



Abstract—This paper proposes a locality-sensitive hashing
based multiobjective memetic algorithm namely LSH-MOMA
for solving pickup and delivery problems with dynamic requests
(DPDPs for short). Particularly, LSH-MOMA is designed to
find the solution route of a DPDP by optimizing objectives
namely workload and route length in an evolutionary manner.
In each generation of LSH-MOMA, locality-sensitive hashing
based rectification and local search are imposed to repair and
refine the individual candidate routes. LSH-MOMA is
evaluated on three simulated DPDPs of different scales and the
experimental results demonstrate the efficiency of the method.

I. INTRODUCTION

ICKUP and delivery problem (PDP) is a vehicle routing
problem ubiquitous in logistic industry. To solve a PDP is
to find an optimal route, in terms of length, workload and

labor cost etc., to serve a serial of nodes associated with
pickup and/or delivery requests while obeying some
constraints on the transportation capacity [1-6, 17]. A PDP is
static when all service requests are known in advance of
constructing the routes. In real-world logistic cases, many
service requests occur in real-time, i.e., the input data keep
changing in the course of routing. The resultant problem is
called Dynamic Pickup and Delivery Problem (DPDP) [1, 14].
PDPs have been proved to be NP-hard and DPDPs represent
harder cases.

Evolutionary algorithms (EAs) such as ACO [7, 8], GA
[15], SA [16], and TS [16] have been widely used to solve
DPDPs due to their merit of obtaining satisfactory results in
tractable time cost [10]. Most of the existing methods were
designed to solve DPDPs that consists of nodes raising only
pickup or delivery requests, i.e., nodes raising both pickup
and delivery requests are seldom considered [2, 5, 9, 11-13,
21]. Moreover, most of the methods take into account only
one objective, normally the route length, when optimizing the
service route. The abovementioned methods may not work
well in real-world applications where the customer nodes

This work was supported in part by the National Natural Science

Foundation of China, under grants 61171125 and 61205092, the Guangdong
Foundation of Outstanding Young Teachers in Higher Education Institutions,
under grant Yq2013141, Guangdong Natural Science Foundation under grant
S2012010009545, the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, Ministry of Education of China, under grand
20111568, and Shenzhen Scientific Research and Development Funding
Program under grants JCYJ20130329115450637, KQC201108300045A,
and ZYC201105170243A.

F. Wang, Y. Gao, and Z. Zhu are with the College of Computer Science
and Software Engineering, Shenzhen University, Shenzhen 518060, China.
All correspondence should be addressed to Dr. Zexuan Zhu (Email:
zhuzx@szu.edu.cn, Tel.: +86 755 2673 2704).

normally request both pickup and delivery services, and
multiple objectives are usually considered.

In this paper, we propose a locality-sensitive hashing based
multiobjective memetic algorithm (LSH-MOMA) to solve
DPDPs by optimizing the service workload and route length,
simultaneously. Particularly, the one-to-many-to-one (1-M-1)
DPDPs are studied. In a 1-M-1 DPDP, a vehicle starts from
the depot and follows an initially scheduled route to serve
static requests. The route is dynamically changed to respond
to new requests raised by customer nodes, so that the two
objectives, i.e., workload and route length are optimized and
the transportation capacity is not violated. The vehicle should
be destined to the same depot. The static requests must be
served in the solution route while the dynamic ones could be
selectively responded. The candidate route solutions are
optimized with a multiobjective memetic algorithm, where
locality-sensitive hashing (LSH) [18] based rectification
operation and local search are used to repair and improve the
candidate solutions in each generation. LSH is a method used
to locate the nearest neighbors of a node efficiently in route
rectification and refinement. The proposed LSH-MOMA is
tested on three 1-M-1 DPDPs with different scale of customer
nodes. The experimental results demonstrate that the method
is efficient in identifying reasonable route solutions.

The rest of the paper is organized as follows. Section II
describes the definition of DPDP. Section III introduces the
LSH method. Section IV provides the details of the proposed
LSH-MOMA. Section V presents the experimental results on
simulated data. Finally, Section VI concludes this study.

II. PROBLEM DEFINITION

This section presents the definition of 1-M-1 DPDP. A
1-M-1 DPDP is to find an optimal route of a vehicle from a
depot to go thought all customer nodes and end up at the same
depot. The vehicle carries pre-requested commodities before
leaving the depot, and responds to the dynamic requests while
serving in the route. The optimality of the route is defined in
terms of workload and distance in this study.

To formulate the problem, we assume the vehicle is located
in a square region R=Rx×Ry and the pickup and delivery
requests occur stochastically. The depot, customer node,
vehicle capacity constraint, service route, route length, and
workload are defined as follows:

Depot: the depot D is the source and destination of the
route. The vehicle must start and finish at D.

Locality-Sensitive Hashing Based Multiobjective Memetic Algorithm
for Dynamic Pickup and Delivery Problems

Fangxiao Wang, Yuan Gao, and Zexuan Zhu

P

661

2014 IEEE Congress on Evolutionary Computation (CEC)
July 6-11, 2014, Beijing, China

978-1-4799-1488-3/14/$31.00 ©2014 IEEE

Customer Node: a customer node is denoted by ni =(xi, yi),
where xi and yi together indicate the position of ni in R. The
node is also associated with di and pi indicating the amounts
of delivery and pickup commodities, respectively. Let N be
the set of all customer nodes, Ns={n0

s, n1
s,…, nk

s } be the set
of nodes with static requests known before the vehicle set off,
and Nd={n0

d, n1
d,…, nm

d } be the set of notes with dynamic
requests raised during the course of serving, i.e., N=NsNd.
The nodes in Ns must be served whereas the ones in Nd are
selectively responded.

Vehicle Capacity Constraint: the vehicle has a maximum
capacity of C. This capacity limit is a hard constraint and a
route is considered infeasible if this constraint is violated.

Route: a route of the vehicle is represented as r=<n1, n2, …,
nl>, where n1=nl=D.

Route Length: in this study, the route length L(r) is simply
calculated by summing up the Euclidean distance of every
two adjacent nodes in route r, i.e.,

1

1
1

() (,)
l

i i
i

L r d n n





 

where d(ni,ni+1) indicates the Euclidean distance between
customer nodes ni and ni+1.

Workload: the workload of a scheduled route is the
summarization of pickup and delivery commodities over all
nodes in the route:

1

() ()
l

i i
i

W r p d


 

III. LOCALITY-SENSITIVE HASHING

To present the details of LSH-MOMA, we begin with the
introduction of LSH, which is a key component in route
rectification and local search.

LSH is a method of performing probabilistic dimension
reduction of high-dimensional data [18]. The basic idea is to
hash customer nodes according to their locations so that
nearby nodes are mapped to the same value with high
probability. To search the nearest neighbors of a node, what
we need is to search within those nodes of the same hash
values as the queried node. As such, LSH is able to quickly
identify the ‘approximate’ nearest neighbors of a customer
node by avoiding exhaustive search. Since exact nearest
neighbors are not necessarily needed in this study, LSH
provides great advantage in terms of time cost.

The key issue of LSH is the design of the hash function. In
this study, we divide the search region R into t×t equal lattices
as shown in Fig. 1. The hash function of a customer node is
simply defined by mapping the node to the corresponding
lattice that contains the node:

  ,i i
i

x y

x t y t
H n

R R

    
          

where x   returns the smallest integer greater than x. For

example, the red node in Fig. 1 is mapped to lattice (3,3) with
the hash function. Based on this function, the search of the
nearest neighbors of a node ni can be limited in a small region,
i.e., one or several lattices, avoiding searching the whole
region. This mechanism is especially useful for dynamic
requests, where the distance of the dynamic nodes to other
nodes cannot be calculated off-line.

At the beginning of LSH, all customer nodes’ hash values
are calculated and stored. To find the K nearest neighbors of a
node ni, those nodes of hash values equal to H(ni), i.e., nodes
mapped to the same lattice as ni, are identified and their
distances to ni are calculated, thereby identifying the K
nearest to ni. If one lattice does not contain sufficient nodes,
the search region is enlarged by involving the surrounding
eight lattices, as shown in Fig. 1. The enlargement can be
continued until all K nearest neighbors are found. Once the K
nearest neighbors of ni are identified, they can be archived for
the future use. The procedure of LSH is summarized in
Algorithm 1.

Fig 1. LSH based on grating

Algorithm 1: Procedure of LSH

INPUT: hash values of all customer nodes (calculated off-line), a
queried node ni, and K;
OUTPUT: the K nearest neighbors of ni;

BEGIN
1 Set (a,b) = H(ni), S={}, and c=0;
2 While |S| < K do
3 Stmp = {};
4 For i=max(a-c,1) to min(a+c,t)
5 For j=max(b-c,1) to min(b+c,t)
6 Add all nodes within lattice (i, j) to Stmp;
7 End For
8 End For
9 If | Stmp | < K then

10 S=S Stmp;
11 Else
12 Calculate the distances of ni to all nodes in Stmp;
13 Identify the K-|S| nearest nodes to ni and add them to S;
14 Return S;
15 End If
16 c=c+1;
17 End While
END

662

IV. LSH-MOMA FOR 1-M-1 DPDPS

The workflow of LSH-MOMA for 1-M-1 DPDPs is shown
in Fig 2. The service requests consist of requests from both
static and dynamic nodes. The static nodes known in advance
must be served whereas the dynamic ones received in the
course are selectively responded.

Fig 2. The workflow of LSH-MOMA

Before the vehicle leaving the depot, a route is scheduled
with the static requests. Here, we assume that the
commodities carried by the vehicle do not exceed 50% of the
vehicle’s capacity when leaving the depot, so that there has
space left for serving dynamic requests. During the course of
serving, the dynamic requests are received and buffered in a
request pool. The pool is checked by LSH-MOMA in a fixed
time window say Γ generations, and a part dynamic nodes are
added to the routes within the mutation operator. In each time
window, a customer node in the route is served, i.e., the
served node becomes unchangeable in the route. The
candidate routes are evolved with evolutionary operators
including selection, crossover, and mutation. In each

generation of LSH-MOMA, LSH-based rectification and
local search are applied to the individuals to repair and refine
the candidate solutions. The outline of LSH-MOMA is
provided in Algorithm 2. Details of the components of
LSH-MOMA are provided in the following subsections.

A. Chromosome Encoding Scheme

In LSH-MOMA, a variable length chromosome is used to
encode a candidate route, as shown in Fig. 3. The
chromosome starts and ends at the depot D, and the
intermediate is a sequence of customer nodes served in the
route.

Fig 3. Chromosome encoding scheme

B. Population Initialization

At the beginning of LSH-MOMA, a population of
chromosomes is randomly generated to encode candidate
routes consist of all static nodes. A LSH-based route
rectification (introduced in Section IV.C) is applied to the
chromosomes to ensure their validity. The population is
evolved using a traditional multiobjective evolutionary
algorithm (MOEA) for ten generations. Afterward, the
population is fed to LSH-MOMA where dynamic nodes are
considered. The procedure of population initialization is
provided in Algorithm 3.

Algorithm 3: Population Initialization

BEGIN

1 Set i=0;
2 Randomly initialize the population Pi with static nodes;
3 Apply LSH-based route rectification on each individual;
4 While stop criteria are not satisfied do
5 Evaluate the fitness of each individual;
6 Generate an offspring population Qi with selection,

crossover, and mutation;
7 Generate new population Pi+1 from Pi Qi based on

Pareto optimality;
8 i = i + 1;
9 End While
END

C. LSH-based Rectification

After a new route is generated by random initialization or
evolutionary operation, the validity of the route should be
guaranteed. The route must avoid violations of the capacity
constraint. Accordingly, a LSH-based rectification is
proposed here to detect and repair capacity constraint
violations occurring in a route. The procedure of LSH-based
rectification is provided in Algorithm 4.

D. Multiobjective Fitness Evaluation

In each generation of LSH-MOMA, the fitness of each
candidate route is evaluated in terms of route length L(r) and
workload W(r). Particularly, the algorithm simultaneously
minimizes L(r) and maximizes W(r). It is noted that the two

Algorithm 2: LSH-MOMA for DPDP

BEGIN
1 i=0;
2 Initialize the population Pi using Algorithm 3;
3 While stop criteria are not satisfied do
4 If i mod Γ == 0 do
5 Serve a customer node on each route;
6 If dynamic requests occur do
7 Update the request pool;
8 End If
9 End If
10 Generate an offspring population Qi with selection,

crossover, and mutation;
11 Apply LSH-based rectification on each offspring;
12 Evaluate the fitness of each offspring;
13 Apply LSH-based local search on each offspring;
14 Generate new population Pi+1 from Pi Qi based on

Pareto optimality;
15 i= i + 1
16 End While
End

663

objectives tend to conflict with each other. A long route likely
leads to larger workload. There is no single solution can
optimize the two objectives at the same time. The idea of
Pareto-optimality [19] is applied here to solve this
multiobjective optimization problem so that multiple
trade-off solutions can be obtained in a single run, from
which appropriate solutions can be selected on demand.

E. Evolutionary operators

After fitness evaluation, traditional evolutionary operators
including selection, crossover, and mutation are used to
evolve the population. The selection is performed following
NSGA-II [19] where both nondomination rank and crowding
distance are considered as selection criteria. Moreover,
elitism is used to retain the best individuals at each generation.
After selection, the order-based crossover [16] is applied to
generate offspring from the selected individuals. The new
offspring individuals undergo mutation by randomly
swapping two nodes or reversing a small part of the route.

To respond to dynamic requests, we also enable the
mutation operation to randomly add/delete dynamic nodes
with a certain probability in a fixed time window Γ, which is
specified as a few generations. In other words, LSH-MOMA
checks the request pool once for every Γ generations, and
adds some dynamic nodes to the candidate routes in mutation,
or reversely removes dynamic nodes in the route to the pool.

After crossover and mutation, the offspring routes should
undergo LSH-based rectification to ensure their validity.

F. LSH-based Local Search

To improve the quality of candidate routes, an LSH-based
local search is introduced to fine-tune the offspring generated
by evolutionary operators. Particularly, given a route, the

LSH-based local search randomly selects a node in the route,
and then locally changes the position of the node or adds a
nearest neighbor of the node to the route. If the resultant new
route is better than the old one, it replaces the old one. The
details of LSH-based local search are given in Algorithm 5.

Algorithm 5: LSH-based Local Search

INPUT: a candidate route r=<n1, n2, …, nl>;
BEGIN
1 Randomly select a node ni in r;
2 Identified the K nearest neighbors of nr based on LSH

method;
3 Randomly select a nearest neighbor node np of nr;
4 If np  r do
5 Relocate np before or after ni;
6 Else
7 Insert np to r before or after ni;
8 End If
9 Evaluate the fitness of the new route;
10 If the new route dominates the old one do
11 Replace the old one with the new one;
12 End If
END

V. SIMULATION RESULTS AND ANALYSIS

LSH-MOMA is implemented in C++ and run on a PC with
Intel Pentium 4 2.4 GHz. To test the performance of
LSH-MOMA, three simulated 1-M-1 DPDPs of different
scales are generated with |Nd| = 50 and |Ns| = 30, 50, and 70,
respectively. One new dynamic request is generated and
pooled in each ten generations.

LSH-MOGA, i.e., LSH-MOMA without using the
LSH-based local search, and MOGA, i.e., LSH-MOGA
without using LSH are also considered in the comparison
study to test the effect of LSH and LSH-based local search.
LSH-MOMA, LSH-MOGA, and MOGA are run with the
same parameter setting of population size = 200, crossover
probability = 0.6, mutation rate = 0.09, and time window Γ=
10 generations. LSH-MOMA is terminated when the
generation number exceeds 500. To ensure a fair comparison
among LSH-MOMA, LSH-MOGA and MOGA on each
problem, LSH-MOGA and MOGA are configured to
terminate when the computational effort incurred exceeds
that of the LSH-MOMA. The three algorithms are
independently run for 25 times on each DPDP, and the
average results are reported.

The mean values of the Pareto optimal set obtained by the
three algorithms are summarized in Table 1 in terms of route
length, workload, and dynamic response rate. Here, the

Algorithm 4: LSH-based Rectification

INPUT: a candidate route r=<n1, n2, …, nl>;

BEGIN
1 While W(r) > C do
2 Go along r from n1 and find out the first node nf where

the first violation occurs;
3 Identify the K nearest neighbors of nf based on LSH

method;
4 Randomly select a nearest neighbor node np of nf;
5 If np  r do
6 Relocate nf before or after np;
7 Else
8 Relocate nf to any other position of the route;
9 End if
10 End While
END

TABLE1 AVERAGE RESULTS OF THE PARETO OPTIMAL SETS OBTAINED BY LSH-MOMA, LSH-MOGA, AND MOGA IN TERMS OF ROUTE LENGTH,
WORKLOAD, AND DYNAMIC RESPONSE RATE.

Mean Route Length Mean Workload Mean Dynamic Response Rate

DPDP1 DPDP2 DPDP3 DPDP1 DPDP2 DPDP3 DPDP1 DPDP2 DPDP3
LSH-MOMA 6683.29 6855.02 7419.12 1604.59 2275.3 2862.79 0.5616 0.4622 0.4888
LSH-MOGA 7532.31 8197.51 8992.4 1540.09 2283.98 2805.31 0.4819 0.4843 0.4399

MOGA 9748.8 10100.16 11323.86 1516.865 2275.31 2825.29 0.4666 0.4627 0.4547

664

dynamic response rate indicates how many percent of the
dynamic requests are served. It is shown that LSH-MOMA
obtained better performance than the other two algorithms,
which suggests LSH-MOMA does benefit from the LSH
method and LSH-based local search.

The Pareto optimal fronts obtained by the three algorithms
in one randomly selected run are plotted in Fig 4 (left part).
LSH-MOMA is observed to attain Pareto optimal front
dominating that of LSH-MOGA, which reveals the effect of
LSH-based local search. Both LSH-MOMA and
LSH-MOGA dominate MOGA, suggesting LSH method is
capable of boosting the search performance of the algorithms.

A solution on the Pareto optimal front of LSH-MOMA is
selected to be depicted for each simulated DPDP in the right
part of Fig. 4, where the big red spot denotes the depot, the
small blue spots represent the static nodes, and the red
triangle are dynamic nodes. The routes shown in Fig. 4 look
reasonable as all static nodes and a major part of dynamic
nodes are served. Those unserved dynamic nodes are either
far away from the route or of few pickup and delivery
commodities, so they could be ignored for the sake of route
length or workload.

1050

1150

1250

1350

1450

1550

1650

1750

1850

1950

4000 9000 14000 19000 24000 29000

w
o
rk
 lo
a
d

route length

LSH‐MOMA

LSH‐MOGA

MOGA

(a) DPDP 1 (30 static, 50 dynamic)

1700

1800

1900

2000

2100

2200

2300

2400

2500

2600

2700

5000 10000 15000 20000 25000 30000

w
o
rk
 lo
ad

route length

LSH‐MOMA

LSH‐MOGA

MOGA

(b) DPDP 2 (50 static, 50 dynamic)

2350

2450

2550

2650

2750

2850

2950

3050

3150

3250

5500 10500 15500 20500 25500 30500

w
o
rk
 lo
ad

route length

LSH‐MOMA

LSH‐MOGA

MOGA

(c) DPDP 3 (70 static, 50 dynamic)

Fig 4. Performance of LSH-MOMA, LSH-MOGA, and MOGA on three simulated DPDPs.

665

VI. CONCLUSIONS

In this paper, we propose a locality-sensitive hashing based
multiobjective memetic algorithm (LSH-MOMA) for solving
dynamic pickup and delivery problems (DPDPs).
LSH-MOMA simultaneously minimizes the route length and
maximizes the workload using the ideal of Pareto optimality.
Novel LSH-based rectification and local search are proposed
to repair and refine the candidate solutions, so that the
algorithm converges faster to better Pareto optimal set.
Experimental results on three simulated DPDPs demonstrate
the efficiency of LSH-MOMA.

REFERENCES
[1]. G. Berbeglia, J. F. Cordeau, and G. Laporte. “Dynamic pickup and

delivery problems,” European Journal of Operational Research, vol.
202, no. 1, pp. 8-15, 2010.

[2]. M. R. Swihart, and J. D. Papastavrou. “A stochastic and dynamic
model for the single-vehicle pick-up and delivery problem,” European
Journal of Operational Research, vol. 114, no. 3, pp. 447-464, 1999.

[3]. S. Salhi, and G. Nagy. “A cluster insertion heuristic for single and
multiple depot vehicle routing problems with backhauling” Journal of
the Operational Research Society, vol. 50, no. 10, pp. 1034-1042,
1999.

[4]. C. H. Li, and S. X. Yang. “A generalized approach to construct
benchmark problems for dynamic optimization,” Lecture Notes in
Computer Science, Simulated Evolution and Learning, vol. 5361, pp.
391-400, 2008.

[5]. J. Renaud, F. F. Boctor, and J. Ouennicls. “A heuristic for the pickup
and delivery traveling salesman problem,” Computers & Operations
Research, vol. 27, no. 9, pp. 905-916, 2000.

[6]. K. C. Tan, Y. H. Chew, and L. H. Lee. “A hybrid multiobjective
evolutionary algorithm for solving vehicle routing problem with time
windows,” Computational Optimization and Applications, vol. 34, no.
1, pp. 115-151, 2006.

[7]. M. Mavrovouniotis, and S. X. Yang. “Ant colony optimization with
immigrants schemes for the dynamic travelling salesman problem with
traffic factors,” Applied Soft Computing, vol. 13, no. 10, pp.
4023-4037, 2013.

[8]. M. Mavrovouniotis, and S. X. Yang. “Ant colony optimization with
memory-based immigrants for the dynamic vehicle routing problem,”
2012 IEEE Congress on Evolutionary Computation, pp.1-8, 2012

[9]. P. Sombuntham.“Benchmark problem instances for generalized
multi-depot vehicle routing problems with pickup and delivery
requests,” Proceedings of the 2012 Asia Pacific Industrial
Engineering & Management Systems Conference, pp. 290-297, 2012.

[10]. T. T. Nguyen, S. X. Yang, and J. Branke. “Evolutionary dynamic
optimization-A survey the state of the art,” Swarm and Evolutionary
Computation, vol. 6, pp. 1-24, 2012.

[11]. I. Gribkovskaia, Halskau, G. Lapore, and M. Vicek. “General solutions
to the single vehicle routing problem with pickups and deliveries,”
European Journal of Operational Research, vol. 180, no. 2, pp.
568-584, 2007.

[12]. H. Hernández-Pérez, and J. J. Salazar-González “Heuristics for the
one-commodity pickup-and-delivery traveling salesman problem,”
Transportation Science, vol. 38, no. 2, pp. 245-255, 2004.

[13]. M. Gendreau, G. Laporte, and D. Vigo. “Heuristics for the traveling
salesman problem with pickup and delivery,” Computers &
Operations Research, vol. 26, pp. 699-714, 1999.

[14]. K. C. Tan, and Y. H. Chew. “A hybrid multiobjective evolutionary
algorithm for solving vehicle routing problem with time windows,”
Computational Optimization and Applications, vol. 34, pp. 115-151,
2006.

[15]. D. Saez, C. E. Cortes, and A. Nunez. “Hybrid adaptive predictive
control for the multi-vehicle dynamic pick-up and delivery problem
based on genetic algorithm and fuzzy clustering,” Computers &
Operations Research, vol. 35, pp. 3412-3428, 2008.

[16]. K. C. Tan, L. H. Lee, Q. L. Zhu, and K.Ou. “Heuristic methods for
vehicle routing problem with time windows,” Artificial Intelligence in
Engineering, vol. 15, no. 3, pp. 281-295, 2001.

[17]. K. C. Tan, C. Y. Cheong, and C. K. Goh. “Solving multiobjective
vehicle routing problem with stochastic demand via evolutionary
computation,” European Journal of Operational Research, vol. 177,
no. 2, pp. 813-938, 2007.

[18]. A. Andoni, and P. Indyk. “Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions,” Communications
of the ACM, vol. 51, no. 1, pp. 117-122, 2008.

[19]. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp.182–197, 2002.

666

