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Abstract—Combining features from different modalities and
domains has been demonstrated to enhance the performance
of saliency prediction algorithms. Different feature combina-
tions are often suited to different types of images, but exist-
ing techniques attempt to apply a single feature combination
across all image types. Furthermore, existing normalization and
integration schemes are not utilized in salient object detec-
tion as the combination of potential solutions is intractable to
test. The aim of this work is to autonomously learn feature
combinations for autonomously identified image types. To this
end, we learn optimal normalization and integration schemes
along with feature weightings using a novel Genetic Algorithm
(GA) method. Moreover, we learn multiple image dependent
parameters using our novel image-based GA (IGA) approach, to
increase the generalization of the system on unseen test images.
We present a thorough quantitative and qualitative comparison
of our proposed methods with the state-of-the-art benchmark and
deterministic methods on two difficult datasets (SED1 and SED2)
from the segmentation evaluation database. IGA shows superior
performance through learning optimal parameters depending
upon the composition of images and using feature combinations
appropriately enhances test performance and generalization of
the system.

I. INTRODUCTION

Visual attention is a fundamental research problem in
psychology, neuroscience and computer vision literature. Re-
searchers have built computational models of visual attention
to predict where human are likely to fixate. Recently, it
has been expanded to identify regions of interest for object
detection and localization. Salient object detection is the task
of marking regions of interest in a scene, which constitute a
salient object. It finds applications in object recognition [1],
salient object segmentation [2], image thumb-nailing [3] and
image compression [4].

Most methods specialized for the task of salient object
detection concentrate on constructing deterministic tailor-made
features [5], [6]. Features, such as color or color gradient, are
used to identify important aspects of an image. There has been
a class of models that use low, mid and high-level features to
learn feature combination for saliency prediction [7], [8], [9],
[10].

Many existing models only learn a single set of weighting
parameters for combining features, but apply them across mul-
tiple types of image, e.g. images with cluttered backgrounds
or multiple objects of interest. Therefore inherently losing
generalization when operated on test sets with different images
having various properties and sets of features. Furthermore,

linearly combining features without normalization and inte-
gration operations can result in certain features inappropriately
dominating other features causing a loss of performance. An
alternative approach is to learn model parameters using an
assembly of weak learners (hence increasing generalization).
However the quality of final solution depends upon the per-
formance of individual learners and can be affected if one of
the learners is not optimal.

The aim of this work is to autonomously learn feature
combinations for autonomously identified image types, such
that Salient Object Detection is improved.

We introduce the novel technique of image dependent GA
(IGA) based learning framework for the task of salient object
detection based on the following key observation:

• Learning multiple parametric solutions (specialized
for a certain domain of images) is likely to increase
the generalization of the system on unseen images as
compared with learning a single set of parameters for
all types of images.

• Combining the identified featured combinations
through appropriate integration and normalization op-
erations that have been autonomously learnt for each
image domain is likely to overcome the problems
associated with linear addition of features.

The academic goal of this paper is to investigate the
efficacy of GA and specifically multiple GA based IGA model
for learning important parameters for salient object detection.
The specific goal with respect to the GA model is to learn
various normalization and integration schemes along with
feature weighting. With respect to IGA, the main focus is
to explore the effect of using multiple (image dependent)
parameters for increasing the overall generalization of the
system. The specific objectives of this work are:

• Implement and fine-tune a GA system to learn impor-
tant parameters (i.e., feature weightings, normaliza-
tion and integration approaches) for effective feature
combination in a visual saliency prediction framework
and test its effectiveness compared to the benchmark
methods, such as Support Vector Machines (SVM).

• Determine an approach to autonomously identify dif-
ferent types of images, which is then to be combined
with the GA approach above to form the IGA frame-
work and compare its performance with benchmark
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learning methods and state-of-the-art deterministic
methods.

II. BACKGROUND

The general form for weighted feature combination for
producing the final saliency output can be formulated as

S = ◦wiNFi, (1)

where wi is the weight for feature Fi, ◦ represents the inte-
gration function and N represents the normalization operator
(note: Normalization is used to denote a transform function in
this context).

Judd et al. [7] employed SVMs with linear kernels to learn
a model of saliency from 33 features (including low, mid
and high level features) for predicting human eye fixations.
Although their approach achieves good results, their model
only learns weighting parameters through linear feature combi-
nation and neglects the important step of feature normalization
prior to combination.

Zhao et al. [10] employed least square regression for eye
fixation prediction using basic saliency features (i.e., color,
intensity and orientation). Borji et al. [8] also used linear
regression for saliency prediction using eye tracking data.
Again both the approaches only learn the weighting parameters
neglecting important aspects of feature combination such as
normalization and integration operation.

SVM with non-linear kernel (RBF) [8] and AdaBoost [8],
[9] have also been adopted in subsequent works to learn
saliency models. Non-linear SVMs [8] only learn feature
weights to effectively combine features and use addition as the
integration function. AdaBoost [8], [9] learn model parameters
using an assembly of weak learners (hence increasing gener-
alization). However the quality of final solution depends upon
the performance of individual learners and can be affected
drastically by one of the learners in the decision tree, degrading
the generalization of the overall system.

Integration and normalization functions are required to
combine the different features in a meaningful way such that
a single feature does not inappropriately dominate another.

A. Feature Weighting

The weight assigned to a feature quantifies its relative im-
portance in predicting saliency. Each feature map is multiplied
by its corresponding weight during the combination process to
control its relative contribution to the final saliency map. They
represent the top-down information, which is used to combine
different feature maps having diverse properties. A majority of
models try to learn this top-down information to optimize the
behavior of the saliency model.

B. Normalization

As various feature maps come from different modalities
and dynamic ranges, it is highly important to condition a
feature map (before feature combination), such that its strong
activation peaks are enhanced and weaker ones are suppressed.
This function is termed as normalization and is a crucial step in
feature combination. Some normalization functions reported in

the literature are global, iterative [11] and identity, exponential
and logarithmic [12] and can be expressed as follows:
{

x, exp(x),
−1

log(x)
,
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, x(M − m̄), x+ x ∗ DoG
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(2)

where DoG is the difference of Gaussian filter and ∗
denotes convolution. M is the global maximum of the feature
map and m̄ represents the local minimum of the feature map.
For details about the global and iterative normalization please
see [11].

C. Integration

The mathematical operation that combines the feature maps
to produce the final saliency output is termed as the integration
function. Addition of feature maps has always been the norm
for most methods [7], [8], [9], [10]. However, Klein et al. used
element-wise multiplication [5] and Gazit et al. used harmonic
mean [13] to integrate the feature maps. These integration
functions can be expressed as follows:
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III. PROPOSED METHODS

A. Feature Extraction

We carefully choose features from literature that have been
demonstrated to correlate with visual attention and are well-
suited for the task of salient object detection. To thoroughly
evaluate the learning performance of models, features having a
reasonably high degree of variability in performance are cho-
sen such that there is a considerable difference in performance
of the lowest performing feature to the highest one. We extract
nine low and mid-level features from the raw image re-sized
to 200x200 pixels. We extract the following features F0..8 for
each pixel of the image:

• F0: One global feature which assigns low saliency to
colors that vary a lot in the spatial domain based on
the work of Liu et al. [14].

• F1: One global feature capturing contrast between
clusters obtained from k-means segmentation inspired
by the work of Fu et al. [15].

• F2: One global feature computing the spatial distribu-
tion of pixels in a cluster with respect to image center
again inspired by the work of Fu et al. [15].

• F3: One region based feature that computes the global
contrast between spatial neighboring regions only [2].

• F4: One mid-level feature that uses the objectness of
image windows to highlight salient objects based on
the work of Alexe et al. [16].

• F5: One feature that groups information based on F4.

• F6,7: Two low-level region-based color features
adopted from the work of Naqvi et al. [17].

• F8: One feature that highlights salient patterns based
on the work of Naqvi et al. [17].
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B. Genetic Algorithm

As majority of the decision variables in the parameter
vector λi (please refer to section III-B1 for details) are real,
therefore real-coded representation of chromosomes is used.
The normalization and integration functions are encoded as
integers in the GA. The initial population is chosen from a
uniform distribution, while taking into account the bounds on
variables. We employ roulette wheel selection. We empirically
find the value of elite individuals to be six. Uniform crossover
and a custom mutation function is used to create the next gen-
eration (for details please refer to section III-B3 and III-B4).
The integer variables are truncated according to randomized
rounding, using a probability of 0.5. The iterations of the GA
solely depend upon the number of generations.

1) Encoding Decision Variables: The chromosomes use
real-coded representation with integer constraints. An example
phenotype of an individual is depicted in Figure 1.

The weighting parameters for the features are encoded in
the GA as in (4). Negative weights are also allowed.

wn ∈ [−1, 1] . (4)

Six different normalization schemes are encoded as fol-
lows. Each integer represents a different normalization opera-
tion.

N ∈ [1 · · · 6] . (5)

The three integration schemes used in this work are
encoded in (6). Each integer encodes a single integration
function.

◦ ∈ [1 · · · 3] . (6)

The ith optimal parameter vector to be searched, denoted
by λi can be obtained by concatenating the weight vector wn,
normalization operationN and the integration function ◦ (note:
There are multiple optimal parameter vectors to be searched,
please refer to section III-C for details).

2) Objective Function: We model the problem of learning
saliency as a binary classification problem similar to previously
reported methods [8], [9]. The goal of the objective function
is to maximize the classification accuracy of the system.
To achieve this goal, we encode our objective function as
to minimize the difference between the ideal classification
accuracy and the computed classification accuracy. In order
to compute the classification accuracy of a particular saliency
map, we first compute the saliency map output for the system
as follows:

S = ◦wiNFi. (7)

Afterwards, the saliency map is thresholded and compared
with a binary ground truth map to compute the classification
accuracy. The objective function can be expressed as

O(λi) = 1−
TP + TN

TP+ FP + TN+ FN
. (8)

3) Crossover: The crossover function used in the GA is
the standard uniform crossover operation [18]. To this end, we
effectively incorporate constraints arising from the bounds on
decision variables.

4) Mutation: To traverse the search space and find optimal
solutions, we would like to mutate our individuals, where a
function is randomly replaced by another function or a weight-
ing parameter is replaced by a random weight. However, unlike
crossover where we explore the search space randomly and
combine different weighting parameters, normalization and
integration functions, here we adapt when performing mutation
based on the last successful or unsuccessful generation. The
random search directions and step size take into account the
feasible region and the bounds on variables. A combination of
step size s, scale sc and direction vector u are added to the
parent chromosome p to compute the offspring. This procedure
is depicted as

o = p+ s× sc× u. (9)

C. Image Dependent GA Based Approach

Notation : The training image set is denoted as G =
{

G1,G2, . . . ,GN

k

}

, where the ith image group is represented

by Gi ⊆ G. The complete feature set for the training images

is denoted by F =
{

F1,F2, . . . ,FN

k

}

. F ∈ R
D×D×n×N ,

where D is the dimension of a single feature (D=200 here),
n is the number of features (n=9 here) and N is the number
of images in the dataset. The ith feature set for the ith image
group Gi is denoted as Fi ⊆ F and is given by {f1, f2, . . . , fk},
where i ∈

[

1 · · · N
k

]

. fi ∈ R
D×n is a feature vector and k is

the number of nearest neighbors (k=10 here).

The complete ground truth set for the training set G is de-

noted by G =
{

G1,G2, . . . ,GN

k

}

. The ith ground truth set for

the ith image group is denoted by Gi ⊆ G, i ∈
[

1 · · · N
k

]

. The

optimal parameter set is denoted by P =
{

λ1, λ2, . . . , λN

k

}

,

where λi ⊆ P is the ith optimal parameter vector for the ith

image group. The ith memory set represented as Mi ⊆M is
comprised of a feature set Fi and a parameter set λi. HereM
is the set of all memory setsMi. For a particular image in the
test phase, the optimal parameter vector is found by searching
for the closest image group in the feature space and is denoted
by λ⋆.

The system model for IGA is shown in Figure 2. The
process of feature extraction defined in section III-A is used to
extract features for the training image set G. The procedure for
autonomous grouping is depicted in Algorithm 1. The outputs
of multiple GA models having independent feature and ground
truth sets as inputs are connected to multiple independent
memory sets.

The procedure for training the IGA is depicted in Algo-
rithm 1. The images are autonomously placed into groups
depending upon their feature composition. The process starts
by searching for k nearest neighbors for an image based on its
distance to other images in feature space. The image features
and ground truth along with its nearest neighbors are assigned
to the current groups Fi and Gi and deleted from the complete
feature set F and ground truth set G, respectively. This process
continues until the number of features in the complete feature
set F fall below the nearest neighbors k. After the images are
divided into groups, multiple GA algorithms are trained, each
with corresponding features and ground truth from different
groups. The resulting optimal parameters λi obtained from
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Fig. 1. An example of the phenotype of an individual in our GA population. It shows the possible parameters and functions that can be encoded.

Fig. 2. System model of IGA. Feature extraction process is defined in
section III-A. The process of autonomous grouping is defined in Algorithm 1.

different GA algorithms and the corresponding feature set Fi

is stored in the corresponding memory set Mi.

Algorithm 1: Training Process of the IGA

Data: F ,G

Result: M
while |F| ≥ k do

Find k nearest neighbors for the first element of
the set F ;
Assign the feature vectors for the current element
and nearest neighbors to the set Fi;
Assign the ground truth for the current element
and nearest neighbors to the set Gi;
F − Fi, G − Gi;
i++;

for i← 1 to |Fi| do
Train each GA according to the equations (9)
and (10) and the settings described in
section III-B;
Find optimal parameter vector λi;
Create a memory set Mi = {λi,Fi};

During the testing phase of the IGA, feature vector ft for
the test image is computed. For the ith feature set Fi, the sum
of Euclidean distances di between its feature vectors fi and the
test feature vector ft is computed according to the following
equation:

di =

|Fi|
∑

j=1

‖fi − ft‖ . (10)

We concatenate di (for feature sets of all image groups)

in a vector d =
[

d1,d2, . . . ,dN

k

]

. The minimum value in d

denoted by D provides the distance between a particular test

image and the closest feature set. D is then used to access the
corresponding memory set and the optimal parameter vector
λ⋆. Afterwards, the saliency is computed and thresholded to
yield a binary saliency map. The binarized saliency is then
used to compute precision and recall. This process is depicted
in Algorithm 2.

Algorithm 2: Testing Process of the IGA

Data: M

Result: ˆPrec, ˆRecall

Compute feature vector ft;
for i← 1 to |Fi| do

Compute D according to equation 10;
Use D to find the corresponding λi = λ⋆;
Compute saliency using the learned parameters;

Threshold saliency and compute ˆPrec = TP
TP+FP ;

Compute ˆRecall = TP
TP+FN ;

IV. EXPERIMENTAL DESIGN

A. Data Set

This work uses the two challenging datasets from the
segmentation evaluation database (SED) [19]. The database
contains 200 images (of varying aspect ratio) in total, divided
into two datasets (100 images for each dataset), namely SED1
and SED2. The two datasets include one and two foreground
objects respectively. Unlike other databases, SED includes
images having multiple objects resulting in increased difficulty
level.

B. Ground Truth

The ground truth segmentations were also taken from the
SED database [19]. The ground truth segmentations have the
same dimensions as the input images. It includes manually
annotated segmentations from three different human subjects.
The segmentations contain two classes for one object images
and three classes for the two object images. We process
the human annotations to obtain ground truth segmentations
according to the method prescribed by [19]. The binary ground
truth segmentations for both two and three class images are
acquired by thresholding the votes from each human subject
for each foreground pixel. If there exists two or more than two
votes for a particular foreground pixel then it is assigned one
and all other pixels are assigned zero. In this manner binary
ground truth for all images is constructed.

C. Performance Measures

All salient object detection methods evaluate their approach
by comparing the thresholded saliency map with the binary
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ground truth map. To evaluate the robustness of a saliency map,
we use the benchmark method reported in [20] called fixed
or naive thresholding. According to this method the saliency
map is thresholded at a fixed threshold Tf within [0, 255]. To
compare saliency maps from different methods, this threshold
is varied from 0 to 255 to produce a precision-recall and an
F-measure curve.

D. Experimental Setup

Both SED1 and SED2 datasets are randomly divided into
70 training and 30 testing images. The GA is repeatedly run
for 30 times (with a different seed for each run) to search
for the optimal parameters. The population size is chosen
empirically to be 1000 and the GA is run for 200 generations.
The crossover fraction is set to 0.8. The solution closest to
the mean of the 30 solutions is selected as the representative
solution. This is achieved by computing the Euclidean distance
(in feature space) between each of the 30 solutions and the
mean solution. The solution having the minimum distance
from the mean solution is selected as the final representative
solution. The same settings are used to train the independent
GA models for the proposed IGA model.

V. RESULTS AND DISCUSSION

We evaluate our proposed GA and IGA techniques
against state-of-the-art benchmark methods namely linear
SVM (LSVM) and non-linear SVM (NLSVM), and state-of-
the-art methods created for the task of salient object detection,
namely AC [21], FTS [20] and MSSS [22] on benchmark
datasets.

A. Quantitative Analysis

1) Comparison of GA with Benchmark Methods: Figure 3
presents the average precision-recall and F-measure curves
for LSVM, NLSVM and our proposed GA model on the
SED1 and SED2 test sets. For SED1 performance, LSVM
performs marginally better than NLSVM in terms of precision-
recall curve, while the latter performs marginally better than
the former with respect to F-measure curve. Our proposed
GA model outperforms both versions of SVM by scoring
high precision values at all thresholds and recall values. With
respect to F-measure curve, the proposed GA model scores
higher F-measure values for all thresholds and outperforms
other methods.

On the SED2 dataset, LSVM and NLSVM performance
is similar in terms of area under the precision-recall and
F-measure curve. The proposed GA model outperforms the
state-of-the-art methods both in terms of precision-recall and
F-measure curves. Our proposed GA model shows robust
performance on majority of thresholding levels.

2) Comparison of IGA with Existing Work: Figure 4 and
Figure 5, present the test classification accuracies of the solu-
tion sets learned by individual GA models trained on different
image groups along with the test accuracy of our proposed
IGA based approach. The test accuracies of the independent
GA models (G1 − G7) are shown as box plot depicting the
dispersion of 30 independent runs of each GA model. The
test accuracy of the proposed IGA model evaluates to be a
single value due to the fact that IGA selects a single solution

(for a particular test image in the test phase) from the optimal
solutions produced by independent GA models.

Figure 4 and Figure 5 demonstrate that our proposed IGA
method achieves remarkably higher accuracy compared to
the individual GA models by effectively utilizing them on
image by image basis. As can be seen from Figure 4 that the
classification accuracies of individual groups are better than
80% with G5 reaching a high accuracy of more than 86%.
However the mean accuracy of all groups is still 83.8% and the
IGA method boosts the accuracy to 94.75% using the learned
solutions.

Fig. 4. Comparison of test classification accuracies for the seven groups and
IGA on the SED1 dataset.

The best individual test accuracies for SED2 dataset in
Figure 5 reach 83%, however the mean accuracy of all groups
in this case is also low, i.e. 73.9%. Again IGA exploits the
combination of groups and effectively boosts the classification
accuracy to 87.9%. It is to be noted that the dispersion in the
test accuracies for independent GA models is less as compared
with the accuracies for SED2 data set which seem to have more
variance. This property can be attributed to the higher difficulty
of the SED2 dataset as compared to the SED1 dataset.

Fig. 5. Comparison of test classification accuracies for the seven groups and
IGA on the SED2 dataset.

Figure 6 shows the performance of the proposed IGA
model in comparison with the state-of-the-art methods. For
the SED1 dataset, the proposed IGA model outperforms all
other methods both in terms of precision-recall and F-measure
curves. IGA performs notably better than our proposed GA
method (the second best performing method) with respect to
both precision-recall and F-measure curve. AC [21] performs
the worst scoring lowest precision and F-measure values for all
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Fig. 3. Top row: Average precision-recall curve and F-measure curve of the GA in comparison with linear combination and SVM benchmarks for SED1 dataset.
Bottom row: Average precision-recall curve and F-measure curve for the SED2 dataset. These curves are for the testing phase.

thresholds. FTS [20] and MSSS [22] perform comparably with
other methods on lower thresholds in terms of precision-recall
curves but do not show robustness to all threshold values.

On the SED2 dataset, IGA again outperforms all other
methods in terms of scoring high precision and F-measure
values for all threshold levels and in terms of highest area
under the curve. According to the F-measure curve, IGA
scores above 0.6 for the majority of the thresholds showing
the robustness of the system.

B. Analysis of Evolved Solutions

Table I shows the representative optimal parameter set
evolved by the GA and IGA models. The first two rows are
the optimal parameter sets learned by the GA using complete
training image sets for SED1 and SED2 datasets respectively.
The last two rows show the optimal parameters learned by the
IGA, while it is trained by using one of the image groups for
SED1 and SED2 datasets respectively. The indicative results
for only one image group are shown here due to the limitation
of space.

Weights w0 and w2 corresponding to features F0 and F2 are
found to be consistently low. This can be explained by the fact
the feature F0 (which captures the color spatial distribution) is
neither relatively informative for SED1 images due to highly
cluttered scenes, nor for SED2 images which include two
salient objects usually having different color. Feature F2 is
not highly useful as the objects are not consistently placed
in the center of the image for both SED1 and SED2 datasets
respectively. Weight w6 for the feature F6 was found to be

consistently high. This might be attributed to the fact that
objects in both SED1 and SED2 datasets have high contrast at
their boundaries along with consistent color contrast compared
with the background. Weight w8 for the feature F8 was
generally weighted negatively. This may be due to the reason
that objects in both datasets are highly discriminative to the
background in term of their color relative to the pattern of
the objects and the background. The integration operation was
generally found to be either addition or multiplication, which
is also the norm. The optimal normalization operation was
found to considerably varying for both GA and IGA models,
depending upon the nature of conditioning required for features
in different scenarios.

TABLE I. THE OPTIMAL PARAMETER SETS LEARNED BY THE GA.
NEGATIVE VALUES ARE RESTRICTED TO A SINGLE DECIMAL PLACE.

No. Parameter Set

w0 w1 w2 w3 w4 w5 w6 w7 w8 N ◦

GA1 0.00 0.00 0.01 0.95 0.91 0.90 1 0.36 0.00 3.00 1.00

GA2 0.01 0.92 0.07 0.41 0.02 0.23 1 0.10 -0.1 6.00 2.00

IGA1 0.02 0.08 0.00 0.33 0.05 0.46 0.98 0.68 -0.1 4.00 2.00

IGA2 0.34 0.36 0.19 0.68 0.35 0.00 0.99 0.94 -0.5 2.00 1.00

C. Qualitative Comparison

Figure 7 shows the visual comparison of models in terms
of their saliency output. The deterministic methods especially
FTS [20] and MSSS [22], perform well by assigning low
saliency to background but struggle in assigning high values
inside salient object contours. As the methods are based on
filtering, they might filter out important salient information,
when it lies in the same band. LSVM and NLSVM mostly

114



Fig. 6. Top row: Comparison of the proposed GA and IGA models with benchmarks (Linear and Nonlinear SVMs) and state-of-the-art methods (i.e. AC, FTS
and MSSS) in terms of average precision-recall curve and F-measure curve Bottom row: Similar set of results for the SED2 dataset. These figures depict the
performance of all the models on the test images.

Fig. 7. Visual comparison of models on selected images from both datasets. From left to right: Input, GT, AC, FTS, MSSS, NLSVM, LSVM, GA, IGA. Our
GA and IGA models are shown in the red box.
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highlight object boundaries and could not appropriately weigh
features that score higher inside salient object contours. Our
GA method performs better than other state-of-the-art methods,
but misses some important salient information in some cases.
Our IGA method produces the best saliency maps compared to
all other methods, highlighting the salient object and suppress-
ing the background. It effectively captures the neck and head
region in third row of the image, which is effectively missed
by all other approaches.

D. Run-time Aspects

In most real-time applications, the amount of time required
to handle a test scene is crucial, while the training time does
not affect the performance of the system. It is to be noted
that the training time for our proposed GA and IGA systems
is longer than the state-of-the-art methods because of the
overhead of complex evolutionary optimization to attain the
optimal solution. However, the time required for handling a
test image is comparable to all the state-of-the-art methods
included in this work for comparison. The total time required
to compute the saliency of a test image is highly dominated
by the time required to compute the features in case of
learning methods (i.e., GA, IGA and SVMs). The average
time required to compute the nine features for a single image
for SED1 dataset is 5.92(1.40) seconds. The figures in the
bracket represent the standard deviation. The timing results
were recorded on a desktop computer with a i7-4770 CPU @
3.40GHz (8 core) processor and 8GB of RAM.

VI. CONCLUSIONS

In this work, novel GA and image based GA (IGA)
techniques for detecting salient objects were presented. The
first objective to implement and fine-tune a GA system to
learn important parameters for effective feature combination in
a visual saliency prediction framework was achieved success-
fully showing improvements over state-of-the-art approaches.
When complemented with the ability to autonomously identify
different types of images, the IGA technique improved over
these benchmark approaches in terms of precision-recall, F-
measure and qualitative comparison.

Further conclusions were reached: 1) The normalization
and integration schemes play a vital role in feature com-
bination and can significantly enhance performance of the
system (compared with only feature weighting) as shown by
the performance of our GA method. 2) Learning optimal
parameters depending upon the feature composition of images
and using them accordingly enhances test performance and
generalization of the system as depicted by the superior
performance of our IGA technique.
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