
 
 

 

  

Abstract—Satellite navigation system, especially the BeiDou 
Navigation Satellite System (BDS), has become a significant 
resource for many transport branches. It is strongly required 
that BDS is applied in modern railway transportation systems to 
support the rapid development of Chinese railway 
infrastructure and services. Currently, the BDS is still in the 
developing period, and the existing resources are not sufficient 
to support integrity assurance for many safety-related railway 
applications. The aim of this paper is therefore to develop a 
novel integrity monitoring method for the BDS-based train 
positioning with assistance from the additional dead reckoning 
system. In this method, the raw measurements of sensors are 
fused with the Bayesian filtering, and the self-weight adaptive 
particle swarm optimization with a combined objective function 
is involved to achieve an effective solution for the horizontal 
protection level which indicates the integrity capability. Field 
data are taken to validate effectiveness of the proposed solution 
and the advantages of the integrated particle fitness strategy. 
The implementation of this method will be positive for realizing 
fault detection and isolation for a series of safety-related railway 
applications based on BDS. 

I. INTRODUCTION 
HE rapid development of computer and communication 
technology promises a better service level of the modern 
railway transportation. Current GNSS (Global 

Navigation Satellite System), such as GPS, GLONASS and 
GALILEO, is experiencing a great period in performance and 
capability as it is of significant value in lots of application 
fields. Furthermore, the progress in GNSS enables great 
opportunities for applying satellite navigation technology in 
railway systems, including train operation control, collision 
avoidance, centralized train control, track surveying and so 
forth [1, 2]. However, when used in some safety-critical 
applications, the performance of current Chinese BDS cannot 
provide sufficient support to the expected stage, due to the 
Signal-in-space (SIS) unavailability and signal interference 
issues. Integrity, which is defined as the level of ability to 
provide valid and timely warning to the users when 
misleading information from system is detected [3], is of 
great significance to achieve a high safety level of the 
BDS-based railway applications. Presently, the BDS is lack 
of integrity measures in the space segment. Therefore, 
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integrity monitoring in the user segment is of great necessity 
because of its flexibility and autonomy. In the GPS and 
GALILEO-based railway applications, RAIM (Receiver 
Autonomous Integrity Monitoring) technique has been 
regarded as a very effective solution to solve the integrity 
monitoring problem and realize fault detection and isolation 
[4, 5]. Furthermore, considering the multi-sensor integrated 
train positioning scheme, there are also integrity monitoring 
strategies proposed in the literature, i.e. the LAIM (Locator 
Autonomous Integrity Monitoring) method [6], integrity 
check algorithm [7], etc. For the BDS- based train integrated 
positioning, the integrity monitoring for the BDS-based 
integrated architecture has not been highly concerned, and the 
existing results in other GNSS applications still need to be 
improved by considering multiple aspects in evaluating the 
key indicators for the monitoring purpose. 

This paper aims to address the limitations of the current 
integrity monitoring solutions. The objective of this paper is 
to develop an enhanced integrity monitoring method using 
the intelligent swarm optimization strategy, which is suitable 
to be used in the BDS/DR(Dead Reckoning)-based integrated 
train positioning. Field data is utilized to validate the 
performance of the proposed solution. The reminder of this 
paper is organized as follows. Section II states the problem. 
The proposed solution is detailed introduced in Section III, 
and the filed results are analyzed in Section IV. Finally, the 
Section V concludes this paper and shows future directions. 

II. PROBLEM STATEMENT 

A. BDS-based train positioning 
When used in practical railway applications, especially the 

safety-critical systems, the risk of BDS for locating the train 
should be investigated and analyzed. It is well known that the 
satellite navigation system is usually constrained by the SIS 
shadowing by the different objects along the railway lines or 
by a landscape profile [8]. The first factor for promoting the 
safety risk in most of the BDS-based applications is the SIS 
unavailability since the system may fail in precise positioning 
or even lose the expected functions. Besides that, there may 
be unexpected interferences caused by multi-path effects or 
electromagnetic interference sources, which are harmful to 
the fulfillment of performance requirements. Furthermore, 
BDS constellation is still in a developing stage, where 16 
satellites are currently in orbit for the Asian-Pacific coverage.  

According to the current status of BDS and the features of 
satellite navigation system, the utilization of the multi-sensor 
integration-based positioning is naturally an effective 
solution for compensating the drawbacks of BDS-based train 
positioning. The existing train odometry sensors, such as the 
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odometer and Balise, are capable of being used to assist BDS. 
Moreover, the MEMS (Micro-Electro-Mechanical Systems) 
inertial sensors provide possibilities to achieve an integrated 
architecture, where the DR system using the odometer, 
gyroscope or the accelerator makes it possible to realize 
effective integration solutions with lower cost, though system 
complexity corresponding to both the hardware construction 
and the software computing logics might be increased. 

B. Positioning integrity monitoring 
The integrity monitoring for a BDS-based train positioning 

system involves several aspects including Alert Limit (AL), 
Time-To-Alarm (TTA), Integrity Risk Rate (IRR) and the 
Tolerable Hazard Rate (THR) [9]. Core principle to monitor 
the integrity in the stage of output is to identify the situation 
of the error bound with the defined threshold for alert. For the 
2D railway train positioning, the Horizontal Position Error 
(HPE) is enhanced to a Horizontal Protection Level (HPL) to 
verify the decision for alerting the users if it exceeds the 
threshold of HAL. Fig. 1 shows the relationship of HPE, HPL 
and HAL in the integrity monitoring process. 

 
Fig. 1.  Relationship of HPE, HPL and HAL in integrity monitoring. 

The key problem is to calculate the HPE corresponding to 
the position state estimation using BDS and additional sensor 
data, determine a HPL that properly represents the error state 
we can put trust in, and make decisions with HAL. 

III. PROPOSED INTEGRITY MONITORING METHOD 

A. Particle Swarm Optimization 
Particle swarm optimization is inspired from the collective 

behavior exhibited in swarms of social insects, and is famous 
for its simplicity with expected optimization capabilities [10].  
In the PSO solution, each particle is identified by its location 
and velocity. The fitness associated to a certain particle is 
built and updated in each iteration step to evaluate the 
convergence to the global best location. The procedure of the 
standard PSO is simple. Denote the local best location of 
particle i  and the global best location as ( )bestp i  and bestg  
respectively, the location and velocity of each particle can be 
updated by using the iteration equations as 
 

( )
( )

1 1

2 2

( ) ( 1) ( ) ( 1)
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V t V t c r p i X t
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( ) ( 1) ( )i i iX t X t V t= − +  (2) 
where ( )iV t  and ( )iX t  are location and velocity of the i th 

particle at step t , ω  is the inertia weight, 1r  and 2r  are 
random value, and  1c  and 2c  are acceleration coefficients.  

Based on the standard PSO, it is proved that there exists an 
underlying relation among the inertia weight, swarm size and 
dimension size of the solution space. A constant inertia 
weight is not sufficient to support an effective convergence, 
while the adaptive weight may accelerate the rate of 
convergence if the lower fitted particle takes a larger speed, 
and the better fitted one moves slow. Therefore, the 
self-adaptive inertia weight strategy is proposed to improve 
the standard PSO by updating ω with the strategy as [11] 
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where PS  is the particle population size, rank  denotes the 
rank of particle fitness, and D  indicates the dimension of the 
solution space. Thus, the ranked particle fitness affects the 
inertia weight and further improves the searching capability. 

B. BDS/DR information fusion 
The first step for identifying HPL is to carry out the state 

estimation by fusing information with the system model and 
sensor measurement. Assume that kx  denotes the state 
vector at instant k  that describes the dynamic state of a train 
moving along the track, the system model for fusion is 
 

( )1 , 1k k kf k−= − +x x w  (4) 

( ),k k kh k= +z x v  (5) 

where ( )f ∗  and ( )h ∗  denote the system and measurement 
function respectively, kw  and kv  represent the independent 
Gaussian noise vectors, and kz  is the observation vector with 
instant sensor measurement. The state vector is defined as 
 

( )T, , , , , ,k k k k k k k kx x y y aθ ϖ=x  (6) 

where kx  and ky  denote the 2D coordinate location, kθ  and 

kϖ  represent the heading and heading rate, and ka  is the 
longitudinal acceleration. Under a Bayesian filtering scheme, 
the state can be estimated by integrating the prediction , 1ˆ k k −x  
and innovation , 1k k −ε  with a gain kK , which means 
 

, 1 , 1 , 1 , 1ˆ ˆ ˆ ˆ( )k k k k k k k k k k k kh− − − −⎡ ⎤= + = + −⎣ ⎦x x K ε x K z x (7) 

In each filtering step, since the true value of the state 
cannot be acquired in practical operation, usually we use 
estimation residual kε  to represent the status of estimator as 
 

ˆ( )k k kh= −ε z x  (8) 
Thus, the horizontal position error is estimated by using the 

corresponding elements of kε  as 
2 2

x , y ,ˆ ˆ( ) ( )k k k k khpe z x z y= − + −  (9) 

Furthermore, the covariance kP  that is updated in every 
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filter iteration step represents the precision level of estimation, 
and therefore is with potential to support the monitoring of 
integrity level in the BDS/DR train positioning. 

C. Integrated HPL calculation 
Under the single-fault hypothesis, the protection level can 

be calculated by projecting the test statistic of filter residual to 
the position domain. Considering the residual kε  in detecting 
the possible fault in BDS/DR integration, equation (8) can be 
changed with the linearization of ( )h ∗ , where 
 

( )
ˆ

,ˆ ˆ
k k

k
k k k k k k

k

h k

=

∂
= − = − ⋅

∂
x x

x
ε z H x z x

x
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Combing equation (10) with the filter estimation solution 
in (7), the residual can be expressed as 
 

( ) , 1k k k k k −= −ε I H K ε  (11) 

Then, the test statistic is formed with the residual as 
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Considering the situation where the fault only exists in one 
sensor and others are all in the fault-free state, sensitivity of 
horizontal position error to the i th component corresponding 
to the measurement kz is evaluated by the slope as 
 

( )2 2
1 3 /i i i iislope = +K K F  (13) 

Hence, the horizontal protection level is calculated with the 
maximum slope 
 

max biasfHPL slope p= ⋅  (14) 

where biasp  is the Minimum Detectable Bias (MDB) related 
to the probability of missed detection. 

Besides the slope-based HPL solution, it is also necessary 
to consider the effect of measurement noise when developing 
the statistic for the total system error [12], and the Horizontal 
Uncertainty Level (HUL) is defined as 
 

,11 ,33 ,132k k k k k kHUL γ σ γ= ⋅ = ⋅ + +P P P  (15) 

where kγ  is the factor referring to the probability of missed 
detection. Calculation of kσ  considers the correlation of the 

noises in east and north directions, while 
,11 ,33k k+P P  is 

usually taken as the one-sigma bound of the estimation error. 
With different strategies for determining the HPL in train 

positioning integrity monitoring and fault detection, there 
have been several solutions proposed for integrating the two 
components. In order to compensate the correlation on HPL, a 
sigma inflation factor (SIF) α  is introduced for an integrated 
HPL solution [13]. According to the principle for integration, 
the tHPL  and HUL  can be combined as 
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Under the assumption of a Gaussian statistical property for 
position estimation error, the integrity risk corresponding to a 
certain SIF value can be expressed as 
 

inf H inf H

H H

1r
HPL HPLp μ μ

σ σ
⎛ ⎞ ⎛ ⎞− − −= Φ + − Φ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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where Hμ  and Hσ  are the mean and variance of the position 
estimation error Hx . 

According to the principle of SIF-based HPL integration, it 
is obvious that the performance of HPL evaluation and its 
effectiveness for integrity monitoring will be sensitive to the 
selection of α . Basically, it is expected that the derived HPL 
that will be used in comparison with HPE and HAL is with a 
lower integrity risk, since that is meaningful and significant to 
detect and identify the existing or potential fault in sensors or 
the information processing logics. With this consideration, 
the objective corresponding to the integrity risk is defined as 
 

1 1

2
min min , 0 f

r

HPL
l J p

HULα
α= = ≤ ≤  (18) 

However, it should also be noticed that the HPL value itself 
is also important to influence the integrity monitoring results, 
where a relatively lower and smoother HPL will benefit the 
adaptive capacity of integrity monitoring especially during 
the absence of sensor measurement. Hence, additional 
objectives are involved for an improvement to the balance of 
integrity risk and adaptability. Considering the HPL variance 
and the absolute HPL value, the additional objectives are 
defined as 
 

( )2 2 infmin minl J HPL
α

σ= =  (19) 

3 3 infmin minl J HPL
α

= =  (20) 

Based on these objectives, in the iteration of sensor fusion, 
when the filtering-based estimation is completed, the particle 
swarm optimization method is applied to obtain the proper 
SIF value for updating HPL. The fitness function in PSO is 
defined with a combination of 1l , 2l  and 3l , which means 
that particles will be evaluated by an integrated standard to 
decide its importance and performance as 
 

( ) infinf
fitness 1 2 3

1 2 3

r HPLHPLpJ
σ

λ λ λ
β β β

= + +  (21) 

where iλ is the weight coefficient which fulfills 1iλ =∑ , 

iβ  is the scale coefficient, 1, 2,3i = . The weight value of 

iλ  determines the importance of a certain factor with respect 
to the contribution to the overall evaluation of fitness, and the 
value determined by experience may benefit the efficiency 
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for PSO computation. The scale iβ  is used to make the 
quantity of the values (risk probability, HPL variance and the 
absolute HPL value) uniformly. 

When using this definition of fitness function in PSO, the 
different particles are generated after each filtering cycle to 
achieve an optimal SIF optα . Only when the updated fitness 

is less than a given threshold J  or the maximum PSO 
iteration step is reached, the PSO calculation will be 
terminated. Based on that, the optimal SIF is used for HPL 
update and the further integrity monitoring operation. 

IV. EXPERIMENTAL RESULTS 
In order to validate the effectiveness of the proposed HPL 

calculation solution, field test data from the Wuhan-Yichang 
Railway line in China is collected and analyzed. The BDS 
data and DR measurements were recorded by an integrated 
train positioning unit in June 2012. The test was performed 
within the track section from the Zhijiang North Station to 
Jingzhou Station in the up track direction. The test lasted 770 
seconds, and the BDS satellite condition was good, where 8 
satellites were available all the time and the average HDOP 
(Horizontal Dilution of Precision) value is 1.4. 

The geographic location of the test track section in Google 
Earth is shown in Fig. 2, and Fig. 3 gives raw measurement 
from the BDS receiver, gyroscope and the accelerator. 

 
Fig. 2.  The test railway track section in the Google Earth. 

 
TABLE I 

PARAMETERS USED IN PSO CALCULATION 

Population size 50 Acceleration coefficient 
c2 

1.494 

Maximum iteration step 50 Maximum position 10.0 

Fitness threshold 0.01 Minimum position 0 

Dimension D 1 Maximum speed 0.2 
Acceleration coefficient 
c1 

1.494 Minimum speed -0.2 

 
For the sensor data fusion, we use a cubature Kalman filter 

(CKF) to solve the Bayesian filtering problem and obtain the 
state estimation results, since the CKF is proved a powerful 
tool to deal with the integral problem in the ordinary Bayesian 
filtering scheme. The proposed PSO-based method is used to 
optimize the SIF and update HPL. The configuration for PSO 
calculation is listed in Table 1. 

 
Fig. 3.  Raw measurements from BDS and DR sensors. 

 
The obtained global best fitness in each filter cycle is 

shown in Fig. 4. Correspondingly, the optimized SIF is 
indicated and compared with the upper bound that is defined 
as (16), which is as shown in Fig. 5. 

 
Fig. 4.  Global best fitness in each filtering cycle. 

 
Fig. 5.  Comparison of the optimized SIF value and its upper bound. 

 
As the theoretical analysis of the horizontal protection 

level, five different strategies are tested and compared to 
validate the proposed solution, where fHPL , HUL , and 
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infHPL  with SIF=0, the maximum SIF and the 
PSO-optimized SIF are all parellelly calculated. Fig. 6 and 
Fig. 7 show the results of integrity risk and the derived 
horizontal protection level. 

 
Fig. 6.  Comparison of integrity risk with different strategies. 

 
Fig. 7.  Comparison of HPL value with different strategies. 

 
Based on the HPL results, the horizontal position error and 

one-sigma bound are computed and compared with the HPL 
for integrity monitoring, which is as shown in Fig. 8. Since 
the horizontal alert limit is set 50 meters, the comparison 
results suggest a normal state of the BDS/DR integrated train 
positioning process. 

In order to evaluate HPL performance under the integrated 
objective strategy, tests were carried out with single objective 
PSO and the integrated strategy separately. Fig. 9 and Fig. 10 
show the comparison of the global best fitness value and the 
optimized SIF value. Accordingly, the integrity risk and the 
horizontal protection level from different fitness strategies are 
indicated in Fig. 11 and Fig. 12 respectively. 

 

 
Fig. 8.  Comparison of HPE with one-sigma bound and HPL. 

 
Fig. 9.  Comparison of best fitness under different fitness strategies. 

 
Fig. 10.  Comparison of optimized α under different fitness strategies. 
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Fig. 11.  Comparison of integrity risk under different fitness strategies. 

 
Fig. 12.  Horizontal protection levels under different fitness strategies. 

To clearly indicate the results from these comparisons, the 
mean values are summarized in Table 2. 

TABLE II 
UNITS FOR MAGNETIC PROPERTIES 

Content Global best 
fitness 

Optimal α 
value 

Integrity 
risk 

Horizontal 
protection 
level (m) 

Single J1 0.0012 0.4584 4.09E-12 4.5116 

Single J2 0.0017 0.1399 6.92E-09 4.1736 

Single J3 0.0206 0 1.81E-08 4.1219 

Integration J 0.0240 0.4232 6.86E-13 4.5381 

From the above results, it can be summarized that: 
(1) The proposed method is capable of evaluating the HPL 

by using the results from the filter estimation and being used 
for the HAL comparison to identify the integrity status. 

(2) Compared with the fixed SIF strategies, the PSO-based 
method apparently achieves a lower integrity risk level for its 
adjustment and therefore further improves the smoothness 
and adaptability, which owes much to the use of the 
adaptive-SIF strategy and the capability of PSO. 

(3) Although the integrated fitness dose not perform best in 
a certain criteria such as the global best fitness, optimal FIS, 
integrity risk and the HPL, it promotes a balance among these 
indices. More than anything, the integrated fitness-based PSO 

strategy corresponds to a desired performance in integrity risk 
control, which is of great significance to assure the capability 
in some specific railway applications. 

V. CONCLUSION 
This paper develops an integrity monitoring method for the 

BDS/DR-based railway train positioning by considering the 
improvement of the determination of horizontal protection 
level, which is an important indicator for integrity and fault 
detection. The PSO technique is involved to optimize the key 
coefficient as sigma inflation factor, where the self-adaptive 
weight and integrated fitness strategy are applied to enhance 
the traditional solution. Based on the assurance of integrity 
risk, performance of HPL is improved in smoothness and 
adaptability. The field results demonstrate the capability and 
potential in future application. 

The correlation of false and missed detection probability to 
HPL performance will be investigated. Furthermore, as the 
integrity indicators are designed for a fault detection purpose, 
the future research will focus more on the use of an enhanced 
HPL in fault detection, diagnosis and isolation. 
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