, while the 

Population Space and Knowledge Sources comprise the 

internal organ components of the system, the social metrics 

provide the vital signs for Cultural Systems’ search 

effectiveness. 

 

 
Fig.5 Social metric changes in each generation (A=1.01) 

 

A successful Culture should provide sufficient diversity and 

to allow on occasion low cost opportunities for social 

innovation. Fig.5 shows an example graph for social metric 

changes over each generation when A=1.01.  We have the same 

performance reference curve as in Fig.4.  We see the Social 

Metric graphs for the same run described in the previous 

section, a square topology. The social metrics just tell us how 

well the search process is going from a social perspective. 

Recall that most of the changes in our system were related to 

improving its potential to support co-evolution. That means that 

a successful Culture should provide sufficient diversity and to 

allow on occasion low cost opportunities for social innovation. 

 

 
Fig.6 social metric changing over generation (A=3.35) 

 

Here our key “vital signs” are the dispersion and innovation 

cost metrics. Rather than reflecting what is learned they reflect 

how the learning process is performing. If we return to our 

circulatory system analogy, we expect to see a sequence of 

agent dispersions and contractions that result from the pumping 

process that moves the bounding boxes for the knowledge 

sources around. Likewise, we expect to see that the innovation 

cost also cycles from high to low in order to allow the infusion 

of new information that can be used to disperse the knowledge 

sources and subsequently their populations. Notice that once 

the system has found the solution, it begins to produce a more 

clustered population as indicated by the social stress metric.  

Fig.6 shows a graph for social metric changing over 

generation using the same setting as of Fig.5 except with 

A=3.35. The key question here is whether we still see a similar 

pattern for the vital signs even though the configuration and 

complexity class are completely different. In other words, do 

the vital signs that we propose characterize a successful search 

process regardless of topology or complexity?  
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Notice a quick rise in the dispersion metric that coincides 

with the first learning increment. Once the optimum is achieved 

the system tries to increasingly distribute the agents in an 

attempt to improve on the score. Likewise the innovation cost 

is periodically kept low which allows more opportunities to 

generate innovations. The average innovation cost is quite 

stable over all the generations, even after a solution is found.  

Analysis on same output for more chaotic complexity classes 

reveals more stress on the system. Overall, the search process 

has similarities to the others, but also one can see the additional 

stress on the system that the environment is producing.  

VI. CONCLUSION AND FUTURE WORK 

In this paper we demonstrated how the learning curve for the 

Cultural System is supported by the interaction of the 

knowledge sources. We used a circulatory system metaphor to 

describe how the exploratory knowledge sources generated new 

information that was distributed to the agents via the Social 

Fabric network. We then observed that the Social  Metrics were 

able to indicate the progress of the search in terms of its ability 

to periodically lower the innovation cost for a knowledge 

source to drop which allows the influenced population to 

expand as seen in the dispersion metric. 

As a result it is clear that the same process underlies a 

successful search regardless of the topology and the complexity 

of the environment. However, as stress increase one can see that 

the spikes of innovation cost index, although still there, get 

more erratic. It is then possible to assess the complexity of a 

system’s environment by just looking at the Social Metrics.  

For future work, it would be interesting to measure the social 

metrics on different social system framework such as PSO and 

ACO and look at how these metrics monitor complex social 

systems in general.    
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