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Abstract—Metaheuristics based on genetic algorithms (GA),
covariance matrix self-adaptation evolution strategies (CMSA-
ES), particle swarm optimization (PSO), and ant colony opti-
mization (ACO) were used for minimizing deviance for Poisson
regression and maximizing the log-likelihood function for logistic
regression and Cox proportional hazards regression. We observed
that, in terms of regression coefficients, CMSA-ES and PSO
metaheuristics were able to obtain solutions that were in better
agreement with Newton-Raphson (NR) when compared with
GA and ACO. The rate of convergence to the NR solution
was also faster for CMSA-ES and PSO when compared with
ACO and GA. Overall, CMSA-ES was the best-performing
method used. Key factors which strongly influence performance
are multicollinearity, shape of the log-likelihood gradient, and
positive definiteness of the Hessian matrix.

I. INTRODUCTION

The method of maximum likelihood using Newton-Raphson

(NR) iteration for stochastic gradient ascent maximization has

long been a successful technique used in regression modeling.

A particular problem with NR, however, is that it is not a

global optimization method, and its solution can get stuck at

local optima of multimodal cost functions. Another limitation

of NR is that the Hessian matrix H of second partial derivatives

of the log-likelihood function w.r.t. the parameters must remain

positive definite throughout the iterations. Since the covariance

matrix is the inverse of H at convergence, the importance

positive definiteness during matrix inversion increases with

the number of parameters. More parameters mean a greater

chance of multicollinearity, leading to a singular H as a result

of zero or near-zero eigenvalues. For large problems, the

likelihood function has to be summed over the entire solution

space, requiring costly calculation of derivatives, which can

overwhelm the desired run time.

Machine learning techniques are rapidly becoming popular

in biomedical data analysis as the constraints of traditional

techniques become more important. The majority of chal-

lenging problems in numerical analysis are high dimensional

and involve combinatorial optimization such as timetabling,

quadratic assignment, maximum satisfiability problems. Algo-

rithms developed for solving combinatorial optimization prob-

lems are termed “exact” or “approximate.” Exact algorithms

can find an optimal solution within a given run-time and are

therefore usually limited to solving small problems. For larger

problems requiring much longer run-times, approximate meth-

ods are typically used for deriving suboptimal solutions via
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short run-times. A heuristic is a type of labor-intensive approx-

imation algorithm developed for a particular cost function and

search space, which can successfully solve a problem based on

sound principles. The field of metaheuristics was introduced to

address development of problem-independent high level search

strategies for optimization problems [1]. Examples of early

metaheuristics include genetic algorithms [2], [3], evolutionary

programming [4], [5], evolution strategies [6]–[9], simulated

annealing [10], tabu search [11], and iterated local search

[12]. More recently, particle swarm optimization [13] and ant

colony optimization [14], [15] were introduced as new swarm

intelligence-based metaheuristics.

In light of the potential problems associated with NR like-

lihood maximization of costly multimodal problems and the

rich mixture of metaheuristics now available, it is propitious

to begin evaluating performance of metaheuristics when em-

ployed for likelihood maximization in regression methods for

which only NR has been implemented. This paper addresses

the use of genetic algorithms (GA), covariance matrix self-

adaptation evolution strategies (CMSA-ES), particle swarm

optimization (PSO), and ant colony optimization (ACO) for

maximum likelihood optimization of non-linear models for

Poisson regression, logistic regression, and Cox proportional

hazards (PH) regression. These regression methods are com-

monly used in biomedicine, epidemiology, and public health to

identify host (patient) and risk factors that are associated with

or predictive of outcome. Poisson regression is typically used

for modeling cancer rates, since many cancer rates are Poisson

distributed where the counts are rare in terms of the number

of years of follow-up among subjects. Logistic regression is a

commonly used supervised classifier, for which the outcome

variable is coded (0,1) to represent a case (with disease) or

control (without disease). The binary dependent variable in

logistic regression is regressed on the input variables, and no

assumption is made about the distribution of the input pre-

dictors. Therefore, an advantage of logistic regression is that

the input data can be categorical (nominal) or continuously-

scaled without being normally distributed. Cox PH regression

is a maximum likelihood method for modeling time-to-event

failure data, otherwise known as survival analysis. The depen-

dent variable for Cox PH is based on both the censoring (1-

failed,0-censored) and the survival time (cumulative time until

failure or censoring), while the input variables can be either

categorical or continuously-scaled. Unlike linear least squares

(multiple regression), Poisson regression, logistic regression,

and Cox PH regression are termed “multiplicative models,”

since they involve optimization of a multiplicative likelihood

function. Likelihood functions are essentially the product of
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many probabilities, where each probability is derived from a

non-linear equation. Because maximization of a multiplicative

likelihood function is mathematically intractable, the log of

the likelihood function is maximized using partial derivatives

of the log-likelihood function w.r.t. the regression coefficients.

This investigation addresses performance of Poisson regres-

sion, logistic regression, and Cox PH regression when GA,

CMSA-ES, PSO, and ACO metaheuristics are used for solving

parameters which maximize their log-likelihood. Within each

of the regression models, comparisons are made between

regression coefficients for each method, and model goodness-

of-fit is provided as a function of learning iterations.

II. METHODS

The NR method for maximizing the Poisson, logistic, and

Cox PH regression log-likelihood functions is first addressed,

followed by descriptions of the metaheuristic approaches in-

volving GA, CMSA-ES, PSO, and ACO. NR is not used

as a benchmark against which metaheuristic-based results

are compared, but rather as the primary basis for solving

the maximum likelihood problem due to its popularity. The

rate of convergence of NR will greatly exceed the uphill

gradient search performed by most of the slower learning

metaheuristics, and since we lacked prior knowledge about

metaheuristic performance with these likelihood functions, we

generated plots of regression coefficient values as a function of

iteration in order to observe the stability and relative change.

A. Poisson Regression

Let n represent the number of strata in a multiway table

partitioned on categories for demographics, follow-up period,

time since treatment, and risk factors, ci the total number of

failed cases in the i th table cell .i D 1; 2; : : : ; n/, and P Yi the

total person-years of follow-up in the i th cell. The likelihood

function for n table cells is

L.�/ D

n
Y

iD1

�ci e��P Yi ; (1)

where � is the hazard function. Now let xi be the p-

dimensional vector of covariate (feature) values for subjects

in the i th table cell such that � D exp.xi ˇ/. On substitution,

the likelihood becomes

L.ˇ/ D

n
Y

iD1

eci xi ˇ exp.�exiˇP Yi/: (2)

The log of the likelihood is

logL.ˇ/ D

n
X

iD1

ci xiˇ � exiˇP Yi ; (3)

with score

sj .ˇ/ D
@ logL.ˇ/

@ ǰ

D

n
X

iD1

xij .ci � exiˇP Yi /; (4)

and element .j; k/ of the Hessian

Hj;k(ˇ) D
�@2 logL.ˇ/

@ ǰ @ˇk

D

n
X

iD1

xij xikexiˇP Yi : (5)

Maximum likelihood estimates of each ǰ can be found by

determining the vector ˇ iteratively with the matrix manipu-

lation:

ˇiC1 D ˇi C H.ˇ/�1s.ˇ/; (6)

until convergence is reached when jjˇjj < �. Values of � are

typically in the range 10�8 � � � 10�4. At convergence, the

predicted number of failures is Oci D �P Yi for group i , and

the deviance residuals are

ri D ci log

�

ci

Oci

�

C . Oci � ci /; (7)

which allow the investigator to determine the goodness of fit

of the model, i.e., how well the observed data agree with the

fitted values.

B. Unconditional Logistic Regression

Let yi D 1 represent disease and yi D 0 non-disease for

subject i having covariate vector xi [16]. The probability of

disease for subject i is

�i1 D P.yi D 1jxi / D
eg1.xi/

eg0.xi/ C eg1.xi /
; (8)

and the probability of not having disease is

�i0 D 1 � �i1 D P.yi D 0jxi/ D
eg0.xi/

eg0.xi/ C eg1.xi /
; (9)

where gj .xi / is the logit, i.e., log.�ij =�i0/ for response

category j D 0; 1. The likelihood is

L.ˇ/ D

n
Y

iD1

.�i0/1�yi �
yi

i1

D

n
Y

iD1

.1 � �i1/1�yi �
yi

i1 :

: (10)

Taking the natural logarithm gives the log-likelihood in the

form

log.L.ˇ// D

n
X

iD1

yi .x
T
i ˇ/ � log

h

1 C e.xT
i

ˇ/
i

: (11)

The score is

sj .ˇ/ D
@ logL.ˇ/

@ ǰ

D

n
X

iD1

xi

 

yi �
e.xT

i
ˇ/

1 C e.xT
i

ˇ/

!

; (12)

and element .j; k/ of the Hessian matrix is

Hj;k.ˇ/ D
�@2 logL.ˇ/

@ ǰ @ˇk

D

n
X

iD1

xij xik

e.xT
i

ˇ/

.1 C e.xT
i

ˇ//2
: (13)

Maximum likelihood estimates of each ǰ are found using the

same matrix operations given in (6).
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C. Proportional Hazards Regression

Let t.1/ < t.2/ < � � � < t.k/ be the failure times for k subjects

with covariates x.1/; x.2/; : : : ; x.k/, and R.t.i// the risk set of

individuals at risk prior to failure time t.i/ [17]. For ci subjects

who fail at time t.i/ inferences about the regression parameters

ˇ are estimated by maximizing the likelihood function

L.ˇ/ D

k
Y

iD1

e.xT
i

Iˇ/

h

P

l2R.t.i// e.xT
l

Iˇ/
ici

: (14)

The likelihood can be linearized by taking the log of the

likelihood, which gives

logL.ˇ/ D

k
X

iD1

xT
i I ˇ � ci log

2

4

X

l2R.t.i//

e.xT
l

Iˇ/

3

5 ; (15)

with score

sj .ˇ/ D
@ logL.ˇ/

@ ǰ

D

k
X

iD1

2

4xij � ci

P

l2R.t.i/ / xjle
.xT

l
Iˇ/

P

l2R.t.i// e.xT
l

Iˇ/

3

5 ;

(16)

and element .h; j / of the Hessian matrix

Hh;j (ˇ) D
�@2 logL.ˇ/

@ˇh@ ǰ

D

n
X

iD1

ci

2

4

P

l2R.t.i/ / xhlxjle
.xT

l
Iˇ/

P

l2R.t.i// e.xT
l

Iˇ/
� AB

3

5 ;

(17)

where

A D

0

@

P

l2R.t.i/ / xhle
.xT

l
Iˇ/

P

l2R.t.i/ / e.xT
l

Iˇ/

1

A ; (18)

and

B D

0

@

P

l2R.t.i// xjle
.xT

l
Iˇ/

P

l2R.t.i// e.xT
l

Iˇ/

1

A : (19)

Apply matrix operation given in (6) to solve for ˇ.

D. Genetic Algorithms (GA)

The above likelihood functions were maximized using p

input features (variables) from the datasets used. Parametric

tuning of unknowns was accomplished using GA genes with

a precision of 10�6, based on use of gene length L D 20.

Binary bits f0; 1g were initialized by use of a uniform random

variate U.0; 1/ which was rounded down to 0 if U.0; 1/ � 0:5

and rounded up to 1 if U.0; 1/ > 0:5. Each chromosome

consisted of multiple L-length binary strings representing the

p coefficients. Binary to decimal encoding was performed, and

decimal values of coefficients were then applied to all samples

in order to calculate the log-likelihood (fitness) for Cox PH

and logistic regression, and 1=
P

i ri for Poisson regression.

A total of 200 generations was used for each GA run, with 20

chromosomes. Pairs of chromosomes were selected using tour-

nament selection, and single-point crossover was performed at

a randomly selected bit on each chromosome if a randomly

drawn U.0; 1/ was below the crossover probability Pc D 0:9.

Each bit of the child chromosomes underwent mutation if

a random U.0; 1/ was less than Pm D 0:05. The process

of binary to decimal conversion for obtaining parameters,

determination of fitness for each chromosome, tournament

selection, crossover, and point mutation, was repeated for the

specified number of generations.

E. Covariance Matrix Self-Adaptation (CMSA-ES)

The unknowns determined with covariance matrix self-

adaptation (CMSA-ES) were read as

ˇ.gC1/ D hˇi.g/
w C � .g/L.g/z; (20)

where hˇi
.g/
w are the parameter means after generation g based

on the � most fit chromosomes, � .g/ is a step size that controls

the variance of z, which is a vector of randomly drawn stan-

dard normal variates, and L.g/ is the Cholesky factorization

matrix of the covariance matrix C.g/. Matrix updates and

training parameters used in CMSA-ES are described in detail

in [18]. A total of 200 generations were employed for each run

using CMSA-ES. The number of chromosomes was set to 8

when p � 8 and 4Cb3 log.p/c when p > 8, using guidelines

found in [18].

F. Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) was also employed for
solving the unknown regression parameters [13]. At each
iteration, the fitness was based on the log-likelihood using the
current parameters. The velocity update for the l th particle is

vl .t C 1/ D w.t/vl .t / C c1U.0; 1/ ˝ .bl .t / � rl .t // C c2U.0; 1/

˝ .bg.t / � rl .t //;
(21)

where where w.t/ is the inertia factor, c1 is the cognitive

parameter, c2 is the social parameter, rl and vl are the position

and velocity vectors for particle l , bl.t/ is the best historical

fitness for particle l , ˝ is the direct product, and bg.t/ is

the global best particle. The inertia at iteration t is w.t/ D
wstart � .wstart �wend /t=Tmax. The particle position update

at each iteration is rl.t C 1/ D rl .t/ C vl.t C 1/. After the

required number training generations, regression coefficients ˇ

were set equal to rl for the particle with the greatest fitness.

Other parameters in PSO were set to: #numparticles = 20,

Tmax= 300, vmin D �0:05, vmax D 0:05, c1 D 2, c2 D 2,

wmin D 0:4, and wmax D 0:9. A total of 200 generations

were used for fitness calculations.

G. Ant Colony Optimization (ACO)

The ant colony optimization (ACO) method employed ker-

nel density estimation (KDE) to improve solutions that yielded

the best fitness among a population of solution vectors [14],

[15]. Let S 2 R
p�100 be the solution archive for 100 solution

vectors having p parameters .j D 1; 2; : : : ; p/. Let fl be the

fitness for the l th solution vector applied to the input samples.

Solution vectors were ranked R.1/; R.2/; : : : ; R.l/; : : : ; R.100/,

and the weight at generation t for each solution vector in S

was defined as

wl.t/ D
1

qp
p

.2�/
exp

�

.R.l/ � 1/2

2q2p2

�

; (22)

1056



where q is a fixed parameter for the algorithm. The weight

w defined a Gaussian variate with mean 1 and � D qp.

Small values of q provided greater weight to the best fitting

solution vectors, while larger values distributed the weight

more uniformly. We used a value of q D 0:1 for all runs, which

was observed to provide the best fits by solution vectors. The

probability of choosing a specific solution vector l was

Pl.t/ D
wl

P100
l wl

: (23)

For each successive learning generation, KDE was used to

simulate a normally distributed quantile for each parameter,

with the mean equal to the current parameter value, that is,

�l D sjl , and the standard deviation determined as

�l.t/ D �

100
X

e

d.se ; sl/

p � 1
; (24)

where se are each of the 100 solution vectors. The term � is

similar to the pheromone evaporation rate employed in discrete

ACO methods, and controls the learning rate. We used � D

0:3, which yielded the best results after performing a grid

search with increments of �� D 0:05 in the range 0 < � � 1.

A total of 200 generations were used for fitness calculations.

For each generation, values of sjl were obtained by using the

rejection method for the pdf derived from KDE with M D 100

equally spaced bins over the range .sjl � 4; sjl C 4/ [19].

Prior to training, S is initialized with standard normal variates

distributed as N (0,1). During each generation, the fitness

of each solution vector, fl , is determined by applying each

solution vector to the input samples. Fitness is then sorted in

descending order. Next, selection weights wl , probabilities Pl ,

and standard deviations �l for KDE are determined for each

solution vector. For each generation, two new solution vectors

were simulated. The first new solution vector was simulated

by using KDE p times, based on the single value of �l and p

values of � D sjl for the l th existing solution vector for which

fitness rank was R.l/ D 1. This was repeated for the second

new solution vector for using values from the existing solution

vector for which rank was R.l/ D 2. If the fitness values of

either (both) of the new solution vectors was greater than the

worst fitness values, then the solution vectors with the worst

fitness were replaced with these new solution vectors. The

process of simulating 2 new solution vectors per generation

represents 2 ants, which travel through the solution space.

Replacement of the solution vectors whose fitness is the worst

is similar to pheromone update of a potential pathway through

the solution space. The solution vector with the greatest fitness

among the 100 solutions stored in S is used for testing during

function approximation.

H. Datasets for Regression Modeling

For Poisson regression, data tabulations from the British

doctors mortality study of smoking were used [20]. Table I

lists the number of deaths and person-years of follow-up. For

logistic regression, the low birth weight dataset [21] includes

189 samples and 7 features representing 59 women who

had low birth weight babies (<2500 gm) and 130 who had

Fig. 1. Deviance for Poisson regression of mortality data as a function of
iteration.

Fig. 2. Log-likelihood for logistic regression of low birth weight data as a

function of iteration.

normal-weight babies. The features are: age of the mother

in years (age), weight in pounds at the last menstrual pe-

riod (lwt), smoking status during pregnancy (smoke, 1-yes,0-

no), history of premature labor (ptl, 1-yes,0-no), history of

hypertension (ht, 1=yes,0=no), presence of uterine irritability

(ui, 1=yes,0=no), and number of physician visits during the

first trimester (ftv). Last, for proportional hazards regression,

we use the Veterans Lung cancer data [17]. This dataset has

137 records with 8 covariates: standard or test treatment type

(trtmnt, 1=test,0=std), cell type2 (1=yes,0=no), cell type 3

(1=yes,0=no), cell type 4 (1=yes,0=no), Karnofsky score (0-

100), time since diagnosis (months), age at diagnosis (y), prior

therapy (1-yes,0-no), survival or follow-up time (d), and dead

or censored.

TABLE I

DEATHS AMONG SMOKING AND NON-SMOKING BRITISH MALE DOCTORS

[20]. PARAMETER DEFINITIONS ARE: AGE GROUP i , NUMBER OF DEATHS

di , PERSON-YEARS OF FOLLOW-UP Ti , DEATH RATE AMONG

NON-EXPOSED �i .0/, DEATH RATE AMONG EXPOSED �i .1/.

Non-smokers Smokers
Age group, i di Ti �i .0/ di Ti �i .1/

35-44 2 18,790 0.1064 32 52,407 0.6106
45-54 12 10,673 1.1243 104 43,248 2.4047
55-64 28 5,710 4.9037 206 28,612 7.1998

65-74 28 2,585 10.8317 186 12,663 14.6885
75-84 31 1,462 21.2038 102 5,317 19.1838
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TABLE II

POISSON REGRESSION COEFFICIENTS FOR THE BRITISH DOCTORS MORTALITY DATA AFTER 200 ITERATIONS. FEATURES IN COLUMNS ARE: AGE IN

RANGE 35-44(AGE35-44, 1-YES,0-NO), AGE IN RANGE 45-54(AGE45-54,1-YES,0-NO), AGE IN RANGE 55-64(AGE55-64,1-YES,0-NO), AGE IN RANGE

65-74(AGE65-74,1-YES,0-NO), AGE IN RANGE 75-84(AGE75-84,1-YES,0-NO), SMOKE(1-YES,0-NO), FOLLOWED BY DEVIANCE GOODNESS-OF-FIT.

Age35-44 Age45-54 Age55-64 Age65-74 Age75-84 Smoke Deviance

NR -1.0115 0.4724 1.6159 2.3389 2.6885 0.3545 6.07

GA -0.0366 0.4605 1.6426 2.5180 3.0414 0.3246 6.22

CMSA-ES -1.0116 0.4724 1.6159 2.3389 2.6885 0.3545 6.07

PSO -1.0116 0.4724 1.6159 2.3389 2.6885 0.3546 6.07

ACO -1.2667 0.1667 1.3265 2.0250 2.4418 0.6882 10.24

TABLE III

LOGISTIC REGRESSION COEFFICIENTS FOR THE LOW BIRTH WEIGHT DATA AFTER 200 ITERATIONS. FEATURES IN COLUMNS ARE: AGE (YEARS), WEIGHT

IN POUNDS AT THE LAST MENSTRUAL PERIOD (LWT), SMOKING STATUS DURING PREGNANCY (SMOKE, 1-YES,0-NO), HISTORY OF PREMATURE LABOR

(PTL, 1-YES,0-NO), HISTORY OF HYPERTENSION (HT, 1=YES,0=NO), PRESENCE OF UTERINE IRRITABILITY (UI, 1=YES,0=NO), NUMBER OF PHYSICIAN

VISITS DURING THE FIRST TRIMESTER (FTV), FOLLOWED BY MODEL LOG-LIKELIHOOD.

age lwt smoke ptl ht ui ftv Log(L)

NR -0.0151 -0.0089 0.6234 0.5950 1.7307 0.8379 0.0075 -105.21

GA 0.1236 -0.0338 0.7734 2.0685 2.5423 0.7251 -0.7031 -117.30

CMSA-ES -0.0434 -0.0031 0.4787 1.7106 -0.0396 1.0061 -0.1525 -114.12

PSO -0.0152 -0.0089 0.6235 0.5951 1.7290 0.8379 0.0073 -105.21

ACO -0.2362 -0.0428 0.9146 0.0028 7.5577 -7.2877 -0.8640 -181.98

TABLE IV

COX PROPORTIONAL HAZARDS REGRESSION COEFFICIENTS FOR THE VETERANS LUNG CANCER DATA AFTER 200 ITERATIONS. FEATURES IN COLUMNS

ARE: STANDARD OR TEST TREATMENT TYPE (TRTMNT, 1=TEST,0=STD), CELL TYPE2 (1=YES,0=NO), CELL TYPE 3 (1=YES,0=NO), CELL TYPE 4

(1=YES,0=NO), KARNOFSKY SCORE (0-100), TIME SINCE DIAGNOSIS (MONTHS), AGE AT DIAGNOSIS (Y), PRIOR THERAPY (1-YES,0-NO), FOLLOWED

BY MODEL LOG-LIKELIHOOD.

trtmnt celltype2 celltype3 celltypr4 Karnof timesd(m) ageatDx priorTX Log(L)

NR 0.1491 0.4115 0.4762 0.1595 -0.6566 -0.0016 -0.0915 0.0327 -474.38

GA 0.0436 0.2311 0.3163 0.0009 -0.7865 -0.0588 -0.1943 -0.0556 -474.72

CMSA-ES 0.1491 0.4115 0.4762 0.1595 -0.6566 -0.0016 -0.0915 0.0327 -474.38

PSO 0.1491 0.4115 0.4762 0.1595 -0.6566 -0.0016 -0.0915 0.0327 -474.38

ACO 0.5092 0.4780 0.4884 0.0944 -0.6001 -0.0833 -0.0055 0.1281 -482.22

Fig. 3. Log-likelihood for Cox proportional hazards regression of lung cancer
data as a function of iteration.

III. RESULTS

Poisson regression coefficients for the mortality data ob-

tained after 200 iterations are listed in Table II. When com-

pared with NR, only CMSA-ES and PSO provided coefficients

and deviance values that were similar. Logistic regression

coefficients for the low birth weight data obtained after 200

iterations are listed in Table III. PSO was the only method

that resulted in coefficients and a log-likelihood value that

were similar to results from NR. Results for Cox proportional

hazards regression of the Veteran’s lung cancer data are

listed in Table IV. Here, both CMSA-ES and PSO yielded

coefficients and log-likelihood values that were similar to

results derived using the NR method for maximizing the

log-likelihood functions. Figure 1 shows Poisson regression

convergence rates for the most fit chromosome (particle) for

various methods based on deviance values at each iteration.

Not surprisingly, a smooth convergence occurred with NR.

The ACO, PSO, and CMSA-ES methods converged slower

than NR, and the GA resulted in low deviance early on

but with very heterogeneous coefficient values. The ACO

method resulted in the slowest convergence rate, since only

2 chromosomes are used during learning. Figure 2 shows

logistic regression convergence rates of the various approaches

for the fittest chromosome based on log-likelihood values at

each iteration. A different pattern of convergence emerged for

the logistic regression analysis, whereby PSO, GA, ACO had

faster convergence rates, followed by CMSA. Figure 3 shows

the Cox PH regression convergence rates for various methods

for the fittest chromosome based on log-likelihood. Here, the

convergence rates for fastest for GA, CMSA, PSO, followed

by the slower ACO approach.

Figure 4 shows the Poisson regression coefficients for the

mortality data as a function of generation for minimizing

model deviance with NR, GA, CMSA, PSO, and ACO. By
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Fig. 4. Poisson regression coefficients for mortality data as a function of generation (iteration) for minimizing model deviance with Newton-Raphson (NR),

genetic algorithm (GA), covariance matrix self-adaptation (CMSA), particle swarm optimization (PSO), and ant colony optimization (ACO).

50 generations, CMSA-ES arrived at the same solution as NR

at nearly twice the rate. Regression coefficients for the GA

method were too heterogeneous to be of value for such a

model, and this reflects how stagnant a GA’s learning rate

can become before arriving at a solution. Certainly, many

more generations would have solved the coefficients, but at

the expense of longer computing time. PSO showed a smooth

transition in coefficient updating and arrived at a solution

at approximately 100 generations. The ACO-based method

arrived at a solution near 125 generations, and early on

revealed a pattern of coefficient updating that was similar to

CMSA-ES – but with more jumpy transitions. Figure 5 shows

the logistic regression coefficients for the low birth weight

data as a function of generation for maximizing log-likelihood

with NR, GA, CMSA, PSO, and ACO. For the logistic

regression model, GA and ACO provided unreliable coefficient

values at 250 generations. CMSA-ES went through a rapid

transition period between 50 and 150 generations involving

fewer stable updates to coefficients, and finally arrived at

a solution. PSO performed the same as it did for Poisson

regression, undergoing smooth updating of coefficients until

arriving at a solution near 175 generations. Figure 6 shows the

Cox PH regression coefficients for the lung cancer data as a

function of generation for maximizing the log-likelihood with

NR, GA, CMSA, PSO, and ACO. GA resulted in slightly more

stable coefficients for the Cox PH regression model, and while

CMSA-ES quickly arrived at a solution near 40 generations,

PSO arrived at a solution near 75 generations. ACO coefficient

values were considerably heterogeneous at 250 generations,

due to the slower learning rate imposed by use of just two

chromosomes.

IV. DISCUSSION

We observed that, in terms of regression coefficients, the

CMSA-ES and PSO metaheuristics were able to provide

results which were most similar to results from NR. Results

from GA and ACO were usually less in agreement with

NR. Looking at the iteration-specific results, the majority of

methods rapidly ascended the log-likelihood gradient, only

differing by the rate of convergence. Generally speaking,

regression by CMSA-ES and PSO rapidly converged, while

ACO tended to be slower because of the two chromosomes

used in training. The maximum log-likelihood values during

the early iterations of regression varied considerably, which

was mostly due to differences in parameter initialization.

NR parameter initialization used small (0.1) values for all

parameters, which may cause the starting log-likelihood fit

location to be very far away from the maximum, whereas

the metaheuristic methods use randomly generated standard

normal variates.
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Fig. 5. Logistic regression coefficients for low birth weight data as a function of generation (iteration) for maximizing log-likelihood with Newton-Raphson
(NR), genetic algorithm (GA), covariance matrix self-adaptation (CMSA), particle swarm optimization (PSO), and ant colony optimization (ACO).

When compared with GA and ACO, CMSA-ES and PSO

took larger steps during learning. CMSA-ES relies on mu-

tations of the step direction to form the covariance matrix

– which acts as a surrogate for the Hessian matrix. ACO

was observed to yield lower convergence rates, and this is

mostly due to the use of only two chromosomes for updating

among the 100 chromosomes used for bookkeeping in the

solution library. Hence, ACO updates much slower than PSO

and CMSA-ES. Initially, a GA crossover rate of Pc D 0:6 and

mutation rate of Pm D 0:005 resulted in slow convergence

rates, which were increased when using Pc D 0:9 and Pm D

0:05. Nevertheless, GA resulted in heterogeneous coefficient

values that were jumpy and unreliable. Overall, CMSA-ES

was observed to converge the fastest among the metaheuristics

used, and also resulted in coefficients that were similar to NR

results. PSO arrived at a solution a little more slowly when

compared with CMSA-ES, but its coefficient updates were

quite smooth. We did not assess the effect of collinearity on

each of the methods, and realize that this could have a strong

impact on the ability of various metaheuristic approaches for

function minimization(maximization). We also did not use the

square root of the Hessian matrix during NR iterations, nor

did we monitor the condition number of the Hessian matrix

to assess singularity and positive-definiteness. The datasets

employed were also not overly complex in terms of multi-

modal fitness landscapes, so our use of NR as a comparison

basis would not appreciably bias the observed differences

between the metaheuristic and NR results. Multicollinearity

(vs. orthogonality) would also elicit a strong influence on

the convergence rates of the various methods used, so our

future studies will incorporate simulations and evaluations

of multicollinearity of the variance-covariance matrix, and

positive definiteness of the Hessian matrix, while employing

more complex datasets.

V. CONCLUSIONS

The major observation of this investigation was that, with

respect to the regression coefficients, CMSA-ES and PSO

metaheuristics arrived at the NR solution much better than

GA and ACO. The CMSA-ES and PSO methods also arrived

at the NR convergence much faster when compared with

ACO and GA. The drawback of the GA was that it stagnated

during many iterations without showing rapid improvement

in its learning rate. The ACO was limited by only having

two chromosomes, causing lower learning rates through the

training iterations, and this was a design limitation of the

particular variant of ACO that was employed. Several factors

that strongly affected performance of these metaheuristics

were likely to be multicollinearity among input features, shape
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Fig. 6. Cox proportional hazards regression coefficients for lung cancer data as a function of generation (iteration) for maximizing log-likelihood with
Newton-Raphson (NR), genetic algorithm (GA), covariance matrix self-adaptation (CMSA), particle swarm optimization (PSO), and ant colony optimization

(ACO).

of the log-likelihood gradient, and positive definiteness of the

Hessian matrix.
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