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Abstract—In this paper, a novel approach is presented to
approximate the general fractional order nonlinear dynamic
systems. Firstly, a generalized T-S fuzzy method is used to approx-
imate the original models. Then a new method to approximate
the fractional order T-S models is utilized, and obtain a series
of integer order linear model. It is revealed for the first time
that a general fractional order nonlinear system (FONS) can
be approximated by a series of integer order linear models to
any degree of accuracy on any compact set. Finally, numerical
simulation results are provided to illustrate the effectiveness of
the proposed approach.

I. INTRODUCTION

In recent years, fractional order systems have attracted
increasing attention from control community, since many
engineering plants and processes, such as electronic circuit,
heat conduction and abnormal diffusion [1]–[5], can be more
concisely described by fractional order differential equations.
Due to the great efforts devoted by researchers, a number
of valuable results on system modeling [6] and identification
[7][8], controllability and observability [10], stability analy-
sis [11] and controller synthesis [12][13] of fractional order
systems have been reported in papers.

As we all know, the most difficult problem of analysis
and synthesis of fractional order dynamic system is how to
calculate the related fractional order equation, especially for
nonlinear system [3]. Fortunately, some available means were
presented, such as the approaches mentioned in literature [14]–
[18]. The author Wei proposed a new approach based on the
piecewise approximation and proved that the original system
and the approximation system have the same controllability
and observability [19].

Since T-S fuzzy control [20] appeared, a large number
of successful applications of nonlinear system control based
on it have been developed [21]–[23]. It’s worth noting that a
generalized T-S fuzzy model is proposed in [24], whose ability
to approximate non-affine nonlinear systems has been proved.
The corresponding research on FONS has received little at-
tention despite its practical significance. [25] modifies the T-S
fuzzy model and proposes a new technique to stabilize a class
of fractional order chaotic systems. Some control techniques

incorporated with fuzzy control have been implemented in the
control FONS, for example, H∞ control [26], sliding mode
control [27] and PID control [28].

Despite of the previous achievements, there is room for
further research. The related research focuses on the control
of a small special class FONS only. However, we have not
yet found any literature which introduce the application of
fuzzy control in FONS systematically, so far. What’s more,
we also haven’t found the related research on the non-affine
nonlinear systems or the non-commensurate order systems,
although these are very important. All of these motivate us
to finish this work.

The rest of this article is organized as follows: In section
II, we will briefly review a number of concepts of fractional
calculus and fractional order systems and give the problem
discussed later. Section III is devoted to use our method to
approximate the general FONS. In section IV, some numerical
simulations are executed to illustrate the effectiveness and
superiority of the proposed approaches. Conclusions are given
in section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Fractional order calculus

The fractional α th order (α > 0) Riemann-Liouville inte-
gral of a function f (t) is defined by [3]

Iα (f (t)) =
1

Γ (α)

∫ t

0

(t− τ)α−1
f (τ) dτ, (1)

where Γ (α) is the gamma function Γ (α) =
∫∞
0
xα−1e−xdx.

Obviously, Iα (f (t)) is the convolution of the function
f (t) with the impulse function hα (t) = tα−1/Γ (α) is the
Laplace transform of hα (t)

Iα (s) = L (hα (t)) = s−α. (2)

The so-called fractional order differentiation is just the
dual operation of the fractional order integration. Define v (t)
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and y (t) as the input and output of the fractional integration
operator Iα (s), respectively, then{

y (t) = Iα (v (t))
v (t) = Dα (y (t))

. (3)

B. Finite dimension approximation

In fact, Iα (s) (α > 0) is a linear frequency distributed
system, with input v (t) ∈ R and output y (t) ∈ R. Its
equivalent frequency distributed model with distributed state
z (ω, t) ∈ R satisfies{

∂z(ω,t)
∂t = −ωz (ω, t) + v (t)

y (t) =
∫∞
0
ηα (ω) z (ω, t) dω

, (4)

where ηα (ω) = ω−α sin (απ)/π.

In view of the frequency distributed model of Iα (s) usu-
ally cannot be used directly, now we choose finite distributed
frequency points ω0, ω1, · · · , ωk instead of continuous
frequency point, then the finite dimension approximate model
can be described as

dz(ω0,t)
dt = −ω0z (ω0, t) + v (t)

...
dz(ωk,t)

dt = −ωkz (ωk, t) + v (t)

ŷ (t) =
∑k

i=0 ciz (ωi, t)

, (5)

where y (t) = lim
k→∞

ŷ (t), ci is the i th element z (ωi, t).

Supposing Îα (s) is the transfer function of system Eq.(5),
then we have

Iα (s) = lim
k→∞

Îα (s), (6)

where the zero-pole model of Îα (s) can be denoted as

Îα (s) =
Gα

s+ω0

∏k

i=1

s+ ω̄i

s+ ωi
.

We have proved in [19] that Îα (s) can approximate Iα (s)
very well, when we select the zeros, poles and static gain as

ω̄i = λi−1γ−0.5ωl, i ∈ Ω

ω0=

{
λ−αγ−0.5ωl , 0 < α ≤ 0.6
0 , 0.6 < α < 1

ωi = λi−αγ−0.5ωl, i ∈ Ω

Gα = argmin
Gα

|Iα
(
j
√
ωlωh

)
− Îα

(
j
√
ωlωh

)
|

, (7)

where Ω
∆
= {1, 2, · · · , k} , λ = (γωh/ωl)

1
k−α .

Rewrite Îα (s) as follows

Îα (s) =
∑k

i=0

ci
s+ ωi

, (8)

considering the equivalence of the two forms, yields{
c0 = Gα

∏k
j=1

ω0−ω̄j

ω0−ωj

ci = Gα
(ωi−ω̄i)
(ωi−ω0)

∏k
j=1,j ̸=i

ωi−ω̄j

ωi−ωj
, i ∈ Ω

. (9)

C. Problem statement

Consider the pseudo state space model of the general
fractional order nonlinear model (FONM)

Dα1y1 = G1 (y1, y2, · · · , yn, u1, u2, · · · , um)
Dα2y2 = G2 (y1, y2, · · · , yn, u1, u2, · · · , um)

...
Dαnyn = Gn (y1, y2, · · · , yn, u1, u2, · · · , um)

, (10)

where the order α = [α1 α2 · · · αn]
T with αi ∈ (0, 1] for

any i ∈ N ∆
= {1, 2, · · · , n}, u = [u1 u2 · · · um]T ∈ Rm and

y = [y1 y2 · · · yn]T ∈ Rn are the input and output of the
system, respectively, with y ∈ Y =

∏n
i=1 [yi, ȳi], u ∈ U =∏m

i=1 [ui, ūi], Y × U ⊂ Rn × Rm is a compact set, without
loss of generality, we assume y (0) ∈ Y , u (0) ∈ U .

In order to describe briefly, we rewrite Eq.(10) as

Dαy = G (y, u) , (11)

where G (y, u) ∈ Rn is a linear or nonlinear function on
Y × U , origin for the equilibrium point G (0, 0) = 0, for any
(ya, ua) , (yb, ub) ∈ Y × U , there will always be a positive
constant L which keeps

∥G (ya, ua)−G (yb, ub)∥ ≤ L (∥ya − yb∥+ ∥ua − ub∥) . (12)

Our goal is to approximate the model Eq.(11) by integer
order linear model. There are two methods which can realize
the approximation.

The method 1 consists of two steps:

S1 First use integer order nonlinear models (IONM)
to approximate the original model in frequency
domain.

S2 Based on T-S fuzzy method, integer order linear
model (IOLM) are used to approximate the middle
model.

There are two steps in method 2 too.

S1 We use the generalized T-S fuzzy model to ap-
proximate the original model, obtaining a series
of fractional order linear models (FOLM).

S2 Secondly, using the method in II.B, we get the
final integer order linear approximation model.

Supposing the number of approximated models zeros is k,
the number of the fuzzy set for each state is κ ≥ 2, then we
can get the model type, the number of models and the number
of models dimension in every step of approximation with the
two methods. The results are shown in TABLE I–TABLE II. It
can be clearly seen that method 2 need less dimension models
than method 1, with less computational complexity. As a result
we adopt the second method in Section III.

III. MAIN RESULTS

A. Approximation in time domain

Our objective is to develop an approach to approximate
such general nonlinear system as Eq.(11) by the following class
of generalized T-S fuzzy models:
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TABLE I. THE CHARACTERISTICS OF MODELS OBTAINED BY TWO
METHODS

step method 1 method 2
FONM FONM
number 1 number 1
dimension n dimension n
IONM FOLM

S1 number 1 number κn+m

dimension n (k + 1) dimension n
IOLM IOLM

S2 number κn(k+1)+m number κn+m

dimension n (k + 1) dimension n (k + 1)

TABLE II. THE COMPUTATION COMPLEXITY OF TWO METHODS

The computation complexity in S1
method 1 O (n (k + 1))

method 2 O
(
κn+mn (m + n)

)
The computation complexity in S2

method 1 O
(
κn(k+1)+mn (k + 1) [m + n (k + 1)]

)
method 2 O

(
κn+mn (k + 2) [m + n (k + 2)]

)
Plant rule Rl: IF y1(t) is µl

1 AND· · · AND yn(t) is µl
n;

u1(t) is νl1 AND· · · AND um(t) is νlm, THEN

Dαy = Āly + B̄lu, l ∈ S
∆
= {1, 2, · · · , s} , (13)

where Rl denotes the lth fuzzy inference rule, s is the rules’
total number, µl

i and νlj are the fuzzy sets for any i ∈ N ∆
=

{1, 2, · · · , n} and j ∈ M
∆
= {1, 2, · · · ,m}, y ∈ Rn is the

output vector, u ∈ Rm is the input vector, and
[
Āl, B̄l

]
is the

system matrix of the lth local model.

According to the standard fuzzy inference method, that is,
using a singleton fuzzifier, product fuzzy inference, and center-
average defuzzifier, the T-S fuzzy model in Eq.(13) can be
rewritten as

Dαy =
∑s

l=1
µl (y, u)

(
Āly + B̄lu

)
, (14)

with

µl (y, u) =

∏n
i=1 µ

l
i (yi)

∏m
j=1 ν

l
j (uj)∑s

l=1

∏n
i=1 µ

l
i (yi)

∏m
j=1 ν

l
j (uj)

,

where µl (y, u) is the so-called normalized membership func-
tions, satisfying µl (y, u) ≥ 0, for each µl (y, u) ≥ 0, and∑s

l=1 µl (y, u)=1.

Lemma 1 [24] Let a general nonlinear system be given in
Eq.(11), where G (y, u) is continuously differentiable on the
compact set X × U with G (0, 0) = 0 . Then, for any ε1 > 0
and ε2 > 0, there exists a T-S fuzzy model given in Eq.(13)
such that

G (y, u) = GTS (y, u) + ∆G (y, u) , (15)

∥∆G (y, u)∥ ≤ ε1 ∥y∥+ ε2 ∥u∥ , (16)

where {
GTS (y, u) =

∑s
l=1 µl (y, u)

(
Āly+B̄lu

)
∆G (y, u) = ∆A (y, u) y +∆B (y, u)u

.

Proof: See [27, pp. 1145, Theorem 2.1]. Based on Lemma
1 the general fractional order nonlinear system can be approx-
imated by T-S fuzzy models.

Remark1 Supposing all the following assumptions hold,

• For any i ∈ N, j ∈M , there always exist yi ∈ [y
i
, ȳi],

uj ∈ [uj , ūj ] satisfying µl
i (yi) = 1, νlj (uj) = 1.

• For any i ∈ N, j ∈ M , [y
i
, ȳi] and [uj , ūj ] have the

same fuzzy partition number κ, and they are uniform
fuzzy partition.

• For any yi ∈ [y
i
, ȳi] (i ∈ N), there is always an l ∈ S

which keeps µl
i (yi) + µl+1

i (yi) = 1 and µl
i (yi) > 0,

and for any uj ∈ [uj , ūj ] (j ∈M), there is always
an l ∈ S which keeps νlj (uj) + νl+1

j (uj) = 1 and
νlj (uj) > 0.

one can obtain that

• For any (y, u) ∈ Y × U , the number
of rules is 2k (0 ≤ k ≤ n+m) whose∏n

i=1 µ
l
i (yi)

∏m
j=1 ν

l
j (uj) is positive for all l ∈ S.

• The approximation error of our method satisfies

∥∆G (y, u)∥ ≤ d2

2(κ− 1)
2 sup

(y,u)

f (y, u) ,

in which d = max{ȳi − yi, ūj − uj , i ∈ N, j ∈M},
f (y, u) =

∥∥∥∂2G(y,u)
∂y2

∥∥∥+ 2
∥∥∥∂2G(y,u)

∂y∂u

∥∥∥+ ∥∥∥∂2G(y,u)
∂u2

∥∥∥.

B. Approximation in frequency domain

According to the preceding discussion in the Section II,
the local model in Eq.(13) can be equivalently described as a
frequency distributed model as follows{

∂z(ω,t)
∂t = −ωz (ω, t) + Āly + B̄lu

y =
∫∞
0
ηα (ω) z (ω, t) dω

, (17)

where z (ω, t) ∈ Rn denotes the frequency distributed state,
ηα (ω) = diag (ηα1 (ω) , ηα2 (ω) , · · · , ηαn (ω)), ηαi (ω) =
ω−αisin (αiπ)/π, for any i ∈ N .

As we know, the model in Eq.(17) is the exact model of
the original system. Utilizing our approximation method, we
obtain the corresponding finite dimension approximate model{

dz(ωi,t)
dt = −ωiz (ωi, t) + Āly + B̄lu, i ∈ K

y =
∑k

i=0 Ciz (ωi, t)
, (18)

where Ci = diag (cα1,i, cα2,i, · · · , cαn,i), cαj ,i is the weight
coefficient ci of the discrete frequency distributed model of
fractional order integrator Iαj (s) at ωi for any i ∈ K.

For any i ∈ K ∪ {0} and j ∈ N , if we define
x (t) = [zT(ω0, t) z

T(ω1, t) · · · zT(ωk, t)]
T as the system

state variable, A = diag (A0, A1, · · · , Ak), where Ai =
diag (−ωα1,i,−ωα2,i, · · · ,−ωαn,i), ωαj ,i is the ith pole of
the discrete frequency distributed model of fractional order
integrator Iαj

(s), B = [B0 B1 · · · Bk]
T, Bi = In, In is the

n×n identity matrix, C = [C0 C1 · · · Ck], then the local T-S
model in Eq.(13) can be written as{

ẋ =
(
A+BĀlC

)
x+BB̄lu, l ∈ S

y = Cx
. (19)
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The global T-S model can be described as{
ẋ =

∑s
l=1 µl (Cx, u)

[(
A+BĀlC

)
x+BB̄lu

]
y = Cx

. (20)

Remark 2 The advantage of the approximation is that we
can avoid much complex computing about fractional order and
nonlinear problem. The cost of the approximation is that the
degree and the number of the final system in Eq.(20) become
larger than the original system in Eq.(11).

IV. NUMERICAL EXAMPLES

A. Affine nonlinear system

Consider a fractional order affine nonlinear system D
0.055y1=y2
D0.200y2=y3
D0.745y3=− y31 − y22 − y3 + u

.

Select the approximation parameters as γ = 100, [ωl, ωh] =
[0.001, 1000]Hz, k = 20, κ = 3, then there are 9 fuzzy rules.
The uniform distribution of triangular membership functions
curve of y1 and y2 are shown as Fig. 1.

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

y
1
 or y

2

membership

Small Middle Big

Fig. 1. The membership functions curve of y1 and y2

The system matrices
[
Āl, B̄l

]
of the lth local model (l ∈ S)

are shown as

Ā3(i−1)+j =

[
0 1 0
0 0 1

a (i) b (j) −1

]
, B̄3(i−1)+j =

[
0
0
1

]
.

where a = [0.029 − 0.113 − 0.544], b = [0 − 0.375 − 0.75].

Based on the initial conditions, we can get the step re-
sponses of the original model, the middle approximation model
shown in Eq.(14) and the final approximation model shown in
Eq.(20) as Fig. 2.

Obviously, the three step response curves are very close,
which just indicate that the proposed approximation method is
very effective for the fractional order affine nonlinear system.
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Fig. 2. The step response of y1, y2 and y3

B. Non-affine nonlinear system

Consider a fractional order non-affine nonlinear system{
D0.6y1=y2
D0.3y2=0.6 cos (y1) [u+ sin (u)] + y2

We select the same approximation parameters as the affine
nonlinear example, then there are 9 fuzzy rules. and have the
same uniform distribution of triangular membership functions.
The fuzzy sets center of y1 and u are {0.01, 1.255, 2.5} and
{0.01, 0.505, 1}, respectively.

The system matrices
[
Āl, B̄l

]
of the lth local model (l ∈ S)

are shown as

Ā3(i−1)+j =

[
0 1

a (i, j) 1

]
, B̄3(i−1)+j =

[
0

b (i, j)

]
.

where the parameters a =

[
0.0024 0.006 0.23
−0.0028 −0.024 −0.27
−0.0034 −0.025 −0.18

]

and b =

[
1.23 1.15 1.11
0.706 0.70 0.69
−0.196 −0.91 −0.48

]
.

Based on the assumptions, we can get the simulation results
which are illustrated in Fig. 3.

We can easily see that the approximation performance is
excellent. Meanwhile, it is found that the approximation error
in S2 is much smaller than that in S1. The approximation
performance is a bit poor when the original curve changes
severely.

V. CONCLUSION

The fractional order nonlinear dynamic system is a kind
of special, important and difficult system. The specific con-
tribution of the article is that we propose a novel approach
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Fig. 3. The step response of y1 and y2

to approximate fractional order dynamic system based on T-
S fuzzy dynamic models. Firstly, a generalized T-S fuzzy
method is used to approximate the general FONS. Secondly,
a new approximation method for fractional order integrator
is extended to approximate the fractional order T-S models.
Theoretical analysis and numerical simulation show that a
general FONS can be approximated by a series of IOLM to any
degree of accuracy on any compact set. It is believed that the
approach provide a new avenue to solve the related problem
of FONS.
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