
 
 

 

  

Abstract—In this paper, a MIMO Takagi–Sugeno (T-S) fuzzy 
model is built on the basis of the nonlinear model of micro 
-electro mechanical system (MEMS) gyroscope. A robust 
adaptive sliding mode control with on-line identification for the 
upper bounds of external disturbance and estimator for the 
model uncertainty parameters is proposed. Based on Lyapunov 
methods, these adaptive laws can guarantee that the system is 
asymptotically stable, and force the proof mass of the MEMS 
gyroscope to oscillate in the x and y direction at given frequency 
and amplitude. The controller is implemented on the nonlinear 
model of MEMS gyroscope at the same time. Numerical 
simulations are investigated to verify the effectiveness of the 
proposed control scheme on the T-S model and the nonlinear 
model. 

I. INTRODUCTION 
EMS gyroscopes have become the most growing 

micro-sensors for measuring angular velocity in recent 
years due to its compact size, low cost and high 

sensitivity. The constant vibration of the proof mass in the  
MEMS gyroscope is essential in the process of measuring the 
angular velocity. Cross stiffness and damping resulting from 
fabrication imperfections, time-varying parameters, 
quadrature errors and external disturbances have negative 
influence on  the performance of the MEMS gyroscope. In the 
last few years, many control approaches have been proposed 
to control the MEMS gyroscope to oscillate in the given 
direction at given frequency and amplitude, and improve its 
performance and stability. Park et al. [1] presented an 
adaptive controller for a MEMS gyroscope which drive both 
axes of vibration and controls the entire operation of the 
gyroscope. Leland [2] proposed an adaptive control of a 
MEMS gyroscope using force-to-rebalance operation. John 
and Vinay [3] proposed a novel concept for an adaptively 
controlled triaxial angular velocity sensor device. Sliding 
mode control is a robust control technique which has many 
attractive features such as robustness to parameter variations 
and insensitivity to external disturbance, having some 
limitation such as chattering or high frequency oscillation in 
practical applications. Utkin [4][5] showed that variable 
structure control is insensitive to parameters perturbations 
and external disturbances. Batur et al. [6] developed a sliding 
mode control for a MEMS gyroscope system. Adaptive 
sliding mode control has the advantages of combining the 
robustness of variable structure methods with the tracking 
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capability of adaptive control strategies. Adaptive sliding 
mode control approaches have been developed to control the 
MEMS gyroscope in [7]. Fei et al. [8] derived an adaptive 
sliding mode control for a MEMS gyroscope. [9] presented a 
robust adaptive sliding mode controller for triaxial gyroscope. 
An adaptive sliding mode controller with upper bound 
estimation has been developed to control the vibration of 
MEMS gyroscope by [10]. Intelligent control approaches 
such as fuzzy control do not depend on mathematical models 
and have ability to approximate nonlinear systems. Adaptive 
fuzzy sliding mode controller can be utilized to compensate 
the model uncertainties and disturbances since it combines 
the merits of the sliding mode control, the fuzzy inference 
mechanism and the adaptive algorithm. In [11], an adaptive 
fuzzy sliding mode control (AFSMC) for micro-electro- 
mechanical system (MEMS) triaxial gyroscope is proposed. 
A fuzzy logic adaptive sliding mode control using feedback 
linearization approach is proposed for the micro-electro 
mechanical system triaxial gyroscope with unknown system 
nonlinearities in [12].  

The system nonlinearities in MEMS gyroscope model have 
been described in [13][14]. Using the fuzzy implications and 
the fuzzy reasoning methods suggested by Takagi and 
Sugeno [15], a real nonlinear plant model could be 
constructed by local linear models referring to [16]. Chien et 
al. [17] developed robust adaptive controller design for a 
class of uncertain nonlinear systems using online T-S 
fuzzy-neural modeling approach. Park et al. [18] designed 
T-S model based indirect adaptive fuzzy controller using 
online parameter estimation. Systematic stability analysis and 
controller design of the robust adaptive fuzzy controller using 
T-S fuzzy model for MEMS gyroscope have not been 
investigated before. Therefore, adaptive sliding mode control 
using T-S model is utilized to approximate the nonlinear 
system and compensate model uncertainties and external 
disturbances in the control of MEMS gyroscope, thus 
improving the tracking and compensation performance. 

In this paper, the Lyapunov-based robust adaptive sliding 
model control strategy is applied to the MEMS gyroscope 
using T-S fuzzy model. The T-S fuzzy model can represent 
the system nonlinearity by using IF-THEN rules. The 
proposed adaptive sliding mode controller can guarantee the 
asymptotical stability of the closed loop system and improve 
the robustness of control system in the presence of model 
uncertainties and external disturbances. The control strategy 
proposed here has the following characteristics and 
contributions: 

1) T-S modeling method provides a possibility for developing 
a systematic analysis and design method for complex 
nonlinear control systems. Since there exists nonlinearities in 
MEMS gyroscope system, it is necessary to utilize T-S fuzzy 
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model to represent the nonlinear system approximately. The 
MIMO T-S fuzzy model with both parametric uncertainties 
and input disturbance of the MEMS gyroscope, is established 
based on the non-dimensional vector equation of motion of 
MEMS gyroscope. 
2) The on-line adaptive algorithm to estimate the upper bound 
of the uncertainties and external disturbance is proposed 
referring to [19]. A robust adaptive sliding mode control with 
on-line identification of the upper bounds of external 
disturbance and estimator of the uncertainty parameters is 
proposed in the control of MEMS gyroscope using T-S model. 
The upper bound of external disturbance on-line adaptation 
could lower sliding mode gain and as a result, reduce the 
chattering that could damage the actuator in the practical 
application. The adaptive algorithm of model uncertainty 
parameters could compensate the error between optimal T-S 
model and the designed T-S model and alleviate the 
fluctuation of the sliding surface. 
 

II. DYNAMICS OF MEMS GYROSCOPE 
This section describes the dynamic of Z-axis MEMS 

gyroscope through non-dimensional transformation. Assume 
that the gyroscope is moving with a constant linear speed; the 
gyroscope is rotating at a constant angular velocity; the 
gyroscope undergoes rotations along z axis. A z-axis MEMS 
gyroscope is depicted in Fig.1. The nonlinear dynamic 
equations of such a gyroscope system can be derived as: 

( ) ( )
( ) ( )
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where ,x y  represent the system generalized coordinates, 
m  is the mass of proof mass. Fabrication imperfections 
contribute mainly to the asymmetric spring term xyd , and 
asymmetric damping terms xyk ; ,xx yyd d  are damping terms; 

xx yyk , k  are linear spring terms; 3 3,
x y

k k  are nonlinear spring 

terms; 
z
∗Ω  is the input angular velocity; ,x yu u∗ ∗  are the 

control forces. 
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Fig.1. Z-axis vibratory MEMS gyroscope with nonlinear effective spring. 

Dividing the equation by the proof mass, and because of 
the non-dimensional time 0t tω∗ = , dividing both sides of 

equation by reference frequency 2
0ω  and reference length 0q  

and rewriting the dynamics in vector forms result in 

2 3
31 1 1 1 1 1 1

2 2 2
0 0 0 0 0 0 0 0 00 0 0 0

2 z Kq q q q K q qD S u
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Define a set of new parameters as follows:  
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The final form of the non-dimensional vector equation of 
motion for the z-axis gyroscope is 

( ) ( )2 3
1 1 1 1 3 12 zq S D q K q K q u= − + Ω − − +

                          
(3)  

III. T-S FUZZY MODEL  
T-S model is based on a set of fuzzy rules to describe a 

global nonlinear system in terms of a set of local linear 
models which are smoothly connected by fuzzy membership 
functions. T-S fuzzy models include two kinds of knowledge: 
one is qualitative knowledge represented by fuzzy IF-THEN 
rules, and the other is quantitative knowledge represented by 
local linear models [20]. The MIMO T-S fuzzy model with 
both parametric uncertainties and input disturbance of the 
MEMS gyroscope, is established based on the vector equation 
of MEMS gyroscope (3). The T-S fuzzy model of the MEMS 
gyroscope could be composed by 9 IF–THEN rules, which 
include both fuzzy inference rules and local analytic linear 
models. The ith rule has the form 

( )

1 2

3 4

:          

, 1,2, ,9

i i

i i

i i i i

Rule i IF x is about M and y is about M
and x is about M y is about M
TH q A A q B uEN H iδ= + Δ + + =

 
        

 
 

By using the strategy of singleton fuzzification, product 
inference and center-average defuzzification, defuzzification 
fuzzy dynamic T-S model is 

( ) ( )9

1
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(4)
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 is the normalized membership function, 

where
1 2 3 4 1 2 3 4

, , ,
i i i i i i i ii M M M M M M M Mη η η η η η η η η= ,  are membership 

function values of the fuzzy variable , , ,x y x y  and with 
respect to fuzzy set 

1 2 3 4, , ,i i i iM M M M  respectively, iAΔ  
is 

the parameter uncertainties and δ
 
is the input disturbance. 

Assumption 1(Matching condition): There exists matrix of 
appropriate dimensions G  such that H BG= , where BG  is 
the matched disturbance.  

According to (4), there exists 1 0
0 1

G
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. 

Under the assumption of matching condition, (4) can be 
rewritten as: 

( )

( )

q t Aq Aq Bu H
Aq Aq Bu BG
Aq Aq B u f

δ
δ

= + Δ + +
= + Δ + +
= + Δ + +

                                       

     (5) 

where Bf  represents the lumped external disturbances, 
which is given by f G= δ . 

IV. ADAPTIVE FUZZY SLIDING MODE CONTROL 
In this section, a robust adaptive sliding mode control 

strategy using T-S model for MEMS gyroscopes is proposed 
as shown in Figure 2. A detailed study of the robust sliding 
mode control algorithm with proportional sliding surface is 
presented in the presence of matched parameter uncertainties 
and external disturbances. The on-line identification of the 
upper bounds of external disturbance and the adaptive 
algorithm for parameter uncertainties is proposed with the 
sliding mode controller to alleviate the chattering in the 
control force and the fluctuation of the sliding surface. The 
controller contains three parts , , .eq n sU U U  

The controller is 
also implemented on the nonlinear model to verify the 
correctness of the T-S model and the feasibility of the 
proposed control scheme on the nonlinear model of MEMS 
gyroscope. 

The control target for MEMS gyroscope is to force the 
proof mass to oscillate in the x  and y  direction at given 

frequency and amplitude such as 
( )
( )

sin

sin
x x

y y

x A t

y A t

ω

ω

=

=
. The 

state-space equation of reference model can be defined as
 

r r rq A q=                                                                                (6)  
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Fig.2. Block diagram of adaptive fuzzy sliding mode control 
 
Define the tracking error as 

re q q= −                                                                                 (7) 
Then the derivative of tracking error is 

( )r r re q q Aq Aq B u f A q= − = + Δ + + −                              (8) 
Define the sliding surface as 
s Ce=                                                                                 (9) 
where c is a constant matrix as 

11 12 13 14

21 22 23 24

C C C C
C

C C C C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦  

And the derivative of sliding surface is 
( ) r rs Ce CAq C Aq CB u f CA q= = + Δ + + −

                     
(10) 

As we know, the sliding mode control requires the upper 
bound of uncertainties and disturbances to specify the sliding 
mode gain to satisfy the requirement of stability and 
robustness. In conventional sliding mode control, the upper 
bound of uncertainties, which includes parameter variations 
and external disturbances, must be available. However, the 
bound of the uncertainties is difficult to measure in advance 
for practical applications. If the upper bound is chosen to be 
too small, it may not compensate the model uncertainties and 
external disturbances to guarantee reaching condition of 
sliding mode, so the control system may be unstable. High 
sliding mode gain will cause large chattering. Therefore, an 
on-line identification algorithm for the upper bound of 
external disturbance is proposed to estimate the optimal upper 
bound to alleviate the chattering. 

Assumption 2(Bounded condition): The matched lumped 
disturbance f  is bounded such as 0f G c= ≤δ , where 0c  
is unknown positive constant. 

Define the estimation error of the optimal upper bound as 
0 0 0ˆ=c c c− , where 0ĉ  is the estimate of unknown positive 

constant 0c . Define the estimation error of parameter 
variations as ˆA A AΔ = Δ −Δ , where ÂΔ  is estimate of unknown 
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constant AΔ , referring to (4), the third and fourth column of 
AΔ  is always zero, so define the AΔ  as [ ]1 2 0 0A a aΔ = Δ Δ  
where 

1 1 1

1 11 12 13 14 1 11 12 13 14

2 2 2

2 21 22 23 24 2 21 22 23 24

ˆ ,

ˆ ˆ ˆ ˆ ˆ= , = ,

ˆ ,

ˆ ˆ ˆ ˆ ˆ= , =

a a a

a a a a a a a a a a

a a a

a a a a a a a a a a

Δ Δ Δ

⎡ ⎤ ⎡ ⎤Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦ ⎣ ⎦
Δ Δ Δ

⎡ ⎤ ⎡ ⎤Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ⎣ ⎦ ⎣ ⎦

= -

= -

 The adaptive controller is proposed as 
eq s nu u u u= + +                                                                (11) 

where ( ) ( ) ( ) ( )( )1 ˆ
eq r ru CB CA q t CAq t C Aq t−= − − Δ

 
is  

equivalent  control, which describes the behavior of the 
system when the trajectories stay over the sliding manifold 
and a variable structure control part that enforces the 
trajectories to reach the sliding manifold and prevent them 
leaving the sliding manifold, ( ) 1

su CB Ks−= −  is robust item, 
which can guarantee that the control system is asymptotically 

stable,
0ˆ

T T

n T T

B C su c
B C s

= −

 

is sliding mode term which represents 

the nonlinear feedback control for suppressing the effect of 
the uncertainty. 

Substituting (11) into (10)  
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Define a Lyapunov function candidate as 
2

0 1 1 2 2

1 2 32 2 2 2

T TT c a a a as sV
r r r

Δ Δ Δ Δ
= + + +

                               
(13) 

Differentiating V with respect to time yields 

1 1 2 2
0 0

1 2 3

1 T T
T a a a aV s s c c

r r r
Δ Δ Δ Δ

= + + +
                      

 (14) 

where 1 2 3, ,r r r  are positive constants. 

Substituting (12) into (14) yields 

[ ]

0

1 1 2 2
0 0

1 2 3
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Δ
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T Ta a a a
r r
Δ Δ Δ
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(15) 
Choose the adaptive laws for parameter variations as

 

1 2 1

2 3 2

T T

T T

a r qs CP

a r qs CP

Δ =

Δ =                                                                (16)  

where [ ]1 1 0 0 0 TP = , [ ]2 0 1 0 0 TP = . 
Substituting (16) into (15) yields 

( )

0 0 0
1

0 0 0
1

0 0 0 0
1

0 0 0
1

1ˆ

1ˆ

1ˆ

1

T T T T

T T T T T

T T T

T T T

V s Ks B C s c s CBf c c
r

s Ks B C s c B C s f c c
r

s Ks B C s c c c c
r
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     (17) 

Choose the adaptive laws for upper bound as 

0 1
T Tc r B C s=

                                                                 
(18) 

Substituting (18) into (17) yields 

min ( ) 0TV s Ks K s= − ≤ <λ                                             (19) 
where 

min ( )Kλ  is the minimum eigenvalues of K .  
Therefore it has been proved that V  is a negative definite, 

implying that 0 1 2, c , ,s a aΔ Δ  are all bounded. From (12) it can 

be known that s  is also bounded. min ( )V K s≤ −λ  implies that 

s  is integrable as [ ]
0

min

1 (0) ( )
( )

t
s dt V V t

K
≤ −∫ λ

. Since )0(V  

is bounded and )(tV is nonincreasing and bounded, 

0
lim

t

t
s dt

→∞ ∫  is bounded. Since 
0

lim
t

t
s dt

→∞ ∫  is bounded and s   

is also bounded, according to Barbalat’s lemma, ( )s t  will 
asymptotically converge to zero, lim ( ) 0

t
s t

→∞
= .  

Remark : To eliminate the problem of integral wind-up in 
the adaptation of the upper bound of the unknown 
disturbance, the adaptive law is modified as 

( )0 1 4 0
T Tc r r c B C s= − +                                                 (20) 

where 4r  is a positive constant. 
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V. SIMULATION STUDY 
In this section, we will evaluate the proposed adaptive 

fuzzy control using T-S model approach on the lumped 
MEMS gyroscope sensor model. The control objective is 
design an adaptive fuzzy sliding mode controller so that the 
position q  can track the reference model rq . Parameters of 
the MEMS gyroscope sensor are as follows: 

3 3

0 00.57 8kg, 1 , 10 6 , 5.0 ,
80.98 , 71.62 , 5 ,

3.56 6 , 3.56 6 , 0.429 6 ,

0.0429 6 , 0.0429 6 .

z

xx yy xy

xxx y

yy xy

m e kHz q e m rad s
k N m k N m k N m

k e N m k e N m d e Ns m

d e Ns m d e Ns m

ω= − = = − Ω =
= = =

= = = −

= − = −

   Since the general displacement range of the MEMS 
gyroscope sensor in each axis is sub-micrometer level, it is 
reasonable to choose 1 mμ  as the reference length 0q . Given 
that the usual natural frequency of each axle of a vibratory 
MEMS gyroscope sensor is in the kHz  range, 0ω  is chosen 
as 1 kHz . The unknown angular velocity is 
assumed 5.0z rad sΩ = . The desired motion trajectories are 

( ) ( )sin , sinx x y yx A t y A tω ω= = , where 1, 1.2,x yA A= =  

6.71 , 5.11 .x yKHz KHzω ω= =  The sliding mode parameter 

of (9) is chosen as 
0.01 0 1 0

0 0.01 0 1
C

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

, the controller 

parameters in ( ) 1
su CB Ks−= −  is chosen as 

1000 0
0 1000

K
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

. The plant parameters are adjusted online 

by adaptive law (16) where the adaptive 
gain 2 30.01, 0.01r r= = , while the initial value 0 0c = . The 
adaptive parameter of upper bound in (19) is 1 410, 10r r= =  

and the initial value
 [ ]1 0 0 0 0 ,αΔ =  initial value

 
[ ]2 0 0 0 0αΔ = . The physical parameters in the T-S 

fuzzy model are not known exactly, hence, there exists error 
between optimal T-S model and the designed T-S model. In 
this simulation, we choose the control matrix of the T-S 

model in (4) as

-0.075 0.002 -14207 -877
-0.017 -0.12 -877 -12564

1 0 0 0
0 1 0 0

A

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

,

 

the 

initial state values of T-S model are[ ]0 0 0.5 0.6 , initial 

state values of the nonlinear model are [ ]0 0 0.5 0.6 , the 

external disturbance is
10sin(2 )
10sin(2 )

t
t

⎡ ⎤
⎢ ⎥
⎣ ⎦

π
π

. The fuzzy rules for T-S 

fuzzy model for the system can obtained from linearizing the 
nonlinear model (3) at the points 
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Fig.3. The tracking error T Se −  
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Fig.4. The tracking error NONe  
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Fig.5. Convergence of the AΔ . 
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Fig.6. Convergence of the 

0c . 

The tracking error T Se −  between the reference model and 
T-S model is shown in Fig.3. and Fig.4 depicts the tracking 
error NONe  between the reference model and nonlinear model. 
From Fig.3. and Fig.4, we can see the tracking errors T Se −  
and NONe  converge to zero asymptotically. It can be 
concluded that the MEMS gyroscope can maintain the proof 
mass to oscillate in the x and y direction at given frequency 
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and amplitude in the presence of the external disturbances and 
uncertainty parameters. Fig.4 confirms the effectiveness of 
the proposed control on the nonlinear model. Fig.5 plots the 
estimation of model uncertainty parameters. It can be found 
that the model uncertainty parameters AΔ  converge to 
constant values. Fig.6 demonstrates the upper bound 
estimation of external disturbance converge to a constant 
value in very short time.  
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Fig.7. Control efforts with adaptive upper bound. 

0 5 10
-2

0

2
x 10

4

U
eq

-X

0 5 10
-2

0

2
x 10

4

U
eq

-Y

0 5 10
-2000

0

2000

U
n-

X

0 5 10
-2000

0

2000

U
n-

Y

0 5 10
-2000

0

2000

U
s-

X

0 5 10
-2000

0

2000

U
s-

Y

0 5 10
-2

0

2
x 10

4

time(s)

U
-X

0 5 10
-2

0

2
x 10

4

time(s)

U
-Y

 
Fig.8. Control efforts with fixed upper bound. 

Fig.7 and Fig.8 compare the control efforts between the 
control strategy with adaptive upper bound and the 
conventional control strategy with fix upper bound. It is 
obvious that the control input in Fig. 7 is better than that of 
Fig. 8 and the chattering is reduced greatly when using the 
adaptive estimate of the upper bound of system disturbances.  

VI. CONCLUSION 
A robust adaptive sliding mode control for angular velocity 

sensor of MEMS gyroscope using T-S fuzzy model is 
presented in this paper. The asymptotical stability of the 
closed-loop system can be guaranteed with the proposed 
control strategy. The upper bound of external disturbance 
on-line adaptation could lower sliding mode gain and as a 
result, reduce the chattering that could damage the actuator in 
the practical application. The adaptive algorithm for 
uncertainty parameters could compensate the error between 
optimal T-S model and the T-S model we choose, as well as 
improved the sliding surface convergence performance. The 

proposed control scheme can achieve a good robust and 
favorable tracking performance against parameter 
uncertainties and external disturbances. Simulation studies 
are implemented to verify the effectiveness of the proposed 
adaptive fuzzy control for angular velocity sensor in the 
presence of unknown upper bound of external disturbance 
and model uncertainties. 

REFERENCES 
[1] R. Park, R. Horowitz, S. Hong, and Y. Nam, Trajectory switching 

algorithm for a MEMS gyroscope, IEEE Trans. On Instrumentation and 
Measurement, 2007, 56(60): 2561–2569. 

[2] R. Leland, Adaptive control of a MEMS gyroscope using Lyapunov 
methods, IEEE Transactions on Control Systems Technology, 2006,14: 
278–283. 

[3] J. John and T. Vinay, Novel concept of a single mass adaptively 
controlled triaxial angular velocity sensor, IEEE Sensors Journal, 2006, 
6(3): 588–595. 

[4] V. I. Utkin, Variable structure systems with sliding modes, trans. on 
Automatic Control,1977, 22: 212-222. 

[5] V. I. Utkin, Sliding Modes in Control Optimization, Springer-Verlag, 
Berlin, 1992. 

[6] C. Batur and T. Sreeramreddy, Sliding mode control of asimulated 
MEMS gyroscope, ISA Transactions, 2006, 45(1): 99–108. 

[7] J. Fei and C. Batur, A novel adaptive sliding mode control with 
application to MEMS gyroscope, ISA Transactions, 2009, 48(1): 
73–78.  

[8] J. Fei, X. Fan, and W. Dai, Robust tracking control of triaxial angular 
velocity sensors using adaptive sliding mode approach, International 
Journal of Advanced Manufacturing Technology, 2011, 52:627–636. 

[9] J. Fei and F. Chowdhury, Robust Adaptive Sliding Mode Controller for 
Triaxial Gyroscope, the 28th Chinese Control Conference Shanghai, 
P.R. China, 2009, 5574 - 5579. 

[10] J. Fei, Robust adaptive vibration tracking control for a MEMS vibratory 
gyroscope with bound estimation, IET Control Theory and Application, 
2010,4(6):1019–1026. 

[11]  J. Fei and M. Xin, An adaptive fuzzy sliding mode controller for 
MEMS triaxial gyroscope with angular velocity estimation, Nonlinear 
Dyn, 2012, 70:97–109. 

[12] J. Fei and S. Wang, Feedback linearization-based adaptive fuzzy 
sliding mode control of MEMS triaxial gyroscope, International 
Journal of Robotics and Automation , 28(1), 72-80, 2013. 

[13] S. Asokanthan and T. Wang, Nonlinear instabilities in a vibratory 
gyroscope subjected to angular speed fluctuations, Nonlinear 
Dynamics, 2008, 54:69–78. 

[14] T. Wang, Nonlinear and Stochastic Dynamics of MEMS-Based 
Angular Rate Sensing and Switching Systems, Ph.D Dissertation, the 
University of Western of Ontario London, Ontario, Canada, 2009. 

[15] T. Takagi and M. Sugeno, Fuzzy identification of systems and its 
applications to modeling and control, IEEE Trans. on systems, Man, 
and Cybernetics, Part B: Cybernetics, 1985,15:116–132. 

[16] Marcelo C. M. Teixeira and Stanislaw H. Zak, Stabilizing Controller 
Design for Uncertain Nonlinear Systems Using Fuzzy Models, IEEE 
TRANSACTIONS ON FUZZY SYSTEMS, 1999, 7(2):133-142. 

[17] Y. Chien, W. Wang, Y. Leu and T. Lee, Robust adaptive controller 
design for a class of uncertain nonlinear systems using online T–S 
fuzzy-neural modeling approach, IEEE Trans. on systems, Man, and 
Cybernetics, Part B: Cybernetics, 2011,41(2): 542 - 552. 

[18]  C. Park and Y. Cho, T–S model based indirect adaptive fuzzy control 
using online parameter estimation, IEEE Trans. on systems, Man, and 
Cybernetics, Part B: Cybernetics, 2004,34(6):2293-2302. 

[19] C.Y. Su, and T. Leung, A sliding mode controller with 
bound-estimation for robot manipulator, IEEE Transactions on 
Robotics and Automation, 1993, 9(2):208-214. 

[20] Gang Feng, A Survey on Analysis and Design of Model-Based Fuzzy 
Control Systems, IEEE Transactions on Fuzzy Systems, 2003, 
14(2):676-697. 

364




