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Abstract— The multiplicative consistency (MC) property of
interval additive reciprocal preference relations (IARPRs) is
explored, and then the consistency index is quantified by the
multiplicative consistency estimated IARPR. The MC property
is used to measure the level of consistency of the information
provided by the experts and also to propose the consistency
index induced ordered weighted averaging (CI-IOWA) operator.
The novelty of this operator is that it aggregates individual
IARPRs in such a way that more importance is put on the
most consistent ones. Finally, an approach for group decision
making problems with IARPRs is proposed.

I. INTRODUCTION

DECISION MAKERS (DMs) usually need to compare
a finite set of alternatives X = {x1, x2, . . . , xn}

with respect to a single criterion, and construct preference
relations. In general, there are two basic preference relations:
multiplicative preference relations [1] and additive reciprocal
preference relations [2].

In both cases, the preference relations elements represent
the dominance of one alternative over another and take the
form of exact numerical values. Both preference relations
have been shown to be mathematically equivalent [3]. Thus,
in this paper we just focus on the second type of preference
relation and we will refer to it as simply reciprocal preference
relation (RPR).

However, many decision making processes take place in an
environment in which the information is not precisely known
[4][5][6][7][8][9][10]. As a consequence, the DMs may feel
more comfortable to use an interval number rather than an
exact crisp numerical value to represent their preference.
Therefore, interval additive reciprocal preference relations
(IARPRs) can be considered an appropriate representation
format to capture experts’ uncertain preference information
[11][13][14]. Indeed, the use of IARPRs in GDM problems
under uncertain environments has recently attracted the at-
tention of many researchers [15][16].

One key issue that needs to be addressed in this type of
decision making environment is that of “consistency”. The
problem has been extensively studied in the case of reciprocal
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preference relations (RPRs). For RPRs, consistency is based
on the concept of transitivity, which is modelled in many
different ways (see for example [17]). Tanino [18] proposed
a multiplicative transitivity property for RPRs, which was
proved to be the most appropriate one for modelling cardinal
consistency of such type of preference relations [19]. Recall
that RPRs are particular cases of IARPRs, and therefore
the same conclusion can be applied to them. Consequently,
the first aim of this article is to formalise the multiplicative
transitivity property for IARPRs. Furthermore, we investigate
the multiplicative consistency estimated IARPR and quantify
the level of consistency or consistency index (CI) of an
IARPR.

Because consistent information is considered more rele-
vant or important than inconsistent information, a novel ag-
gregation operator that associates higher weights with more
consistent information will be developed. In other words, a
new consistency index induced ordered weighted averaging
(CI-IOWA) operator is defined and proposed to compute the
collective IARPR. Finally, an approach for group decision
making problems with IARPRs is proposed.

II. CONSISTENCY OF INTERVAL ADDITIVE RECIPROCAL
PREFERENCE RELATIONS

Given three alternatives xi, xj , xk such that xi is preferred
to xj and xj to xk, the question whether the degree or
strength of preference of xi over xj exceeds, equals, or is
less than the degree or strength of preference of xj over xk
cannot be answered by the classical preference modelling
[19]. The introduction of the concept of fuzzy set as an
extension of the classical concept of set when applied to a
binary relation leads to the concept of a fuzzy relation. The
adapted definition of a fuzzy reciprocal preference relation
(FRPR) is the following one [20]:

Definition 1: A fuzzy preference relation (FRPR) P on a
finite set of alternatives X = {x1, . . . , xn} is characterised
by a membership function µP : X × X −→ [0, 1], with
µP (xi, xj) = pij , verifying

∀i, j ∈ {1, . . . , n} : pji = 1− pij . (1)
As mentioned before, in this article and because there is

no risk of confussion, we will call this type of preference
relation as simply reciprocal preference relation (RPR)

Membership functions are subject to uncertainty arising
from various sources [21]. Klir and Folger comment [22]:

“... it may seem problematical, if not paradoxical,
that a representation of fuzziness is made using
membership grades that are themselves precise real
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numbers. Although this does not pose a serious
problem for many applications, it is nevertheless
possible to extend the concept of the fuzzy set to
allow the distinction between grades of member-
ship to become blurred.”

Here Klir and Folger described blurring a fuzzy set to form
an interval valued fuzzy set [23][24]:

Definition 2: Let INT ([0, 1]) be the set of all closed
subintervals of [0, 1] and X be an universe of discourse. An
interval valued fuzzy set (IVFS) Ã on X is characterised by
a membership function µÃ : X → INT ([0, 1]). An IVFS Ã
on X can be expressed as follows:

A = {(x, µÃ(x)); µÃ(x) ∈ INT ([0, 1]) ∀x ∈ X}. (2)
Given two interval numbers ã1 = [a−1 , a

+
1 ] and ã2 =

[a−2 , a
+
2 ], the main interval arithmetic operations can be

expressed in terms of the lower and upper bounds of the
resulting intervals as follows [25]:

1) ã1+ã2 = [a−1 , a
+
1 ]+[a−2 , a

+
2 ] = [a−1 +a−2 , a

+
1 +a+2 ].

2) ã1−ã2 = [a−1 , a
+
1 ]−[a−2 , a

+
2 ] = [a−1 −a

+
2 , a

+
1 −a

−
2 ].

3) ã1 · ã2 = [a−1 , a
+
1 ] · [a−2 , a

+
2 ] = [(a1a2)−, (a1a2)+],

(a1a2)− = min{a−1 a
−
2 , a

−
1 a

+
2 , a

+
1 a
−
2 , a

+
1 a

+
2 };

(a1a2)+ = max{a−1 a
−
2 , a

−
1 a

+
2 , a

+
1 a
−
2 , a

+
1 a

+
2 }.

4) ã1/ã2 = [(a1/a2)−, (a1/a2)+],

(a1/a2)− = min{a−1 /a
−
2 , a

−
1 /a

+
2 , a

+
1 /a

−
2 , a

+
1 /a

+
2 };

(a1/a2)+ = max{a−1 /a
−
2 , a

−
1 /a

+
2 , a

+
1 /a

−
2 , a

+
1 /a

+
2 },

provided that 0 /∈ [a−2 , a
+
2 ].

Note that the real number a ∈ R can be represented in
interval form as [a, a]. Two interval numbers ã1 = [a−1 , a

+
1 ]

and ã2 = [a−2 , a
+
2 ] are equal if and only if a−1 = a−2 and

a+1 = a+2 . An interval number ã = [a−, a+] is positive
when a− ≥ 0. The product and division of positive interval
numbers can be simplified as follows:

3) ã1 · ã2 = [a−1 , a
+
1 ] · [a−2 , a

+
2 ] = [a−1 a

−
2 , a

+
1 a

+
2 ].

4) ã1/ã2 = [a−1 , a
+
1 ]/[a−2 , a

+
2 ] = [a−1 /a

+
2 , a

+
1 /a

−
2 ],

provided that a−2 > 0.

The application of the concept of IVFS to a RPR leads to
the concept of interval additive reciprocal preference relation
(IARPR) [11][13]:

Definition 3: An interval additive reciprocal preference
relation (IARPR) P̃ on a finite set of alternatives X =
{x1, . . . , xn} is characterised by a membership function
µP̃ : X × X −→ INT ([0, 1]), with µP̃ (xi, xj) = p̃ij =
[p−ij , p

+
ij ], verifying

∀i, j ∈ {1, . . . , n} : p̃ji = 1− p̃ij . (3)
The above definition of IFPR can be expressed in terms of
the lower and upper bound of the interval valued preference
values as follows:

∀i, j = 1, 2, . . . n : p−ij + p+ji = p+ij + p−ji = 1. (4)

Given two interval numbers ã1 = [a−1 , a
+
1 ] and ã2 =

[a−2 , a
+
2 ], Xu [26] proposed the following possibility degree

(PD) to measure the degree up to which the ordering relation
ã1 � ã2 holds:

P (ã1 � ã2) = max

{
1−max

{
a+2 − a

−
1

a+1 − a
−
1 + a+2 − a

−
2

, 0

}
, 0

}
(5)

III. CONSISTENCY OF INTERVAL ADDITIVE RECIPROCAL
PREFERENCE RELATIONS

Consistency of RPRs is based on the notion of transitivity,
in the sense that if alternative xi is preferred to alternative xj
(pij ≥ 0.5) and this one to xk (pjk ≥ 0.5), then alternative xi
should be preferred to xk (pik ≥ 0.5). This transitivity notion
is normally referred to as weak stochastic transitivity [27].
Later, Tanino [18] introduced the multiplicative transitivity
of RPRs as follows:

Definition 4: A RPR P = (pij) on a finite set of alterna-
tives X is multiplicative transitive if and only if

pji
pij

=
pjk
pkj

pki
pik

∀i, k, j ∈ {1, 2, . . . n} (6)

is verified by non zero preference values.
Obviously, multiplicative transitivity property extends

weak stochastic transitivity, and therefore extends the clas-
sical transitivity property of crisp preference relations. Fur-
thermore, Chiclana et al. [19] proved that pij · pjk · pki =
pik · pkj · pji ∀i, k, j is equivalent to pij · pjk · pki =
pik · pkj · pji ∀i < j < k, and ultimately characterised
the formulation of the cardinal consistency of RPRs via
representable uninorms. Because the cardinal consistency
with the conjunctive representable cross ratio uninorm is
equivalent to Tanino’s multiplicative transitivity property, and
any two representable uninorms are order-isomorphic, it was
proved that multiplicative transitivity is the most appropriate
property to model consistency of RPRs. This is captured in
the following definition [19]:

Definition 5: A RPR P = (pij) on a finite set of alterna-
tives X is consistent if and only if

U(pik, pkj) =


0, (pik, pkj) ∈ {(0, 1), (1, 0)}

pikpkj
pikpkj + (1− pik)(1− pkj) , otherwise

(7)
Because RPRs are particular types of IARPRs, we can

extend the notion of multiplicative transitivity of RPRs to
the case of IARPRs as per the following definition:

Definition 6: An IARPR P̃ = (p̃ij)n×n on a finite set of
alternatives X is multiplicative transitive if and only if

p̃ji
p̃ij

=
p̃ki
p̃ik

p̃jk
p̃kj

, i < k < j (8)

Note that reciprocity of preferences and division of interval
number yield:

p̃ji
p̃ij

=
[p−ji, p

+
ji]

[p−ij , p
+
ij ]

=

[
p−ji

p+ij
,
p+ji

p−ij

]
=

[
1

p+ij
− 1,

1

p−ij
− 1

]
.
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Applying the product of positive interval numbers and the
equality of interval numbers, we have:

1

p+ij
− 1 =

(
1

p+ik
− 1

)
·

(
1

p+kj
− 1

)
;

1

p−ij
− 1 =

(
1

p−ik
− 1

)
·

(
1

p−kj
− 1

)
.

The above expressions can be rewritten as follows:

p−ij =
p−ikp

−
kj

p−ikp
−
kj + (1− p−ik)(1− p−kj)

;

p+ij =
p+ikp

+
kj

p+ikp
+
kj + (1− p+ik)(1− p+kj)

.

Finally, because function f(x) = x/(x + a) is monotone
increasing when a > 0, then it is clear that

0 ≤ p−ij ≤ p
+
ij ≤ 1.

Therefore, we have proved the following result:
Theorem 1: If an IARPR P̃ is multiplicative transitive,

then we have

1) p−ij =
p−ikp

−
kj

p−ikp
−
kj + (1− p−ik)(1− p−kj)

, i < k < j

2) p+ij =
p+ikp

+
kj

p+ikp
+
kj + (1− p+ik)(1− p+kj)

, i < k < j

The following definition is therefore justified:
Definition 7: An IARPR P̃ = (p̃ij)n×n on a finite set of

alternatives X is consistent if and only if

Ũ(p̃ik, p̃kj) =

{
0, (p̃ik, p̃kj) ∈ {(0, 1), (1, 0)}[
p−ij , p

+
ij

]
, otherwise

(9)

The consistency property (9) can be used to compute
consistency based estimated valued of the elements of a given
IARPR. Indeed, given an IARPR P̃ = (p̃ij), the interval
preference value p̃ij can be partially estimated using an
intermediate alternative xk (i < k < j) as follows:

ũp
k
ij = Ũ(p̃ik, p̃kj). (10)

Then, the global consistency based estimated value can
be computed as the average of the partially estimated values
obtained using all possible intermediate alternatives:

up−ij =

∑j−1
k=i+1 up

k−
ij

j − i− 1
; up+ij =

∑j−1
k=i+1 up

k+
ij

j − i− 1
.

Therefore, given an IARPR, P̃ = (p̃ij), the following multi-
plicative consistency estimated IARPR, ŨP = (ũpij)n×n =([
up−ij , up

+
ij

])
n×n can be constructed:

up−ij =


p−ij , i ≤ j ≤ i+ 1∑j−1

k=i+1 up
k−
ij

j − i− 1
, i+ 1 ≤ k ≤ j

1− up+ji, i > j

(11)

and

up+ij =


p+ij , i ≤ j ≤ i+ 1∑j−1

k=i+1 up
k+
ij

j − i− 1
, i+ 1 ≤ k ≤ j

1− up−ji, i > j

(12)

Because the multiplicative consistency property is the only
consistency property used in the the paper, the symbol Ũ will
not be used unless it is necessary.

A. Consistency Indexes of IARPRs

If the information provided in an IARPR is completely
consistent, then it is p̃ij = ũpij . However, in a real decision
making problem experts are not always fully consistent. As
a result, it is necessary to measure their degree of inconsis-
tency. The distance between the values p̃ij and ũpij can be
used in measuring the level of consistency of an IARPR at
its three different levels: pair of alternatives, alternatives and
relation. One such distance is the Hamming distance, which
we propose to use [11]:

d(p̃ij , ũpij) =
1

2

(
|p−ij − up

−
ij |+ |p

+
ij − up

+
ij |
)
.

Definition 8 (Pair of Alternatives Consistency Index):
Let P̃ be an IARPR and ŨP be its corresponding
multiplicative consistency estimated IARPR. The consistent
index at the pair of alternatives (xi, xj), CIij , is:

CIij = 1− d(p̃ij , ũpij). (13)
The higher the value of CIij , the more consistent is p̃ij with
respect to the rest of preference values involving alternatives
xi and xj . Note that we always have that CIij = CIji.

The consistency index at the level of alternatives is ob-
tained by aggregating all the consistency index values of its
corresponding pair of alternatives:

Definition 9 (Alternatives Consistency Index): The
consistency index associated to the alternative xi is

CIi =

n∑
j=1
i6=j

CIij

(n− 1)
(14)

When CIi = 1, then all the preference values involving
alternative xi are fully consistent.

The global consistency index of an IARPR is defined as
the aggregated value of all individual alternatives consistency
indexes:

Definition 10 (IARPR Consistency Index): The consisten-
cy index of an IARPR P̃ is defined as follows:

CI =

n∑
i=1

CIi

n
(15)

Note that CI = 1 if and if only if∑n
i,j=1,i6=j CIij=n · (n−1). Because CIij ∈ [0, 1],

then we have that
∑n
i,j=1,i6=j CIij=n · (n−1) if and

only if CIij = 1∀i 6= j, i.e. d(p̃ij , ũpij) = 0 (∀i 6= j),
which means that the IARPR, P̃ , and its corresponding
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multiplicative consistency based estimated IARPR, ŨP ,
coincide. Therefore, we have that the concept of consistent
IARPR based on the multiplicative transitivity property is
well defined as per the following:

Definition 11: An IARPR P̃ is consistent if and if only if
CI = 1.

Example 1. Computation of Consistency Indexes. Suppose
four different experts {e1, e2, e3, e4} provide the following
IARPRs over a set of four alternatives {x1, x2, x3, x4}:

P̃
1

=


− [0.3, 0.5] [0.4, 0.6] [0.5, 0.7]

[0.5, 0.7] − [0.5, 0.8] [0.5, 0.6]
[0.4, 0.6] [0.2, 0.5] − [0.4, 0.6]
[0.3, 0.5] [0.4, 0.5] [0.4, 0.6] −



P̃
2

=


− [0.4, 0.5] [0.3, 0.4] [0.4, 0.6]

[0.5, 0.6] − [0.5, 0.6] [0.6, 0.7]
[0.6, 0.7] [0.4, 0.5] − [0.4, 0.5]
[0.4, 0.6] [0.3, 0.4] [0.5, 0.6] −



P̃
3

=


− [0.3, 0.6] [0.4, 0.5] [0.2, 0.3]

[0.4, 0.7] − [0.3, 0.5] [0.3, 0.4]
[0.5, 0.6] [0.5, 0.7] − [0.6, 0.7]
[0.7, 0.8] [0.6, 0.7] [0.3, 0.4] −



P̃
4

=


− [0.4, 0.6] [0.5, 0.8] [0.5, 0.8]

[0.4, 0.6] − [0.4, 0.5] [0.5, 0.7]
[0.2, 0.5] [0.5, 0.6] − [0.4, 0.5]
[0.2, 0.5] [0.3, 0.5] [0.5, 0.6] −


The consistency based estimated IARPRs are:

ŨP
1
=

 − [0.30, 0.50] [0.30, 0.80] [0.30, 0.65]
[0.50, 0.70] − [0.50, 0.80] [0.40, 0.86]
[0.20, 0.70] [0.20, 0.50] − [0.40, 0.60]
[0.35, 0.70] [0.14, 0.60] [0.40, 0.60] −



ŨP
2
=

 − [0.40, 0.50] [0.40, 0.60] [0.36, 0.55]
[0.50, 0.60] − [0.50, 0.60] [0.40, 0.60]
[0.40, 0.60] [0.40, 0.50] − [0.40, 0.50]
[0.45, 0.64] [0.40, 0.60] [0.50, 0.60] −



ŨP
3
=

 − [0.30, 0.60] [0.16, 0.60] [0.33, 0.60]
[0.40, 0.70] − [0.30, 0.50] [0.39, 0.70]
[0.40, 0.84] [0.50, 0.70] − [0.60, 0.70]
[0.40, 0.67] [0.30, 0.61] [0.30, 0.40] −



ŨP
4
=

 − [0.40, 0.60] [0.31, 0.60] [0.40, 0.79]
[0.40, 0.60] − [0.40, 0.50] [0.31, 0.50]
[0.40, 0.69] [0.50, 0.60] − [0.40, 0.50]
[0.21, 0.60] [0.50, 0.69] [0.50, 0.60] −



The experts’ consistency indexes are: CI1 = 0.924, CI2 =

0.943, CI3 = 0.903, CI4 = 0.926.

IV. AGGREGATION BASED ON CI-IOWA OPERATOR

The collective preferences are obtained by fusing all the
individuals’ preferences using the consistency index induced
ordered weighted averaging (CI-IOWA) operator [28][29],
which extends the induced ordered weighted averaging
(IOWA) operator proposed in [30]:

Definition 12: An IOWA operator of dimension m is a
function ΦW , to which a set of weights or weighting vector
is associated, W = (w1, . . . , wm), such that wi ∈ [0, 1]
and Σiwi = 1, and with the following expression:

ΦW (〈u1, p1〉, . . . , 〈um, pm〉) =
m∑
i=1

wi · pσ(i),

being σ a permutation such that uσ(i) ≥ uσ(i+1), ∀i =
1, . . . ,m− 1.

In the present decision-making context, each expert can
always be associated his/her IARPR consistency index value.
The more consistent the preferences provided by an expert
are, the more importance should be placed on that expert.
In other words, we propose to use the consistency indexes
to establish the ordering of the preference values to be
aggregated, in which case we would be implementing the
concept of consistency in the aggregation process of the
proposed decision-making model [28]:

Definition 13 (CI-IOWA operator): Let a set of expert-
s, E = {e1, . . . , em}, provide preferences about a set
of alternatives, X = {x1, . . . , xn}, using the IARPRs,
{R1, . . . , Rm}. A MC-IOWA operator of dimension m, ΦCW ,
is an IOWA operator whose set of order inducing values is the
set of consistency index values, {CI1, . . . , CIm}, associated
with the set of experts.

Then, the collective IARPR, Rc = (rcij) = (〈pc−ij , p
c+
ij 〉),

is computed as follows:

pc−ij = ΦCW
(〈
CI1, p1−ij

〉
, · · · ,

〈
CIm, pm−

ij

〉)
=

m∑
h=1

γσ(h) ·pσ(h)−ij

(16)

pc+ij = ΦCW
(〈
CI1, p1+ij

〉
, · · · ,

〈
CIm, pm+

ij

〉)
=

m∑
h=1

γσ(h) · pσ(h)+ij

(17)
with CIσ(h−1) ≥ CIσ(h), γσ(h−1) ≥ γσ(h) ≥ 0 (∀h ∈
{2, · · · ,m}) and

m∑
h=1

γσ(h) = 1.

The general procedure for the inclusion of importance
weight values in the aggregation process involves the trans-
formation of the values to aggregate, rhij , under the impor-
tance degree, uh, to generate a new value, r̄hij , and then
aggregate these new values using an aggregation operator.
In the area of quantifier guided aggregations, Yager [31]
provided a procedure to evaluate the overall satisfaction of m
important criteria (experts) by an alternative x by computing
the weighting vector associated to an OWA operator as
follows:

wh = Q

(
S(h)

S(m)

)
−Q

(
S(h− 1)

S(m)

)
(18)
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being Q the membership function of the linguistic quantifier,
S(h) =

∑h
k=1 uσ(k), and σ the permutation used to produce

the ordering of the values to be aggregated. This approach for
the inclusion of importance degrees associates a zero weight
to those experts with zero importance degree. The linguistic
quantifier is a Basic Unit-interval Monotone (BUM) function
Q : [0, 1] → [0, 1] such that Q(0) = 0, Q(1) = 1 and if
x > y then Q(x) ≥ Q(y).

This procedure was extended to the case of IOWA operator
in [30]. In this case, each component in the aggregation con-
sists of a triple (rhij , uh, vh) where rhij is the argument value
to aggregate, uh is the importance weight value associated to
rhij , and vh is the order inducing value. The same expression
as above is used, and σ is the permutation such that vσ(h) is
the h−th largest value in the set {v1, . . . , vm}.

In the context subject of this paper, we propose to use
the consistency values associated with each of the expert
both as an importance weight associated to the argument and
as the order inducing values, i.e. the following is assumed:
ph−ij = ph+ij = CIh. Thus, the ordering of the preference
values is first induced by the ordering of the experts from
the most to the least consistent, and the weights of the MC-
IOWA operator is obtained by applying the above expression
(18), which reduces to

γσ(h) = Q

(
S(σ(h))

S(σ(m))

)
−Q

(
S(σ(h− 1))

S(σ(m))

)
(19)

with S(σ(h)) =
∑h
k=1 CI

σ(k)), and CIσ(h) is the h−th
largest value of set {CI1, . . . , CIm}.

The BUM function guarantees that all individuals con-
tribute to the final aggregated value because it is a strictly
increasing function. To guarantee that the higher the consis-
tency index, the higher the weighting value associated with
it, i.e. for the following to be verified

CIσ(m−1) ≥ CIσ(m) ≥ 0⇒ γσ(m−1) ≥ γσ(m) ≥ 0

additional constraints are to be imposed to the BUM function.
In [19], it was proven that it is sufficient for the BUM
function to be concave for the above to be true.

Example 2. (Example 1 continuation) Using the consis-
tency levels we have: σ(1) = 2, σ(2) = 4, σ(3) = 1 and
σ(4) = 3. Using the concave BUM function Q = r1/2,
which can be used to represent the linguistic majority ‘most
of’, we obtain the following weights:

λσ(1) = 0.50, λσ(2) = 0.21, λσ(3) = 0.16, λσ(4) = 0.13.

The collective IARPR is:

URc =

 〈0.50, 0.50〉 〈0.37, 0.53〉 〈0.37, 0.53〉 〈0.41, 0.62〉
〈0.47, 0.63〉 〈0.50, 0.50〉 〈0.45, 0.60〉 〈0.52, 0.65〉
〈0.47, 0.63〉 〈0.40, 0.55〉 〈0.50, 0.50〉 〈0.42, 0.55〉
〈0.38, 0.59〉 〈0.35, 0.48〉 〈0.45, 0.58〉 〈0.50, 0.50〉


Using expression (5), we obtain the following possibility

degree matrix:

P =

 0.50 0.19 0.19 0.43
0.81 0.50 0.33 1.00
0.81 0.67 0.50 0.61
0.57 0.00 0.39 0.50



We can easily obtain from this matrix the following
ordering of the alternatives

x2 � x3 � x4 � x1.

Making x2 as the group choice as per the original IARPRs
provided by the experts.

V. CONCLUSIONS

This paper investigates the multiplicative transitivity prop-
erty IARPRs. Then, the consistency index (CI) is investigated
to measure the level of consistency of the information provid-
ed by the experts. The bigger the CI, the more consistent the
expert. Therefore, it also can be regarded as a reliability index
to aggregate individual IARPRs into a collective one. To do
that, a new induced ordered weighted averaging (CI-IOWA)
operator is proposed, which aggregates individual IARPRs
in such a way that more importance is put on the most
consistent ones. A selection process based on the ordering
of the alternatives based on the use of the possibility degree
is also presented.
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