
 
 

 

 

Abstract—This paper proposes a locality-sensitive hashing 
based multiobjective memetic algorithm namely LSH-MOMA 
for solving pickup and delivery problems with dynamic requests 
(DPDPs for short). Particularly, LSH-MOMA is designed to 
find the solution route of a DPDP by optimizing objectives 
namely workload and route length in an evolutionary manner. 
In each generation of LSH-MOMA, locality-sensitive hashing 
based rectification and local search are imposed to repair and 
refine the individual candidate routes. LSH-MOMA is 
evaluated on three simulated DPDPs of different scales and the 
experimental results demonstrate the efficiency of the method. 

I. INTRODUCTION 

ICKUP and delivery problem (PDP) is a vehicle routing 
problem ubiquitous in logistic industry. To solve a PDP is 
to find an optimal route, in terms of length, workload and 

labor cost etc., to serve a serial of nodes associated with 
pickup and/or delivery requests while obeying some 
constraints on the transportation capacity [1-6, 17].  A PDP is 
static when all service requests are known in advance of 
constructing the routes. In real-world logistic cases, many 
service requests occur in real-time, i.e., the input data keep 
changing in the course of routing. The resultant problem is 
called Dynamic Pickup and Delivery Problem (DPDP) [1, 14]. 
PDPs have been proved to be NP-hard and DPDPs represent 
harder cases. 

Evolutionary algorithms (EAs) such as ACO [7, 8], GA 
[15], SA [16], and TS [16] have been widely used to solve 
DPDPs due to their merit of obtaining satisfactory results in 
tractable time cost [10]. Most of the existing methods were 
designed to solve DPDPs that consists of nodes raising only 
pickup or delivery requests, i.e., nodes raising both pickup 
and delivery requests are seldom considered [2, 5, 9, 11-13, 
21]. Moreover, most of the methods take into account only 
one objective, normally the route length, when optimizing the 
service route. The abovementioned methods may not work 
well in real-world applications where the customer nodes 
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normally request both pickup and delivery services, and 
multiple objectives are usually considered. 

In this paper, we propose a locality-sensitive hashing based 
multiobjective memetic algorithm (LSH-MOMA) to solve 
DPDPs by optimizing the service workload and route length, 
simultaneously. Particularly, the one-to-many-to-one (1-M-1) 
DPDPs are studied. In a 1-M-1 DPDP, a vehicle starts from 
the depot and follows an initially scheduled route to serve 
static requests. The route is dynamically changed to respond 
to new requests raised by customer nodes, so that the two 
objectives, i.e., workload and route length are optimized and 
the transportation capacity is not violated. The vehicle should 
be destined to the same depot. The static requests must be 
served in the solution route while the dynamic ones could be 
selectively responded. The candidate route solutions are 
optimized with a multiobjective memetic algorithm, where 
locality-sensitive hashing (LSH) [18] based rectification 
operation and local search are used to repair and improve the 
candidate solutions in each generation. LSH is a method used 
to locate the nearest neighbors of a node efficiently in route 
rectification and refinement. The proposed LSH-MOMA is 
tested on three 1-M-1 DPDPs with different scale of customer 
nodes. The experimental results demonstrate that the method 
is efficient in identifying reasonable route solutions.  

The rest of the paper is organized as follows. Section II 
describes the definition of DPDP. Section III introduces the 
LSH method. Section IV provides the details of the proposed 
LSH-MOMA. Section V presents the experimental results on 
simulated data. Finally, Section VI concludes this study. 

II. PROBLEM DEFINITION 

This section presents the definition of 1-M-1 DPDP. A 
1-M-1 DPDP is to find an optimal route of a vehicle from a 
depot to go thought all customer nodes and end up at the same 
depot. The vehicle carries pre-requested commodities before 
leaving the depot, and responds to the dynamic requests while 
serving in the route. The optimality of the route is defined in 
terms of workload and distance in this study. 

To formulate the problem, we assume the vehicle is located 
in a square region R=Rx×Ry and the pickup and delivery 
requests occur stochastically. The depot, customer node, 
vehicle capacity constraint, service route, route length, and 
workload are defined as follows: 

Depot: the depot D is the source and destination of the 
route. The vehicle must start and finish at D. 
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Customer Node: a customer node is denoted by ni =(xi, yi),  
where xi and yi together indicate the position of ni in R. The 
node is also associated with di and pi indicating the amounts 
of delivery and pickup commodities, respectively. Let N be 
the set of all customer nodes, Ns={n0

s, n1
s,…, nk

s } be the set 
of nodes with static requests known before the vehicle set off, 
and Nd={n0

d, n1
d,…, nm

d } be the set of notes with dynamic 
requests raised during the course of serving, i.e., N=NsNd. 
The nodes in Ns must be served whereas the ones in Nd are 
selectively responded. 

Vehicle Capacity Constraint: the vehicle has a maximum 
capacity of C. This capacity limit is a hard constraint and a 
route is considered infeasible if this constraint is violated.  

Route: a route of the vehicle is represented as r=<n1, n2, …, 
nl>, where n1=nl=D. 

Route Length: in this study, the route length L(r) is simply 
calculated by summing up the Euclidean distance of every 
two adjacent nodes in route r, i.e., 
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where d(ni,ni+1) indicates the Euclidean distance between 
customer nodes ni and ni+1. 

Workload: the workload of a scheduled route is the 
summarization of pickup and delivery commodities over all 
nodes in the route: 
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III. LOCALITY-SENSITIVE HASHING 

To present the details of LSH-MOMA, we begin with the 
introduction of LSH, which is a key component in route 
rectification and local search. 

LSH is a method of performing probabilistic dimension 
reduction of high-dimensional data [18]. The basic idea is to 
hash customer nodes according to their locations so that 
nearby nodes are mapped to the same value with high 
probability. To search the nearest neighbors of a node, what 
we need is to search within those nodes of the same hash 
values as the queried node. As such, LSH is able to quickly 
identify the ‘approximate’ nearest neighbors of a customer 
node by avoiding exhaustive search. Since exact nearest 
neighbors are not necessarily needed in this study, LSH 
provides great advantage in terms of time cost. 

The key issue of LSH is the design of the hash function. In 
this study, we divide the search region R into t×t equal lattices 
as shown in Fig. 1. The hash function of a customer node is 
simply defined by mapping the node to the corresponding 
lattice that contains the node: 
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where x    returns the smallest integer greater than x. For 

example, the red node in Fig. 1 is mapped to lattice (3,3) with 
the hash function. Based on this function, the search of the 
nearest neighbors of a node ni can be limited in a small region, 
i.e., one or several lattices, avoiding searching the whole 
region. This mechanism is especially useful for dynamic 
requests, where the distance of the dynamic nodes to other 
nodes cannot be calculated off-line. 

At the beginning of LSH, all customer nodes’ hash values 
are calculated and stored. To find the K nearest neighbors of a 
node ni, those nodes of hash values equal to H(ni), i.e., nodes 
mapped to the same lattice as ni, are identified and their 
distances to ni are calculated, thereby identifying the K 
nearest to ni. If one lattice does not contain sufficient nodes, 
the search region is enlarged by involving the surrounding 
eight lattices, as shown in Fig. 1. The enlargement can be 
continued until all K nearest neighbors are found. Once the K 
nearest neighbors of ni are identified, they can be archived for 
the future use. The procedure of LSH is summarized in 
Algorithm 1. 

 
Fig 1. LSH based on grating 

 
Algorithm 1: Procedure of LSH 

INPUT: hash values of all customer nodes (calculated off-line), a 
queried node ni, and K; 
OUTPUT: the K nearest neighbors of ni; 

BEGIN 
1 Set (a,b) = H(ni), S={}, and c=0; 
2 While |S| < K do 
3 Stmp = {}; 
4 For i=max(a-c,1) to min(a+c,t) 
5 For j=max(b-c,1) to min(b+c,t) 
6 Add all nodes within lattice (i, j) to Stmp; 
7 End For 
8 End For 
9 If | Stmp | < K then 

10 S=S Stmp;
11 Else 
12 Calculate the distances of ni to all nodes in Stmp; 
13 Identify the K-|S| nearest nodes to ni and add them to S;
14 Return S; 
15 End If 
16 c=c+1; 
17 End While 
END 
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IV.  LSH-MOMA FOR 1-M-1 DPDPS 

The workflow of LSH-MOMA for 1-M-1 DPDPs is shown 
in Fig 2. The service requests consist of requests from both 
static and dynamic nodes. The static nodes known in advance 
must be served whereas the dynamic ones received in the 
course are selectively responded. 

 
Fig 2. The workflow of LSH-MOMA 

Before the vehicle leaving the depot, a route is scheduled 
with the static requests. Here, we assume that the 
commodities carried by the vehicle do not exceed 50% of the 
vehicle’s capacity when leaving the depot, so that there has 
space left for serving dynamic requests. During the course of 
serving, the dynamic requests are received and buffered in a 
request pool. The pool is checked by LSH-MOMA in a fixed 
time window say Γ generations, and a part dynamic nodes are 
added to the routes within the mutation operator. In each time 
window, a customer node in the route is served, i.e., the 
served node becomes unchangeable in the route. The 
candidate routes are evolved with evolutionary operators 
including selection, crossover, and mutation. In each 

generation of LSH-MOMA, LSH-based rectification and 
local search are applied to the individuals to repair and refine 
the candidate solutions. The outline of LSH-MOMA is 
provided in Algorithm 2. Details of the components of 
LSH-MOMA are provided in the following subsections. 

A. Chromosome Encoding Scheme 

In LSH-MOMA, a variable length chromosome is used to 
encode a candidate route, as shown in Fig. 3. The 
chromosome starts and ends at the depot D, and the 
intermediate is a sequence of customer nodes served in the 
route. 

 
Fig 3. Chromosome encoding scheme 

B. Population Initialization 

At the beginning of LSH-MOMA, a population of 
chromosomes is randomly generated to encode candidate 
routes consist of all static nodes. A LSH-based route 
rectification (introduced in Section IV.C) is applied to the 
chromosomes to ensure their validity. The population is 
evolved using a traditional multiobjective evolutionary 
algorithm (MOEA) for ten generations. Afterward, the 
population is fed to LSH-MOMA where dynamic nodes are 
considered. The procedure of population initialization is 
provided in Algorithm 3. 

Algorithm 3: Population Initialization 

BEGIN

1 Set i=0;
2 Randomly initialize the population Pi with static nodes; 
3 Apply LSH-based route rectification on each individual; 
4 While stop criteria are not satisfied do 
5 Evaluate the fitness of each individual; 
6 Generate an offspring population Qi with selection, 

crossover, and mutation; 
7 Generate new population Pi+1 from Pi  Qi based on 

Pareto optimality;
8 i = i + 1;
9 End While
END

C. LSH-based Rectification 

After a new route is generated by random initialization or 
evolutionary operation, the validity of the route should be 
guaranteed. The route must avoid violations of the capacity 
constraint. Accordingly, a LSH-based rectification is 
proposed here to detect and repair capacity constraint 
violations occurring in a route. The procedure of LSH-based 
rectification is provided in Algorithm 4. 

D. Multiobjective Fitness Evaluation 

In each generation of LSH-MOMA, the fitness of each 
candidate route is evaluated in terms of route length L(r) and 
workload W(r). Particularly, the algorithm simultaneously 
minimizes L(r) and maximizes W(r). It is noted that the two 

Algorithm 2: LSH-MOMA for DPDP 

BEGIN 
1 i=0; 
2 Initialize the population Pi using Algorithm 3; 
3 While stop criteria are not satisfied do 
4 If i mod  Γ == 0 do 
5 Serve a customer node on each route; 
6 If dynamic requests occur do 
7 Update the request pool; 
8 End If 
9     End If 
10 Generate an offspring population Qi with selection, 

crossover, and mutation; 
11 Apply LSH-based rectification on each offspring;
12 Evaluate the fitness of each offspring; 
13 Apply LSH-based local search on each offspring; 
14 Generate new population Pi+1 from Pi  Qi based on 

Pareto optimality; 
15 i= i + 1 
16 End While 
End 
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objectives tend to conflict with each other. A long route likely 
leads to larger workload. There is no single solution can 
optimize the two objectives at the same time. The idea of 
Pareto-optimality [19] is applied here to solve this 
multiobjective optimization problem so that multiple 
trade-off solutions can be obtained in a single run, from 
which appropriate solutions can be selected on demand. 

E. Evolutionary operators 

After fitness evaluation, traditional evolutionary operators 
including selection, crossover, and mutation are used to 
evolve the population. The selection is performed following 
NSGA-II [19] where both nondomination rank and crowding 
distance are considered as selection criteria. Moreover, 
elitism is used to retain the best individuals at each generation. 
After selection, the order-based crossover [16] is applied to 
generate offspring from the selected individuals.  The new 
offspring individuals undergo mutation by randomly 
swapping two nodes or reversing a small part of the route. 

To respond to dynamic requests, we also enable the 
mutation operation to randomly add/delete dynamic nodes 
with a certain probability in a fixed time window Γ, which is 
specified as a few generations. In other words, LSH-MOMA 
checks the request pool once for every Γ generations, and 
adds some dynamic nodes to the candidate routes in mutation, 
or reversely removes dynamic nodes in the route to the pool. 

After crossover and mutation, the offspring routes should 
undergo LSH-based rectification to ensure their validity. 

F. LSH-based Local Search 

To improve the quality of candidate routes, an LSH-based 
local search is introduced to fine-tune the offspring generated 
by evolutionary operators. Particularly, given a route, the 

LSH-based local search randomly selects a node in the route, 
and then locally changes the position of the node or adds a 
nearest neighbor of the node to the route. If the resultant new 
route is better than the old one, it replaces the old one. The 
details of LSH-based local search are given in Algorithm 5. 

Algorithm 5: LSH-based Local Search 

INPUT: a candidate route r=<n1, n2, …, nl>; 
BEGIN 
1 Randomly select a node ni in r; 
2 Identified the K nearest neighbors of nr based on LSH 

method; 
3 Randomly select a nearest neighbor node np of nr; 
4 If np   r do 
5      Relocate np before or after ni; 
6 Else 
7      Insert np to r before or after ni; 
8 End If 
9 Evaluate the fitness of the new route; 
10 If the new route dominates the old one do 
11      Replace the old one with the new one; 
12 End If 
END 

V. SIMULATION RESULTS AND ANALYSIS 

LSH-MOMA is implemented in C++ and run on a PC with 
Intel Pentium 4 2.4 GHz. To test the performance of 
LSH-MOMA, three simulated 1-M-1 DPDPs of different 
scales are generated with |Nd| = 50 and |Ns| = 30, 50, and 70, 
respectively. One new dynamic request is generated and 
pooled in each ten generations.  

LSH-MOGA, i.e., LSH-MOMA without using the 
LSH-based local search, and MOGA, i.e., LSH-MOGA 
without using LSH are also considered in the comparison 
study to test the effect of LSH and LSH-based local search. 
LSH-MOMA, LSH-MOGA, and MOGA are run with the 
same parameter setting of population size = 200, crossover 
probability = 0.6, mutation rate = 0.09, and time window Γ= 
10 generations. LSH-MOMA is terminated when the 
generation number exceeds 500. To ensure a fair comparison 
among LSH-MOMA, LSH-MOGA and MOGA on each 
problem, LSH-MOGA and MOGA are configured to 
terminate when the computational effort incurred exceeds 
that of the LSH-MOMA. The three algorithms are 
independently run for 25 times on each DPDP, and the 
average results are reported. 

The mean values of the Pareto optimal set obtained by the 
three algorithms are summarized in Table 1 in terms of route 
length, workload, and dynamic response rate. Here, the 

Algorithm 4: LSH-based Rectification 

INPUT: a candidate route r=<n1, n2, …, nl>; 

BEGIN
1 While W(r) > C do 
2 Go along r from n1 and find out the first node nf where 

the first violation occurs; 
3 Identify the K nearest neighbors of nf based on LSH 

method; 
4       Randomly select a nearest neighbor node np of nf; 
5       If np   r do 
6              Relocate nf before or after np; 
7       Else 
8              Relocate nf to any other position of the route; 
9       End if 
10 End While 
END 

TABLE1 AVERAGE RESULTS OF THE PARETO OPTIMAL SETS OBTAINED BY LSH-MOMA, LSH-MOGA, AND MOGA IN TERMS OF ROUTE LENGTH, 
WORKLOAD, AND DYNAMIC RESPONSE RATE. 

 
Mean Route Length Mean Workload Mean Dynamic Response Rate 

DPDP1 DPDP2 DPDP3 DPDP1 DPDP2 DPDP3 DPDP1 DPDP2 DPDP3 
LSH-MOMA 6683.29 6855.02 7419.12 1604.59 2275.3 2862.79 0.5616 0.4622 0.4888 
LSH-MOGA 7532.31 8197.51 8992.4 1540.09 2283.98 2805.31 0.4819 0.4843 0.4399 

MOGA 9748.8 10100.16 11323.86 1516.865 2275.31 2825.29 0.4666 0.4627 0.4547 
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dynamic response rate indicates how many percent of the 
dynamic requests are served. It is shown that LSH-MOMA 
obtained better performance than the other two algorithms, 
which suggests LSH-MOMA does benefit from the LSH 
method and LSH-based local search. 

The Pareto optimal fronts obtained by the three algorithms 
in one randomly selected run are plotted in Fig 4 (left part). 
LSH-MOMA is observed to attain Pareto optimal front 
dominating that of LSH-MOGA, which reveals the effect of 
LSH-based local search. Both LSH-MOMA and 
LSH-MOGA dominate MOGA, suggesting LSH method is 
capable of boosting the search performance of the algorithms. 

A solution on the Pareto optimal front of LSH-MOMA is 
selected to be depicted for each simulated DPDP in the right 
part of Fig. 4, where the big red spot denotes the depot, the 
small blue spots represent the static nodes, and the red 
triangle are dynamic nodes. The routes shown in Fig. 4 look 
reasonable as all static nodes and a major part of dynamic 
nodes are served. Those unserved dynamic nodes are either 
far away from the route or of few pickup and delivery 
commodities, so they could be ignored for the sake of route 
length or workload. 
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(a)  DPDP 1 (30 static, 50 dynamic) 
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(b) DPDP 2 (50 static, 50 dynamic) 
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(c)  DPDP 3 (70 static, 50 dynamic) 

Fig 4. Performance of LSH-MOMA, LSH-MOGA, and MOGA on three simulated DPDPs. 
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VI. CONCLUSIONS 

In this paper, we propose a locality-sensitive hashing based 
multiobjective memetic algorithm (LSH-MOMA) for solving 
dynamic pickup and delivery problems (DPDPs). 
LSH-MOMA simultaneously minimizes the route length and 
maximizes the workload using the ideal of Pareto optimality. 
Novel LSH-based rectification and local search are proposed 
to repair and refine the candidate solutions, so that the 
algorithm converges faster to better Pareto optimal set. 
Experimental results on three simulated DPDPs demonstrate 
the efficiency of LSH-MOMA. 
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