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Abstract—Allocating jobs to heterogeneous machines in grid
systems is an important task in computational grid to effectively
utilise computational resources. Particle swarm optimisation
(PSO) has been recently applied to grid computation scheduling
(GCS) problems and shown very promising results as compared
to other meta-heuristics in the literature. However, PSO with
the traditional position updating mechanism still has problem
coping with the discrete nature of GCS. This paper proposed a
new updating mechanism for discrete PSO that directly utilise
discrete solutions from personal and global best particles. A new
local search heuristic has also been proposed to refine solutions
found by PSO. The results show that the hybrid PSO is more
effective than other existing PSO methods in the literature when
tested on two benchmark datasets. The hybrid method is also
very efficient, which makes it suitable to deal with large-scale
problem instances.

Index Terms—particle swarm optimisation, grid computing,
scheduling, local search

I. INTRODUCTION

A computational grid (CG) is a distributed computing
system that includes a large and heterogeneous computing
resources [1], [2], [3], [4]. CG is considered an effective
approach to dealing with large-scale distributed real-world ap-
plications [5]. Scheduling in CG environments (i.e. allocation
of jobs to grid computing resources) is important and is a
hard computational task even when there is no dependencies
among jobs [2] because of different real-world requirements
such as heterogeneity of jobs, multiple conflicting objectives,
and uncertainty.

This paper focuses on grid computation scheduling (GCS)
with independent jobs. Given a number of jobs (or tasks) 𝑛 and
a number of machines 𝑚, the objective is to find the optimal
solution to allocate jobs to machines in order to minimise the
makespan 𝐶𝑚𝑎𝑥 = max{𝐶𝑖}, where 𝐶𝑖 is the completion
time of machine 𝑖 = 1 . . .𝑚. It is noted that a job can only be
processed on one machine and a machine can only process
one job at a time. There are no interdependence between
jobs and preemption is not allowed. Different from traditional
parallel machine scheduling problems, GCS includes a set of
heterogeneous machines and a specific job 𝑗 will have different
processing times 𝑝𝑗𝑖 at different machines 𝑗. This problem has
been shown to be NP-Hard [6], [7] and often involves a large
number of jobs and machines (resources); therefore, finding
optimal solutions with exact methods are impractical. For this
reason, heuristics and meta-heuristics have become a practical

approach to GCS to find satisfactory solutions for real size
problems.

Braun et al. [8] compared eleven heuristics for GCS with
independent jobs. In their paper, a large dataset was also
developed based on expected time to compute (ETC) matrix
to evaluate the performance of proposed heuristics. From
their experiments, genetic algorithm (GA) provided the best
performance in most cases and the min-min heuristic (which
step-by-step assigned job to machine that results in the earliest
completion time) is a good approach to quickly generating a
solution with a reasonably short makespan. Page and Naughton
[9] proposed another GA method for GCS that uses a list
scheduling heuristic to create a good randomised initial pop-
ulation. Specialised mutation operators were also proposed
to improve the performance GA. Ritchie and Levine [10]
developed a hybrid ant colony optimisation (ACO) for grid
scheduling. Tabu search [11] was used within the proposed
method to refine solutions obtained by ACO. The hybrid
ACO is shown to be better than GA methods and other
heuristics. A cellular memetic algorithm (cMA) was developed
by Xhafa et al. [12] to minimise both makespan and flowtime
simultaneously. Different local heuristics were also examined
in this paper. The results show that cMA is an effective
and efficient approach to GCS. Xhafa et al. [2] developed
a new tabu search method for GCS. Different specialised
diversification strategies have also been considered in the
proposed tabu search method to enhance its effectiveness. The
proposed method is significantly faster than other heuristics
in the literature such as tabu search [11], hybrid ACO [10],
and cMA [12] while providing very good solutions. Other
heuristics have also been proposed for GCS such as simulated
annealing [8], [13], struggle genetic algorithm [14], sufferage
[15]. hybrid GA [16].

Particle Swarm Optimisation (PSO) [17], [18] is a swarm
intelligence technique based on simulated social behaviours. In
PSO, a swarm or population of particles (candidate solutions)
moves in the solution search space. Each solution is usually
encoded as a vector of real numbers that is treated as the
position of a particle in the swarm. Each particle/solution is
assigned a fitness value based on its performance (quality of
the solution). Then particles update their positions by being
accelerated towards referenced particles such as global best,
and local best (based on certain topologies). The key idea is
that this movement will help guide the swarm towards the
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global optimal solutions in the search space.
PSO has been applied to solve different hard optimisation

problem and shown very promising results [19], [20], [21],
[22], [23], [24], [25]. Recently, some PSO methods [1], [26]
have been proposed to deal with GCS problems with indepen-
dent jobs. Liu et al. [1] proposed a continuous PSO (CPSO)
method for GCS. In this method, both a particle’s position and
velocity are represented as real numbered matrices (𝑛 ×𝑚).
In order to construct a schedule the position matrix must
first be converted into a schedule by assigning each job to
the machine that has the highest (normalised) value in the
corresponding column of that job in the position matrix. The
position matrix in this method is considered as a fuzzy matrix
in which an element represents the degree of membership of
the corresponding job and machine. The experiments showed
that CPSO is better than SA and GA. Izakian et al. [26]
proposed a discrete PSO approach (DPSO) for grid scheduling.
In their method, particles are represented with a real number
velocity matrix of jobs by machines. The value at a given
job/machine position in the matrix specifies how much that job
is associated with that machine. The position of a particle is an
array of integers, where each position in the list is a job and the
integer at that position is the machine the job is assigned to. In
the particle updating phase a particle’s velocity is changed to
be more like the global best particle’s velocity and its own
personal best velocity based on the social-recognition and
self-recognition components, respectively. Once the velocity
is updated, the particle’s position is set so that each job is
assigned to the machine that has the highest value in that job’s
column of the velocity matrix. Their experiments showed that
DPSO is better than other heuristics such as min-min, GA,
and hybrid ACO [10].

Although the results showed that PSO is very competitive
as compared to other meta-heuristics in the literature [8],
[10], [12], there are still some limitations with the existing
PSO methods for GCS. The first is that it is computation-
ally expensive to repeatedly convert between continuous and
discrete representations [26] and using a matrix makes the
cost of updating a particle 𝑂(𝑛 × 𝑚). This is particularly a
problem for the CPSO as it has to perform a number of matrix
additions, subtractions and multiplications and then afterwards
convert the result into a discrete schedule for fitness evaluation.
The second limitation is that a continuous representation is
not an ideal approach to a discrete optimisation problem
such as GCS. This is true for both CPSO and the real
numbered velocity matrix of DPSO. For example, a particle
can be significantly altered without influencing significantly
the schedule its representing, which makes it easier for a
particle to become trapped at a local optimum. Small changes,
even a lot of small changes on different dimensions that add
up to quite a large change, may have no impact on a particle’s
fitness. This limits the exploration ability of such algorithms
and increases the number of iterations required. Additionally,
modelling the solution as a job/machine matrix significantly
increases the dimensionality as well as the complexity of
the space the algorithms. The third limitation is that the

existing PSO methods do not incorporate any knowledge of
the problem domain during the search. As a result, PSO can
spend a lot of time searching for good solutions, especially for
large-scale problem instances usually encountered in GCS.

A. Goals

In order to overcome these limitations, a new discrete PSO
method is proposed in this study. In this proposed method,
a new position updating mechanism and a new local search
heuristic are developed in order to improve both exploration
and exploitation abilities while reducing the computational
costs of of PSO. Three research objectives of this paper are:

1) Develop a new position updating mechanism for the
discrete representation in PSO.

2) Develop a new efficient local search heuristic to refine
solutions obtained by PSO.

3) Compare the proposed PSO against other existing PSO
methods and analyse the behaviours of these methods.

B. Organisation

The rest of this paper is organised as follows. The next
section proposes the new discrete PSO (NDPSO) method for
GCS with independent jobs. In Section III, the parameter
settings for the proposed PSO and the datasets used for our
experiments are described. The performance of NDPSO is
compared to that of the existing PSO methods in Section IV.
Then, we analyse the behaviours of NDPSO to understand its
effectiveness. Finally, we provide conclusions and discussions
for future research in Section V.

II. PROPOSED METHOD

In this section, we will describe the discrete representation
used for GCS. Then we showed a new approach to position up-
dating and the new local search heuristic for refining solution
obtained by PSO. Finally, the overall algorithm for NDPSO is
presented.

A. Representation

In the proposed NDPSO, a particle’s position x =
(𝑥1, . . . , 𝑥𝑛) is a one-dimensional array of integers, where
each element 𝑥𝑗 in the array represents the machine assign-
ment of a specific job 𝑗, which is the index of a machine
used to process job 𝑗. The dimension of the particle’s position
is the number of job 𝑛 and each element in the array can
be the indices of any machines that are able to process the
corresponding job (in this paper, a job can be processed at any
machine). An example solution of GCS is shown in Figure
1. In this case, the first element 𝑥1 is 2 indicates that job
1 will be processed by machine 2, as shown in the gantt
chart, with the processing time 𝑝12. Because there is no job
interdependence and makespan is used as the objective, a
GCS solution here does not need to consider the sequence
of jobs at each machine. Different from the representations
used in CPSO [1], the position of particle in NDPSO directly
represents all job/machine assignments rather than indirectly
reflect the relation between jobs and machines through position
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Figure 1: Representation of a GCS solution in NDPSO.

and velocity matrices. This allows GCS solutions represented
in a more compact way while still covering all possible
assignments. Another advantage of this representation is that a
particle’s position can always be decoded to a feasible solution.
This representation is the same as the one used in DPSO [26].

B. Position updating mechanism

Given that a particle’s position is an array of integer
numbers, the traditional updating mechanism (through vector
addition, subtractions and multiplication) can still be used to
update the particle’s position. However, this approach is not
natural in GCS and does not utilise effectively the information
from personal best (the best position found by a particle)
and global best (the best position found by the swarm) [17].
Increasing or decreasing the elements in a particle’s positions
does not really help particles move towards better positions
because there is no correlation between the indices and other
characteristics of jobs. The updating mechanism in DPSO can
handle the discrete position directly but it is still governed
by the traditional updating mechanism, which can be time
consuming when dealing with large instances. In this paper,
we proposed a new updating mechanism that is more suitable
for the discrete representation.

For each job to machine assignment 𝑥𝑗 in the particle’s po-
sition x, a random number 𝑟1 from [0, 1] is generated. If 𝑟1 is
greater than or equal to a predefined updating probability 𝑢, the
corresponding assignment 𝑥𝑗 will not be updated. Otherwise,
a second random number 𝑟2 from [0, 1] is generated. If 𝑟2 is
less than the parameter 𝑝 the job to machine assignment 𝑥𝑗 is
replaced with the corresponding assignment of the particle’s
personal best. If 𝑟2 is above 𝑝 then 𝑥𝑗 is replaced with the
corresponding assignment from the global best. This process
is demonstrated in Figure 2, where the highlighted machine
assignments from the global best, personal best and current
position are combined to create a new particle position. Lastly,
a third random float 𝑟3 from [0, 1] is generated and if 𝑟3 below
the mutation rate 𝑚 then the job assignment is replaced with
a random machine index.

In NDPSO, 𝑢 and 𝑝 are two important parameters that
determine how global best and personal best particles can
be used to update the current position of a particle. When
𝑢 is small, the particle will be less likely to change its
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Figure 2: Updating mechanism in NDPSO.
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Figure 3: Proposed local search heuristic.

position. When 𝑢 is higher, the position will be more likely to
be updated based on positions of global best and personal
best particles. Meanwhile, the parameter 𝑝 controls which
information from global best and personal best particles are
preferred to updating the current position of a particle. If
𝑝 = 0, only information from the global best particle is used
to update the current position x. A higher 𝑝 will indicate that
it is more likely to use the personal best position to update
x. Because the velocities in conventional PSO is not really
useful in the discrete representation here, we do not use them
in NDPSO to avoid extra computational costs. Although this
updating mechanism is significantly different from traditional
approach, it is still based on the use of cognitive and social
experience in the swarm; and it is basically a simplified way
to simulate swarm behaviour in a discrete search space. A
mutation is also applied in this case in order to improve the
diversity of the proposed method. In general, the new updating
mechanism is faster than the updating mechanisms used in
previous work because there is less work involved in updating
a particle (i.e. 𝑂(𝑛)).

C. Local search heuristic

As mentioned, GCS usually involves many different jobs
and machines and it is very unlikely that good solutions can
be found from random initialisation. Therefore, searching for
(near) optimal solutions through PSO will be difficult. For
this reason, it would be useful to apply an efficient local
heuristic to quickly guide the swarm towards more promising
solutions. A new local search heuristic is proposed in this
paper to help refine the GCS solutions found by NDPSO
without significantly increase the computational times. The
pseudo code of the local search heuristic is presented in
Algorithm 1.

In this algorithm, 𝑓(x) is the makespan obtained from solu-
tion x. The 𝑚𝑎𝑥 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(x) (or 𝑚𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(x)) func-
tion gives the index of the machine with the longest (or short-
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Algorithm 1 Local search heuristic

given a solution x = (𝑥1, . . . , 𝑥𝑛) with makespan 𝑓(x)
x∗ ← x and 𝑓(x∗)← 𝑓(x)
repeat

x′ ← x∗

𝑐← 𝑚𝑎𝑥 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(x)
𝑑← 𝑚𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒(x)
𝑗 ← 𝑚𝑖𝑛 𝑗𝑜𝑏(x, 𝑑, 𝑐)
𝑥𝑗 ← 𝑑
if 𝑓(x′) < 𝑓(x) then

x∗ ← x′ and 𝑓(x∗)← 𝑓(x′)
end if

until no improvement is made
x← x∗ and 𝑓(x)← 𝑓(x8)

est) completion time from solution x. The 𝑚𝑖𝑛 𝑗𝑜𝑏(x, 𝑑, 𝑐)
function gives the job currently assigned to machine 𝑐 with
the shortest processing time from machine 𝑑. With a given
solution x, the heuristic will first identify the machine 𝑐 with
the longest completion time (equal to the makespan). Then,
the job 𝑗 with the shortest processing time on machine 𝑐 from
machine 𝑐 will be removed and inserted into the machine 𝑑
with the shortest completion time to generate the new solution
x′. An example of this heuristic is shown in Figure 3. In
this case, job 13 from machine 1 is moved to machine 2. If
this move improves the overall makespan of solution then the
change is accepted (x∗ ← x′) and the process is repeated until
no improvement is made. The key principle of this heuristic
is to balance the workload of machines in order to reduce
the makespan. Because only a simple change is made in each
iteration, the new solution x can be reevaluated very quickly
(by subtracting the processing time 𝑝𝑗𝑐 from 𝐶𝑐 and adding
𝑝𝑗𝑑 from 𝐶𝑑 and finding 𝐶𝑚𝑎𝑥).

D. The overall algorithm

Algorithm 2 shows the pseudo code for the proposed PSO
algorithm. 𝑝𝑏𝑒𝑠𝑡x is the personal best position found by
particle x and 𝑔𝑏𝑒𝑠𝑡 is the best position found by the swarm 𝑃 .
The 𝑟𝑎𝑛𝑑() function is used to generate the random number
from 0 to 1 and 𝑟𝑎𝑛𝑑 𝑖𝑛𝑡(𝑚) is used to generate random
integer number from 1 to 𝑚.

The algorithm starts by randomly generating the initial
solutions (simply by assigning a job to a random machine). In
each iteration of the proposed algorithm, all particles will be
evaluated to find the makespans as well as update 𝑝𝑏𝑒𝑠𝑡x and
𝑔𝑏𝑒𝑠𝑡. Then, the updating mechanism as described in Section
II-B is applied to update the position of each particle x in the
swarm 𝑃 . Finally, the local search heuristic is applied to the
new particle’ position to improve the makespan if a predefined
condition is met. In this paper, we will investigate two versions
of this algorithm. The pure algorithm without local search is
referred to as NDPSO and the hybrid one with the local search
heuristic is referred to as HDPSO.

Algorithm 2 Proposed algorithm

initialize positions of particles in the swarm 𝑃 randomly
repeat

for each particle x ∈ 𝑃 do
𝑓(x)← find the makespan of x𝑘

if 𝑓(x) < 𝑓(𝑝𝑏𝑒𝑠𝑡x) then
𝑝𝑏𝑒𝑠𝑡x ← x

end if
if 𝑝𝑏𝑒𝑠𝑡x < 𝑔𝑏𝑒𝑠𝑡 then

𝑔𝑏𝑒𝑠𝑡← 𝑝𝑏𝑒𝑠𝑡x

end if
end for
for each particle x ∈ 𝑃 do

for 𝑗 = 1 . . . 𝑛 do
if 𝑟𝑎𝑛𝑑() < 𝑢 then

if 𝑟𝑎𝑛𝑑() < 𝑝 then
𝑥𝑗 ← 𝑝𝑏𝑒𝑠𝑡x𝑗

else
𝑥𝑗 ← 𝑔𝑏𝑒𝑠𝑡𝑗

end if
end if
if 𝑟𝑎𝑛𝑑() < 𝑚 then

𝑥𝑗 ← 𝑟𝑎𝑛𝑑 𝑖𝑛𝑡(𝑚)
end if

end for
if condition is met then

apply local search in Algorithm 1 to x

end if
end for

until terminating criteria

III. EXPERIMENTAL DESIGN

This section shows the parameters settings of NDPSO,
HDPSO, and existing PSO methods in our experiments. Then,
the datasets used to evaluate the performance of our proposed
algorithm will be described.

A. Parameter settings

To evaluate the effectiveness of the proposed methods, we
will compare them against two PSO methods for GCS in the
literature, CPSO [1] and DPSO [26]. For each PSO method, 50
independent runs are made for a problem instance. Based on
the recommendations from their respective papers, DPSO uses
self and social recognition components of 2.0, velocities from
-40 to 40. Meanwhile, CPSO algorithm used a starting weight
of 0.9 which linearly decreases to 0.1 through generations, self
and social recognition components of 1.49 and position, and
velocities from -1.0 to 1.0.

Pilot experiments of our proposed methods suggests that
these methods work well with a u value starting at 0.7 which
linearly decreases to 0.3, a p value of 0.3 and a mutation rate
of 0.005. For HDPSO, the local search heuristic is applied
to all particles every ten generations. This is done to reduce
the computational costs that may caused by the local search
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heuristic. All four algorithms have 100 particles and were run
for 300 generations on each problem instance. In the initial
population, one solution will be generated by using the min-
min heuristic [26], [2], which has been shown to be very
effective to reduce the makespan. Other initial solutions will
be randomly generated.

B. Datasets

All four algorithms were tested on two grid scheduling
datasets, one from [8] and the second from [1]. The first dataset
contains 1200 problem instances, divided into twelve equal
categories. Each category is defined by three characteristics,
consistency (consistent, inconsistent, and partially-consistent),
job heterogeneity (high or low) and machine heterogeneity
(high or low). Consistency refers to whether the ranking of
fastest to slowest jobs on each machine follows the same
ordering: consistent means the order is maintained, inconsis-
tent means that it is not and partially-consistent means that
there is a consistently ordered subset of jobs. Heterogeneity of
machines and jobs refers to how similar the speed or length
of the machines and jobs are, respectively: low means they
are close together, high means they are spread out. All of the
problem instances have 512 jobs and 16 machines. The second
problem set has 21 consistent instances that vary in the number
of jobs and machines. There are seven categories characterised
by the number of jobs and the number of machines, each
having three instances.

IV. RESULTS

This section presents the results of the two proposed PSO
methods and other PSO methods in the literature. Then, we
examine the behaviours of our proposed PSO methods to
understand its effectiveness.

A. Computational comparisons

To compare the quality of solutions obtained by different
PSO methods for a problem instance, we use the relative
deviation (%) = 100 × (𝑜𝑏𝑗 − 𝑜𝑏𝑗∗)/𝑜𝑏𝑗∗ where 𝑜𝑏𝑗 is the
makespan of an instance obtained by a PSO method in one
specific run and 𝑜𝑏𝑗∗ is the best solution of that instance
found by all four methods (through all 50 independent runs).
In our experiments, the better methods are the ones with lower
relative deviations. Table I and Table II showed the minimum,
average, maximum and standard deviation (Std.) of relative
deviations obtained by each PSO method for 100 instances
and 50 independent runs in each subset (12 subsets for Braun
et al. [8] dataset and 7 subsets for Liu et al. [1] dataset).
The “Time” column shows the average running time of the
considered PSO method for an instance in the subset. In Table
I, u-x-y-z is used to represent the characteristics of a subset
in Braun et al. [8] dataset where x is the consistency, y is the
job heterogeneity, and z is the machine heterogeneity.

In general, CPSO shows the worst performance among the
four proposed PSO methods. One of the reasons is that the
representation in CPSO cannot directly represent the GCS
solutions. Therefore, its is very difficult for CPSO to utilise

effectively useful information from personal best and global
best particles to guide the search towards better solutions.
DPSO is slightly better than CPSO in most cases but the
improvement is not very obvious and it still produce poor
results in some runs (see the “max” column).

NDPSO and HDPSO are the two most effective methods
in our experiments. NDPSO are able to produce better solu-
tions as compared to DPSO and CPSO in all subsets. The
gaps between NDPSO and CPSO/DPSO are more obvious
when dealing with inconsistent and partial-consistent problem
instances. This indicates that the new updating mechanism
in NDPSO can help it maintain a good diversity in the
swarm while effectively exploring for good solutions, which is
necessary to deal with tricky inconsistent or partial-consistent
problem instances.

In overall, HDPSO provides the best results for all subsets
in both datasets. The results in Table I and Table II show
that HDPSO is significantly better than other PSO methods in
all cases. For all subsets in [8] dataset, the average relative
deviations of HDPSO are always below 4% and its maximum
relative deviations are even better than the average relative
deviations of other methods. This confirms both the robustness
and the effectiveness of HDPSO. In Table II, the results show
that HDPSO is relatively more effective than other methods
as the size of the problem increases.

Z-tests (with 𝛼 = 0.01) of the results showed that makespan
produced by both proposed algorithms is significantly shorter
than that produced by the CPSO for most problem instances
in both datasets. NDPSO outperforms DPSO for 1194 of the
1200 instances in the first dataset and 18 of the 21 instances
in the second dataset. HDPSO are significantly better than
other methods on all problems instances from the two datasets.
These results suggest that HDPSO is a good method to cope
with large-scale problem instances.

Regarding the computational times, CPSO is the slowest
method. As discussed in Section I, the traditional updating
mechanism in CPSO may be quite time consuming when
dealing with large-scale instances. DPSO is more efficient than
CPSO because it uses a more compact representation and a
fast updating mechanism [26]. NDPSO is more efficient than
DPSO and CPSO for all subsets. HDPSO is slightly slower
than NDPSO because of the local search heuristics but it is
still faster than DPSO and CPSO. As the size of the problem
increases in Table II, HDPSO is still very efficient. This again
indicates that HDPSO has good scalability, which is suitable
to deal with large-scale problem instances.

B. Further analysis of proposed PSO methods

Figures 4–6 respectively shows the best/average/worst
makespan found by the four PSO methods during their search
for instances in the u-c-hi-hi subset (values in the figures
are the average makespan from 50 independent runs and 100
instances obtained by each method).

In Figure 4 and Figure 5, it is easy to see that CPSO
improves its solutions in a very low rate as compared to
other PSO methods. Another interesting observation is that
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Table I: Relative deviation (%) in makespan and running time (in seconds) for Braun et. al. [8] dataset

Subsets NDPSO HDPSO DPSO CPSO

u-x-y-z Min Avg. Max Std. Time Min Avg. Max Std. Time Min Avg. Max Std. Time Min Avg. Max Std. Time

u-c-hi-hi 1.54 4.29 9.21 1.22 1.39 0.00 0.73 2.34 0.37 1.87 2.14 5.70 18.73 1.51 3.01 2.14 5.99 12.60 1.44 11.02

u-c-hi-lo 0.38 1.63 4.13 0.46 1.39 0.00 0.28 1.14 0.16 1.97 0.92 2.52 5.80 0.65 3.11 0.92 2.71 5.70 0.67 11.14

u-c-lo-hi 1.45 4.34 8.92 1.12 1.38 0.00 0.74 2.05 0.37 1.84 1.97 5.70 11.51 1.27 3.02 1.81 5.87 12.43 1.25 11.01

u-c-lo-lo 0.50 1.64 3.84 0.42 1.39 0.00 0.28 0.97 0.15 1.93 0.84 2.49 5.04 0.62 3.11 1.03 2.75 5.55 0.69 11.14

u-i-hi-hi 1.70 7.61 23.11 2.45 1.42 0.00 0.99 3.62 0.51 2.16 3.24 11.86 29.67 3.70 3.25 3.75 12.04 28.45 3.57 11.38

u-i-hi-lo 0.69 3.15 8.31 0.93 1.42 0.00 0.61 2.27 0.31 2.03 1.39 4.85 11.11 1.32 3.25 1.39 5.19 10.89 1.36 11.39

u-i-lo-hi 1.19 7.47 24.12 2.82 1.42 0.00 1.00 3.61 0.52 2.13 2.37 11.37 33.60 4.13 3.25 2.11 11.49 32.81 3.94 11.41

u-i-lo-lo 0.73 3.17 8.21 0.98 1.42 0.00 0.59 2.00 0.30 1.99 1.35 4.78 10.75 1.29 3.25 1.77 5.08 12.13 1.33 11.39

u-p-hi-hi 0.26 5.44 17.04 2.07 1.41 0.00 1.11 3.82 0.58 2.00 0.96 8.32 26.44 2.82 3.17 1.07 8.52 26.44 2.76 11.25

u-p-hi-lo 0.67 2.54 7.05 0.78 1.41 0.00 0.49 1.75 0.27 1.97 0.97 3.83 8.70 1.05 3.20 1.30 4.15 9.69 1.11 11.29

u-p-lo-hi 0.80 5.30 14.05 1.85 1.41 0.00 1.11 3.73 0.59 1.97 0.91 7.95 21.77 2.56 3.17 1.71 8.14 24.63 2.51 11.24

u-p-lo-lo 0.59 2.52 7.22 0.78 1.41 0.00 0.49 1.70 0.26 1.94 1.35 3.84 8.49 1.04 3.20 1.51 4.10 9.27 1.08 11.29

Table II: Relative deviation (%) in makespan and running time (in seconds) for Liu et al. [1] dataset

Subsets NDPSO HDPSO DPSO CPSO

𝑚× 𝑛 Min Avg. Max Std. Time Min Avg. Max Std. Time Min Avg. Max Std. Time Min Avg. Max Std. Time

3× 13 0.00 0.55 2.65 0.48 0.09 0.00 0.08 0.59 0.12 0.09 0.00 0.49 1.94 0.42 0.10 0.00 1.09 3.56 0.78 0.22

5× 100 0.03 0.15 0.41 0.07 0.22 0.00 0.01 0.03 0.01 0.28 0.15 0.63 1.51 0.23 0.37 0.16 0.73 1.47 0.22 1.30

8× 60 0.12 1.10 3.70 0.60 0.13 0.00 0.04 0.15 0.03 0.17 0.92 3.31 6.40 1.06 0.25 1.12 4.44 8.20 1.49 0.89

10× 50 0.87 3.41 12.19 2.38 0.11 0.00 0.16 0.59 0.11 0.14 2.25 8.73 16.25 3.17 0.23 5.80 12.27 16.25 2.94 0.82

10× 100 0.22 0.83 3.26 0.44 0.22 0.00 0.06 0.26 0.04 0.28 1.35 4.04 8.60 1.32 0.45 1.94 4.62 8.60 1.19 1.59

60× 500 5.58 7.76 9.81 1.30 1.22 0.00 0.46 0.99 0.21 2.01 8.41 10.42 12.23 1.18 6.68 8.63 10.83 12.23 1.17 28.18

100× 1000 7.73 9.01 10.18 0.53 2.66 0.00 0.57 1.17 0.23 4.42 7.99 9.60 10.50 0.48 20.43 8.99 9.70 10.50 0.52 108.06

the average makespans of particles in CPSO improves in the
early generations (moving down as shown in Figure 5) and
dramatically get worse (moving up) before they gradually im-
prove again. The reason for this behaviour is that the solution
found by the min-min heuristic is quite good and particles
in CPSO tends to improve its makespan as they converge
towards the min-min solution. However, after a few early
generations, CPSO is able to find better solutions and particles
will be reguided to these new solutions. Because of the
indirect representation of CPSO and its updating mechanism,
the shift towards the new better solutions causes large, possibly
negative (as shown in Figure 6), changes in the particles’
positions (as well as the corresponding GCS solutions). When
CPSO is trapped at a local optimum, no large change will be
made and the swarm will converge to that solution.

DPSO can cope with the changes better than CPSO and the
average makespans of DPSO gradually are reduced through
generation. This is because DPSO uses a more appropriate
updating mechanism based on its discrete representation. The
disadvantage is that the changes DPSO makes for each updated
particles is quite small and it will takes a while for DPSO to
improve its solutions (see Figure 4).

The problems with CPSO and DPSO have been overcome

Figure 4: Best makespan obtained from PSO methods through
generations for the u-c-hi-hi subset

with NDPSO. As shown in Figures 4–6, NDPSO can quickly
improve the solutions, even better than those found by CPSO
in the early generation, while maintaining a good stability in
the swarm. This is a good evidence to confirm the effectiveness

488



Figure 5: Average makespan obtained from PSO methods
through generations for the u-c-hi-hi subset

Figure 6: Worst makespan obtained from PSO methods
through generations for the u-c-hi-hi subset

of the new proposed updating mechanism in NDPSO.
HDPSO is again shown to be the best methods here.

With the support of the local search heuristic, HDPSO can
dramatically improve solutions obtained by NDPSO, Within
the first 20 generations, HDPSO has been able to find solutions
that better than those obtained by other PSO methods from 300
generations. These results show that the local search heuristic
plays a very important role in PSO in order to effectively and
efficiently explore high quality solutions.

To gains more insights about the four PSO methods, we
also look at the number of times personal best in updated, as
shown in Figure 7. It is noted that the number of personal best
updates for HDPSO has increased suddenly around generation
10 because that is when the local search heuristic is applied
to refine the solutions found by the swarm. In general, this
figure also support our previous explanation that NDPSO as
well as HDPSO can overcome the dramatical changes in CPSO

Figure 7: Number of personal best updates through generations
for the u-c-hi-hi subset

and the slow improving rate in DPSO. We can see that the
number of personal best updates of NDPSO and HDPSO are
somewhere between those of CPSO and DPSO. This suggests
that NDPSO and HDPSO can balance quite well between
exploration and explication.

Figure 8 shows total number of possible machine-to-job
assignments (TNA) for all jobs from solutions in the swarm.
This indicator is used to check how many machine-to-job
assignments have been considered. The minimum value of
TNA is the number of jobs 𝑛 when solutions from all particles
are the same. The maximum of TNA is 𝑚 ∗ 𝑛 when all
possible machine-to-job assignments are presented in solutions
of the swarm. This indicator is useful to measure the diversity
of solutions in PSO when dealing with GCS. From Figure
8, it is easy to see that TNA of CPSO and DPSO have
reduced through generations when they converge to global
best solutions. On the other hand, NDPSO and HDPSO still
maintain high TNA through generations. One of the the key
reasons for this behaviour is the use of mutation operator at the
end of each generation of NDPSO and HDPSO. This mutation
operator will help produce new machine-to-job assignments
and allow NDPSO and HDPSO to explore new solutions even
at the end of their search.

V. CONCLUSIONS

This paper has developed a new PSO method for GCS prob-
lems with independent jobs. The key idea of the new proposed
method is to create a more direct approach to position updating
in PSO, which can cope with the discrete characteristic of
GCS solutions. The new updating mechanism developed in this
paper makes the proposed PSO more effective and efficient
by directly using the discrete solutions from personal and
global best particles to update new positions. A new local
search heuristic is also developed and used within the proposed
PSO to refine the solutions in the swarm. The experimental
results show that the proposed PSO and its hybrid version

489



Figure 8: Number of possible machine-to-job assignments
through generations for the u-c-hi-hi subset

are very effective and efficient as compared to other PSO
methods proposed in the literature. In general, the hybrid
method outperforms all other methods on all testing instances.
It also shows great performance on large instances when
other methods fail to provide good results. Regarding the
computational times, the hybrid method is still much faster
than other PSO methods in the literature.

The results and analyses have suggested that representa-
tion and updating mechanism play very important roles in
PSO when dealing with discrete problems such as GCS.
In the future studies, it would be interesting to investigate
the performance of the new updating mechanism when it
is applied to other scheduling and optimisation problems.
Another important issue that need to be considered is to create
a more adaptive version of the proposed PSO in order to help
it cope better with a wide range of problems.
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