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Abstract—Job Shop Scheduling (JSS) involves determining
a schedule for processing jobs on machines to optimise some
measure of delivery speed or customer satisfaction. We investigate
a genetic programming based hyper-heuristic (GPHH) approach
to evolving dispatching rules for a two-machine job shop in both
static and dynamic environments. In the static case the proposed
GPHH method can represent and discover optimal dispatching
rules. In the dynamic case we investigate two representations
(using a single rule at both machines and evolving a specialised
rule for each machine) and the effect of changing the training
problem instances throughout evolution. Results show that rel-
ative performance of these methods is dependent on the testing
instances.

I. INTRODUCTION

Scheduling is an important decision-making process in
manufacturing and service industries [1]. Scheduling deals
with the allocation of resources over time, in order to complete
a number of tasks, subject to given constraints and optimising
one or more objectives [2]. In job shop scheduling (JSS)
problems we are given a set of machines and a set of jobs. A
job is made up of a sequence of one or more operations in a
specified processing order. Each operation requires a specified
processing time on a certain machine [3]. The development
of more effective scheduling methods has the potential to
dramatically decrease costs and increase throughput, increasing
profitability in the many job shops world-wide [4]. This real-
world applicability combined with the computational challenge
of creating a schedule in such environments has led to job shop
scheduling problems being widely studied in the academic
literature over the past 50 years [2], [5].

JSS problems can be either static or dynamic. In static
JSS, all information is known in advance. In dynamic JSS,
jobs arrive according to a stochastic process and no infor-
mation is known until their arrival into the shop. The two-
machine job shop, although the simplest job shop, provides a
test ground for investigating different approaches with lower
computational cost than m-machine job shops. Jackson’s al-
gorithm [6] is known to solve the static case with makespan
objective function in O(n log n) time, where n is the number
of jobs. In the dynamic case there is no optimisation algorithm,
but dispatching rules can be evaluated using a discrete-event
simulation model of the shop.

A dispatching rule (DR) is a mathematical function of the
attributes of queued jobs, machines and the shop. The rule
calculates a priority value for each job awaiting processing at
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a given machine, scheduling the job with the highest priority
value next on the machine [7]. It is generally assumed that
the routes of jobs through the machines are randomly chosen
but each machine is equally likely to be the next machine on a
job’s route. The shop is also usually balanced, with the average
operation processing time equal on all machines. Due to this
symmetry, the machines have the same expected utilisation and
the same dispatching rule is applied at each machine. However,
if the machines do not have the same expected utilisation, this
approach may not be valid.

There has been recent research into using Genetic Program-
ming (GP) to evolve DRs for JSS problems [8], [9], [10], [11].
Geiger et al. [7] considered a GP based approach to the static,
balanced two-machine flow shop (all jobs follow the same path
through the machines). Two approaches were suggested: using
a single dispatching rule for both machines, and using a sep-
arate dispatching rule for each machine. Johnson’s algorithm
[12] is known to provide an optimal solution. The best evolved
individuals were “quite competitive” with Johnson’s algorithm.
However it is not clear if any of the evolved rules were optimal
or even equivalent to Johnson’s algorithm. The two-machine
job shop is more complicated than the two-machine flow shop,
as there are jobs with different paths through the machines, and
jobs with only one operation.

Miyashita [13] compared three approaches to JSS: a ho-
mogeneous agent model, where every machine uses the same
rule evolved by a single GP process; a distinct agent model,
where every machine learns a distinct rule; and a mixed agent
model, where a bottleneck agent and a non-bottleneck agent
learn rules. A bottleneck is a resource with high demand
from many operations. A set of benchmark problems with five
machines and ten jobs (of five operations each), and one or
two bottleneck machines was used. The mixed agent model
is limited in that it requires the bottleneck machines to be
chosen a priori. Results show that the mixed agent model
learnt good heuristics quicker than the distinct agent model,
and outperformed both the homogeneous and distinct agent
models as well as well-known DRs.

Pickardt et al. [14] developed a two-stage approach for
evolving work-centre-specific rules for semi-conductor man-
ufacturing. The method used GP to generate composite dis-
patching rules and a standard evolutionary algorithm (EA),
where each gene is a specific work centre, to search for a
good combination of work centre specific rules. The method
was shown to be superior to benchmark rules, although only 20
independent runs were completed which is usually not enough
for statistical significance testing.

Two fundamental issues with applying GP to m-machine
job shops are whether the GP representation is sufficient, and
should we evolve dispatching rules specialised to each machine
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(previous studies often assume a balanced shop). Therefore
to address these issues we consider the fundamental case of
the two-machine job shop. In Section III, for the static case,
we investigate if a GPHH approach can discover optimal
dispatching rules. Since Jackson’s algorithm solves the static
case optimally, success would be a good stamp of validation,
certifying the representation and giving confidence in the
ability of GP systems to evolve heuristics for more complicated
job shop environments. In Section IV, we use a GP approach
to evolve scheduling rules for the dynamic two-machine job
shop environment where the machines have different mean
processing times and expected utilisations. We are interested in
whether separate DRs evolved by GP simultaneously (one DR
specific to each machine) can outperform a single DR (applied
to both machines separately).

II. BACKGROUND

A. Two-machine Job Shop Scheduling Problem

Each job needs to be processed on either one of the
machines (A or B) or both of the machines (in sequence A→B
or B→A). Let Nj ∈ {1, 2} be the number of operations of job
j; σj,i be the ith operation of job j; Oj be the set of operations
of job j; p(σ) be the processing time of operation σ; m(σ) be
the machine required to process operation σ; wj be the weight
of job j; dj be the due date of job j; and rj be the release
date of job j. Then Cj is the completion time of job j and Tj

is the tardiness of job j, i.e., Tj = max{0, Cj − dj}.

a) Static case: For the static case, the makespan (max-
imum completion time), Cmax = max{C1, ..., CN}, is to be
minimised where all rj = 0. Johnson’s algorithm [12] solves
the two-machine flow shop problem, F2 | |Cmax, i.e., every job
follows the same route through two machines and the objective
is to minimise the makespan. With machines X and Y, job flow
X→Y, and job processing times xj and yj at machines X and Y
respectively, Johnson’s algorithm schedules jobs with xj ≤ yj
first in ascending order of xj , followed by jobs with xj > yj
in descending order of yj . Jackson’s algorithm [6] solves the
two-machine job shop problem. It puts jobs with only one
operation on machine A in an arbitrary order, SA, likewise
with jobs with only one operation on machine B, SB . Jobs to
be processed A→B, and B→A are ordered using Johnson’s
algorithm, to give SA→B and SB→A respectively. The final
order of jobs at machine A is (SA→B , SA, SB→A), and at
machine B is (SB→A, SB , SA→B).

b) Dynamic case: In the dynamic case we minimise
the total weighted tardiness, TWT =

∑
wjTj . Traditional

approaches to JSS in dynamic environments include the fol-
lowing popular dispatching rules. First In First Out (FIFO)
[15] processes jobs in the order that they arrive at the machine.
Weighted Shortest Processing Time (WSPT) [15] processes
the job that has the maximum wj/p(σ) next. In the Min-
imum Slack (MS) rule the job with the minimum slack is
processed next. The minimum slack of job j is defined by

MSj = dj −
∑Nj

l=k p(σj,l)− t where t is the ready time Rm

of the machine, i.e., the time that the scheduling decision must
be made and the next job dispatched and k is the number of
the current operation [15].

B. Genetic Programming based Hyper-heuristics for JSS

Hyper-heuristics can be thought of as heuristics to select or
generate heuristics as they search a search space of heuristics
rather than directly searching the solution space [16]. Using
hyper-heuristics aims to “automate the design and adaptation
of heuristic methods in hard computational search problems”
[17] and to increase the generality (robustness) of search
methods [18].

GP offers advantages as a hyper-heuristic [18] including
variable length encoding (trees evolved are between fixed
minimum and maximum depths), and executable data structure
as the output of a GP run. Humans can also identify the
problem domain, search space, and what can be used in the
terminal and function sets.

The GPHH approach is ideal for JSS as the aim is to dis-
cover new dispatching rules, which are naturally represented as
GP trees, and can provide insight into the scheduling problem
as well as discovering new rules. There have been several
applications of GPHH to JSS. Nguyen et al. [8] proposed
a multi-objective GPHH method for the automated design of
scheduling policies, simultaneously evolving dispatching rules
and due-date assignment rules for the job shop environment.
Tay and Ho [11] used GP to evolve composite dispatching
rules for the multi-objective flexible job-shop problem with the
aim of greater scalability and flexibility. Results showed that
the evolved rules outperformed single dispatching rules and
composite dispatching rules from the literature. Jakobovic and
Budin [9] used a GPHH approach to create priority functions
for the static and dynamic single machine shop, and the static
job shop. Their GP approach used three trees: a decision tree
to determine which heuristic should be used at a given time,
and two scheduling heuristics which were used dependent
on the value returned by the decision tree. Results showed
that for given problems the heuristics evolved perform better
than existing scheduling methods. Jakobovic and Marasovic
[10] used priority functions evolved through GP within a
meta-algorithm for a given environment to form a scheduling
heuristic. Hildebrant et al. [19] developed dispatching rules
for the dynamic 10 machine job shop, with the minimise
mean flow time objective. They compared the approach of
changing the problem instances used for the simulations at
each generation throughout evolution to using the same prob-
lem instances at every generation throughout evolution, as
well as different numbers of simulations through evolution.
Their results suggested that changing the problem instances
every generation and using only one simulation gives the best
performance.

Most existing work has focused on evolving dispatching
rules for scheduling jobs on all the machines in the job shop,
rather than on evolving dispatching rules specific to each
machine.

III. STATIC TWO-MACHINE JOB SHOP

A. Representation of an Optimal DR as a GP-tree

JSS environments have a very large number of job, machine
and system properties that can be used in the terminal set,
some of which may not be necessary or useful as components
of a scheduling rule. The attributes used affect the learning
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TABLE I. CONFIGURATIONS OF PROPORTIONS OF JOB TYPES.

Job Types Job Types

A only B only A→B B→A A only B only A→B B→A

P1 0.40 0.40 0.15 0.05 P7 0.45 0.05 0.45 0.05

P2 0.50 0.30 0.10 0.10 P8 0.35 0.05 0.55 0.05

P3 0.30 0.50 0.10 0.10 P9 0.25 0.05 0.65 0.05

P4 0.60 0.10 0.25 0.05 P10 0.00 0.00 1.00 0.00

P5 0.50 0.20 0.25 0.05 P11 0.00 0.00 0.10 0.90

P6 0.10 0.60 0.10 0.10 P12 0.10 0.10 0.45 0.35

if>0

- - -

PR - RT PR LV PR

RT PR

Fig. 1. Optimal dispatching rule for the static two-machine job shop,
represented in tree-based GP.

performance and interpretability (how easily understandable
the model is by a human).

Whenever a machine finishes processing an operation, it
assigns a priority to each job currently waiting to be processed
on that machine. In any optimal DR, jobs with only one
operation remaining can be scheduled arbitrarily regardless of
whether they are, e.g., B only jobs or A→B jobs which have
already been completed at machine A, as the order does not
alter the total processing time so the makespan is not effected.
So any processing order can be simplified to:
Machine A: (SA→B@A, SA ∪ SB→A@A),
Machine B: (SB→A@B , SB ∪ SA→B@B).
So jobs with two remaining operations must have a higher
priority than any job with only one operation remaining. The
following expression, shown in as a tree in Figure 1, is an
optimal dispatching rule:

(if>0 (- PR (- RT PR))(- RT PR)(- LV PR)),

where PR is the processing time of the current operation, RT
is the total processing time remaining for the job and LV is
some sufficiently large value. The if>0 function takes three
arguments; if the first argument is greater than 0 then it returns
the second, else the third is returned.

Let us assume we are scheduling at machine A. In the
dispatching rule shown above, if there is only one operation
remaining on the job then (- RT PR) = 0 and (- PR (-

RT PR)) = PR > 0. For all such jobs the priority value
returned is (- RT PR) which is 0. If (- PR (- RT PR))

> 0 then the processing time of the first operation is longer
than the second, the priority given is the processing time of the
next operation, (- RT PR). This gives these jobs decreasing

priority, ordered by decreasing processing time at the next ma-
chine. As (- RT PR)> 0 these jobs will have higher priority
than the jobs which are on their last operation. Otherwise, if (-
PR (- RT PR)) < 0, the priority given is (- LV PR), i.e.
jobs are scheduled by increasing PR at this machine. Therefore
this dispatching rule creates an ordering which gives the same
makespan as Jackson’s algorithm, although the ordering of jobs
it gives may be different.

B. Can Tree-based GP Evolve Optimal DRs?

Knowing it is possible to create a DR which will always
match the performance of Jackson’s algorithm, we now want
to see how effectively a GPHH approach can evolve such a
rule, given all required terminals and functions.

We use a simple scheduling algorithm: while there are
operations still to be processed on the machines, when a
machine is available we calculate the priorities of all the
available operations for that machine (using the GP tree), and
schedule the operation with the highest priority, and the job
shop system is updated. Only jobs that are currently available
can be scheduled on the machines in the shop.

1) GP System: The terminal set is {PR, RT, LV}. The
function set is {+, −, ×, %, if>0}. The arithmetic operators
take two arguments. The first three arithmetic operators, +, −,
×, have their usual meanings. The % is as usual division except
when dividing by zero where the value returned is zero. The
initial population is generated using the ramped-half-and-half
method [20]. The population size is 1024 and evolution is for
50 generations. Trees have a maximum depth of four, which is
deep enough for the DR found above. For the genetic operators
crossover, mutation and elitism we use rates of 40%, 55% and
5% respectively. Tournament selection with a tournament size
of four is used to select individuals for genetic operators.

2) Training: We randomly create problem instances so that
the shop is unbalanced. The proportions of job types follow
12 configurations as in Table I. Each problem instance consists
of exactly 10 jobs. The proportions in P1 to P12 are chosen
so that there are problem instances where it is important to
schedule jobs with two operations ahead of jobs with only
one operation, those where it is important to select jobs with
longer processing times for their second operation ahead of
those where the first operation has longer processing time,
etc. The fitness of a DR is then the average makespan from
applying the rule to 96 problem instances (8 of each of the 12
configurations). Processing times of operations are generated
according to uniform distributions; Uniform(100,110) distribu-
tion at machine A, Uniform(200,220) distribution at machine
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B, so the shop is unbalanced. Further, the problem instances
were changed every 10 generations, i.e., one set of problem
instances for generations 1–10, a distinct set for generations
11–20, etc.

3) Testing results: Instead of a traditional testing phase,
some simple test cases were used to filter out rules that
certainly are not optimal. From 100 GPHH runs, five gave a GP
individual which passed all test cases. By manual inspection,
all five are optimal. Note that each training problem instance
consists of only 10 jobs. Although an unusually high mutation
rate is used, we want to show that it is possible for GP to
evolve an optimal DR, not that it is easy for GP to do so.

IV. DYNAMIC TWO-MACHINE JOB SHOP

Having validated that GP is sufficiently expressive (in
representation) and effective (in search capability) to discover
optimal dispatching rules in the static case, we now consider
evolving dispatching rules for the dynamic case. Here the
key research question is whether, in an unbalanced job shop,
dispatching rules should be specialised to each machine or
whether one dispatching rule can be applied to all machines
separately.

A. Experimental Design

1) Representations: We investigate two representations for
scheduling rules in GP. In representation R1, each GP individ-
ual consists of one tree, representing a scheduling rule which is
used to schedule the next job at both machines independently.

2) Fitness and Problem Instances: We randomly create
problem instances so that the shop is unbalanced. Four differ-
ent training configurations (TC1 to TC4, shown in Table II)
of proportions of job types, arrival rate and mean processing
times give a variety of mean processing time and utilisation,
with machine B having higher utilisation than machine A,
and most jobs going to machine A first. Fourteen different
configurations (C1 to C14, shown in Table II) are used in
testing. The fitness of a DR is evaluated by a discrete-
event simulation model. In each problem instance, jobs arrive
stochastically according to a Poisson process with rate λ. The
processing times for machine A and machine B are generated
according to an Exponential distribution with mean µA and
a Uniform(0.2µB , 1.8µB) distribution respectively. We use
different processing time distributions to further differentiate
between the two machines. The expected utilisation of machine
M is calculated as (λ × pM )/(1/µM ), where pM is the
proportion of jobs that need to be processed at machine M.

Due dates are set using Equation (1),

dj = rj + h×

Nj∑

l=1

p(σj,l), (1)

where h = 1.3 is a due date tightness parameter. Jobs are
given weight 1, 2 or 4, with probability (0.2, 0.6, 0.2) [8]. The
objective being minimised is TWT. The fitness of an individual
is the mean TWT from four simulation runs, one with each of
TC1–TC4. A warm up period of 1000 jobs is used, and we
collect data from the next 5000 jobs to arrive (N = 5000),
however new jobs keep arriving in the system until the 6000th
job is completed.

We also investigate using the same problem instances at
every generation against regenerating the set of training prob-
lem instances at every tenth generation, following the work
of Hildebrant et al. [19]. In the changing problem instances
method, the problem instances used at each generation will still
be the same for all GP individuals, but the problem instances
for the first 10 generations are distinct from the problem
instances for the next ten, and so on.

3) GP System: The terminal set includes PR and RT as
before, plus the remaining number of operations (RO), the
operation ready time (RJ), the job weight (W), the job due
date (DD), the machine ready time (RM) and the number of
operations in the queue (NQ). The function set is {+, −, ×,
%, if>0, max, min, abs}. The abs function takes one
argument and returns the absolute value. The max and min

functions take two arguments and return the maximum and
minimum of their arguments respectively. The initial popula-
tion is generated using the ramped-half-and-half method. The
population size is 1024 and evolution is for 50 generations. GP
trees have a maximum depth of six. For the genetic operators
crossover, mutation and elitism we use rates of 85%, 10% and
5% respectively. Tournament selection with a tournament size
of four is used to select individuals for genetic operators.

B. Experimental Results

Here we present the test results of GPHH with each
combination of representations R1 and R2, and the same
problem instances at every generation (S) versus changing
problem instances every ten generations (C), for the dynamic
two-machine JSS problem. For each we perform 40 GP evo-
lutionary runs, using 40 common seeds.

The boxplots in Figure 2 show that the relative performance
of the four GPHH methods depend on the configuration. Table
IV gives the order of performance, from worst to best, of the
four GPHH methods for each of the 14 configurations. The
orders are established by performing pairwise comparisons
between GP runs with the same initial population of GP indi-
viduals for each combination of methods used. We examined
the ratio of the two rules over these combinations for each of
the 40 initial populations to see if rules evolved by one method
were consistently better than another. Table IV shows that
although there is no consistent order, although there are some
patterns that can be observed. Over the four configurations with
largest imbalance in expected utilisation (C2, C6, C10, C12)
the C methods outperform the S methods. Interestingly this
is also the case for C13, which is symmetric and therefore a
balanced shop. For the other configurations where the expected
utilisations are within 0.02 and the shop is not symmetric, the
S methods outperform the C methods. When the performance
of two methods is similar, the C methods are inseparable,
and the S methods are inseparable. However we cannot say
conclusively that any method is better than any other.

Table III gives the mean performance (TWT) of three
benchmark dispatching rules (WSPT, FIFO, MS) across the
14 test configurations, and the mean ± standard deviation of
the average performance of each of the 40 GP runs for R1S,
R1C, R2S and R2C. The standard deviation of performance
is much smaller for the R2 methods both with the same and
changing problem instances.
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Fig. 2. Boxplots showing results (TWT) of methods R1S, R1C, R2S and R2C across the 14 configurations.
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TABLE II. CONFIGURATIONS OF PROPORTIONS OF JOB TYPES FOR TRAINING (TC1–TC4) AND TESTING (C1–C14).

Job Types Utilisation

λ 1/µA 1/µB A only B only A→B B→A Machine A Machine B

TC1=C1 0.80 0.80 0.50 0.40 0.05 0.50 0.05 0.95 0.96

TC2=C2 0.80 1.20 0.60 0.30 0.05 0.60 0.05 0.63 0.93

TC3=C3 0.70 0.65 0.40 0.45 0.10 0.30 0.15 0.97 0.96

TC4=C4 0.65 0.60 0.20 0.70 0.10 0.10 0.10 0.98 0.98

C5 0.80 0.50 0.80 0.05 0.40 0.05 0.50 0.96 0.95

C6 0.80 0.60 1.20 0.05 0.30 0.05 0.60 0.93 0.63

C7 0.70 0.40 0.65 0.10 0.45 0.15 0.30 0.96 0.97

C8 0.65 0.20 0.60 0.10 0.70 0.10 0.10 0.98 0.98

C9 0.70 0.60 0.40 0.45 0.15 0.20 0.20 0.99 0.96

C10 0.70 0.60 0.50 0.45 0.15 0.20 0.20 0.99 0.77

C11 0.90 0.80 0.50 0.45 0.15 0.20 0.20 0.96 0.99

C12 0.70 1.00 0.50 0.30 0.10 0.30 0.30 0.63 0.98

C13 0.40 0.30 0.30 0.25 0.25 0.25 0.25 1.00 1.00

C14 0.10 0.70 0.40 0.10 0.20 0.35 0.35 0.11 0.23

TABLE III. COMPARISON OF MEAN PERFORMANCE, MEAN±STANDARD DEVIATION EVOLUTION AND TESTING TIMES OF THE FOUR GPHH METHODS

OVER 40 RUNS AND THREE BENCHMARK DISPATCHING RULES.

R1S R1C R2S R2C WSPT FIFO MS

TWT 159560±8201 140335±3188 161937±3117 139372±1216 382778 554842 534326

Train (min) 117±31 118±27 80±16 90±21 − − −

Test (ms) 613±349 469±153 500±245 392±103 250.0 290.0 202.0

TABLE IV. ORDER OF PERFORMANCE OF METHODS ON EACH

CONFIGURATION.

Configuration Worst → Best

TC1=C1 R1S → {R1C,R2S, R2C}

TC2=C2 {R1S,R2S} → {R1C, R2C}

TC3=C3 {R1C, R2C} → {R1S,R2S}

TC4=C4 {R1C,R2S, R2C} → R1S

C5 {R1C, R2C} → R1S →R2S

C6 {R1S,R2S} → R2C → R1C

C7 {R1C, R2C} →R2S → R1S

C8 R2C → R1C →R2S → R1S

C9 R2S → R1S → {R1C, R2C}

C10 {R1S,R2S} → {R1C, R2C}

C11 {R1S,R2S} → {R1C, R2C}

C12 {R1S,R2S} → {R1C, R2C}

C13 {R1S,R2S} → {R1C, R2C}

C14 R2C → R1C → R1S →R2S

Table III also gives the mean and standard deviation of the
evolution time in minutes and the total testing time (for all 14
test configurations) in milliseconds. The R2 methods have the
lowest mean evolution time and smaller standard deviations
than the R1 methods. The testing time is lower with changing
problem instances than using the same problem instances and
the standard deviation is also smaller. Further R2S has lower
mean and smaller standard deviation for testing than R1S,
likewise R2C has lower mean and smaller standard deviation
than R1S. R2C has the quickest mean test time (approximately

0.4 seconds) and the smallest standard deviation.

Comparison of the GPHH and dispatching rule (WSPT,
FIFO, MS) results in the table shows that GPHH is able to
evolve rules that are significantly better than these rules.

Due to the way which the GP crossover operator is re-
stricted in R2 so crossover occurs only between trees that
schedule jobs on the same machine, only one of the GP
individual’s trees is affected by crossover generation. This
means that the R2 GP runs should be run for twice as many
generations as R1 GP runs for the trees to have the same
number of crossover operations [20].

C. Analysis of Evolved Programs

To analyse why the dispatching rules work well, we choose
some of the best evolved rules to look at more closely.

The two GP individuals from method R1C in Figure 3
performed identically. The right-hand individual simplifies to

W× RJ

PR× RM

As RM will be the same for all jobs in the queue, this can
be further simplified to (W/PR) × RJ. This is very similar to
the WSPT rule weighted by the ready time of the operation.
Jobs with earlier ready times (smaller RJ) have lower priority,
all else equal. Interestingly the due date does not appear
in this individual, although DD is related to RJ, since both
increase throughout simulation time. The left-hand individual
of Figure 3 will generally simplify to be the same as the
right-hand individual as in general DD>W, and RM>W∗W/PR.
It is interesting to note that this tree does not contain the DD
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terminal, which we would expect to appear as it is used in
calculating the tardiness of jobs for the objective function.

A similar structure is found in the machine B tree of the
R2C individual shown in Figure 5. Once a few jobs have
been processed, the ready time of the machine will be greater
than the weights of the job (under our settings at least), then
the third branch of the if>0 branch will be scheduling the
jobs. As all job weights are positive this branch simplifies to
(W/PR)× DD, as the number of jobs in the queue will be the
same for all jobs evaluated at a given time. Using this rule to
schedule all jobs in the shop at both machines gives an average
TWT of 132229 across the 14 configurations. The machine A
tree of this GP individual (see Figure 4) is harder to analyse.
The middle branch will always be used, and simplifies to

W+ DD− RT−max{RO, (W/PR)× (RM+ RJ)}.

This rule takes the latest time processing of a job would need
to start for the job to not be tardy, adds the weight (jobs with
greater weight therefore have higher priority) and subtracts
a measure of waiting and processing time. Using this rule
to schedule all jobs in the shop at both machines gives an
average TWT of 2423119 across the 14 configurations, which
is considerably worse than the performance of the machine B
tree.

Further, all terminals and functions appear in at least one
of these “best” evolved trees, however NQ does not contribute
the priority value in the trees it appears in.

V. CONCLUSIONS

The goal of this paper was to use a GPHH approach
to evolve scheduling rules for both the static and dynamic
two-machine job shop environments. This work is the first
time that GP has been used to evolve dispatching rules that
are optimal for the static two-machine JSS problem with
makespan objective function. This was proved by showing
that the evolved rule was equivalent to optimal scheduling
algorithm, Jackson’s algorithm. Our GPHH search found five
rules out of 100 that are optimal, i.e., will always schedule

jobs to give the minimum possible makespan. This validates
both the GPHH approach for generating dispatching rules for
the JSS problem, and the representation used.

In the dynamic case our work investigated the combined
effects of changing the problem instances throughout evolu-
tion, and using one scheduling rule versus machine specific
scheduling rules in non-symmetric job shops. Our results in
the dynamic case show that R1 methods do not consistently
outperform R2 methods in terms of TWT, neither do the
C methods outperform the S methods. We have found the
mean performance of R2 methods have a smaller standard
deviation than their R1 counterparts. As we cannot separate
which methods are best, we cannot assume that one rule for
all machines is sufficient. However when we consider runtimes,
the R2 methods have shorter mean evolution times with smaller
standard deviations than their R1 counterparts. C methods have
longer mean evolution times but smaller standard deviations
than the S methods. Further the R2 methods have shorter mean
testing times with smaller standard deviations than their R1
counterparts and C methods have shorter mean evolution times
and smaller standard deviations than the S methods.

In future work we plan to extend our job shop environment
to three or more machines. We will also incorporate other
measures of the current state of job queues and the shop system
into the scheduling rules and investigate the use of strongly
typed GP to improve interpretability.
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