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Abstract—This paper presents a sum-of-squares (SOS) based
methodology to obtain inner bounds on the region-of-attraction
(ROA) for nonlinear systems represented by polynomial fuzzy
systems. The methodology searches a polynomial Lyapunov
function to guarantee the local stability and the invariant
subset of the ROA is presented as the level set of the poly-
nomial Lyapunov function. At first the methodology checks
whether the considered system can be guaranteed to be locally
asymptotically stable. After confirming that the system is
guaranteed to be locally asymptotically stable, the methodology
enlarges the invariant subset of the ROA as much as possible.
The constraints for both of checking stability and enlarging
contractively invariant set are represented in terms of bilinear
SOS optimization problems. The path-following method is
applied to solve the bilinear SOS optimization problems in the
methodology.

I. INTRODUCTION

IDENTIFYING the region-of-attraction (ROA) for a lo-

cally asymptotically stable nonlinear system is a topic of

significant importance. However, computing the exact ROA

for a nonlinear system is often a tough task. Therefore,

researchers have focused on finding invariant subsets of

ROAs represented by level sets of Lyapunov functions [1]-

[3]. By applying the sum-of-squares (SOS) technique and

SOS optimization tools (e.g. SOSTOOLS [4] and SOSOPT

[5]), it is possible to search polynomial Lyapunov functions

to enlarge the inner estimate of the ROA for nonlinear

systems represented by polynomial vector fields [6], [7].

However, these studies [1]-[3], [6], [7] deals with only

polynomial systems. Unfortunately, most practical systems

are non-polynomial systems.

By applying the well-known sector nonlinearity approach

[8] or the Taylor series approach [9], it has been shown that a

non-polynomial nonlinear system can be exactly represented

by the polynomial fuzzy system (globally or semi-globally)

[9], [10]. Using the sum-of-squares (SOS) technique, some

studies have been done to analyze the stability for polynomial

fuzzy systems [9]-[13]. However, no methodology has been

proposed to estimate the ROA for locally asymptotically

stable polynomial fuzzy systems.

In this study, a methodology is proposed to estimate the

invariant subset of the ROA for non-polynomial nonlin-
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ear systems represented by polynomial fuzzy systems. The

methodology applies SOS programing to search a polynomial

Lyapunov function to guarantee the local stability of the

polynomial fuzzy system. Furthermore, the invariant subset

of the ROA is represented by the level set of the polynomial

Lyapunov function. At first the methodology checks if the

polynomial fuzzy system can be guaranteed to be locally

asymptotically stable. After confirming the stability, the

methodology enlarges the estimated contractively invariant

set as much as possible. The constraints for both of checking

stability and enlarging contractively invariant set are rep-

resented in terms of bilinear SOS optimization problems.

However, bilinear SOS optimization problems cannot be

directly solved by SOS optimization tools (e.g. SOSTOOLS

and SOSOPT). Therefore, the path following method [14]

that has been demonstrated to be effective for bilinear semi-

definite optimization problems [15], [16] is utilized with

SOSOPT to solve the bilinear SOS optimization problems

in the methodology.

Throughout this paper, the following definitions are

adopted [17]. A monomial in x(t) = [x1(t) x2(t) · · ·
xn(t)]

T is a function of the form xd1

1 xd2

2 · · ·xdn

n where di,

i = 1, 2, · · · , n, are nonnegative integers. The degree

of a monomial is d =
∑n

i=1 di. A polynomial q(x(t)) is

defined as a finite linear combination of monomials with

real coefficients. A polynomial q(x(t)) is SOS, if there exist
polynomials f1(x(t)), f2(x(t)), · · · , fm(x(t)) such that

q(x(t)) =
∑m

i=1 f
2
i (x(t)). It is obvious that q(x(t)) being

SOS naturally implies q(x(t)) ≥ 0 for all x(t) ∈ R
n.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Consider the following (non-polynomial) nonlinear sys-

tem:

ẋ(t) = f(x(t)) (1)

where x(t) ∈ R
n and f is a smooth nonlinear function

with f(0) = 0. Applying the well-known sector nonlinearity
approach [8] or a Taylor series approach [9], it has been

show that (1) can be exactly represented by the following

polynomial fuzzy system (globally or semi-globally) [10]:

ẋ(t) =
r∑

i=1

hi(z(t))Ai(x(t))x̂(x(t)) (2)

where Ai(x(t)) ∈ R
n×N are polynomial system matrices in

x(t); x̂(x(t)) ∈ R
N is a column vector whose entries are

all monomials in x(t) such that x̂(x(t)) = 0 iff x(t) = 0,

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 2091



and zj(t) is the known premise variable. Moreover, hi(z(t))
are the normalized grades of membership and exhibit the

following properties:
∑r

i=1 hi(z(t)) = 1 and hi(z(t)) ≥
0 ∀i. In [10] and [12], the stability of the polynomial fuzzy

system (2) has been investigated. However, in the two studies

[10], [12], the estimate of ROA is not examined when the

polynomial fuzzy system (2) is locally asymptotically stable.

This study aims to estimate the invariant subset of the ROA

for locally asymptotically stable (non-polynomial) nonlinear

systems represented by the polynomial fuzzy system (2). By

searching a polynomial Lyapunov function, the contractively

invariant set are represented by the level set of the polynomial

Lyapunov function. In what follows the dependence on the

time t will be omitted for ease of notation.

Let V (x) be a continuous differentiable function and

define ΩV = {x : V (x) ≤ 1}. The equilibrium x = 0

of the polynomial fuzzy system (2) is asymptotically stable

and the level set ΩV is a contractively invariant set if

V (x) is positive definite (3)

ΩV is bounded (4)

V̇ (x) =

r∑
i=1

hi(z)
∂V (x)

∂x
Ai(x)x̂(x) < 0

∀x ∈ ΩV − {0}. (5)

If the conditions (3)-(5) are fulfilled, it is expected to enlarge

the estimated contractively invariant set ΩV as much as

possible. For this purpose, a variable sized region is defined

as Pβ = {x : p(x) ≤ β}, where p(x) is a fixed positive

definite polynomial, and β is maximized while imposing the

constraint Pβ ⊆ ΩV along with constraints (3)-(5).

III. SOS-BASED METHODOLOGY FOR ESTIMATING THE

ROA

This section presents the SOS-based methodology for

estimating the invariant subset of the ROA. By applying the

SOS technique and the polynomial Lyapunov function, the

methodology firstly checks if the polynomial fuzzy system

(2) can be guaranteed to be asymptotically stable. After the

stability is confirmed, the methodology tries to enlarge the

estimated contractively invariant set as much as possible.

Sufficient conditions represented in terms of SOS con-

straints for the conditions (3)-(5) are given in the following

theorem.

Theorem 1: The equilibrium x = 0 of the polynomial

fuzzy system (2) is asymptotically stable and the level set

ΩV is a contractively invariant set if there exists a polynomial

function V (x), polynomials µi(x) and a scalar α < 0 such

that

V (x)− ǫ(x) is SOS (6)

− ∂V (x)

∂x
Ai(x)x̂(x) + αV (x)− µi(x)(1− V (x))

is SOS, i = 1, · · · , r, (7)

µi(x) is SOS, i = 1, · · · , r (8)

where ǫ(x) is a positive definite polynomial satisfying

ǫ(x)→∞ for ||x|| → ∞.

Proof: If (6) holds, V (x) is positive definite and radially
unbounded that insures the conditions (3) and (4). For x ∈
ΩV , it has the following property:

µi(x)(1− V (x)) ≥ 0 (9)

where µi(x) ≥ 0, which is guaranteed by (8), are polynomial
functions. When x ∈ ΩV ,

V̇ (x)− αV (x)

=

r∑
i=1

hi(z)

{
∂V (x)

∂x
Ai(x)x̂(x)− αV (x)

}

≤
r∑

i=1

hi(z)

{
∂V (x)

∂x
Ai(x)x̂(x)− αV (x)

+ µi(x)(1 − V (x))

}
.

Therefore, if (7) holds for α < 0, then V̇ (x) ≤ αV (x) < 0
for all x ∈ ΩV − {0} that satisfies the condition (5).
By solving the SOS constraints in Theorem 1, the stability

of the polynomial fuzzy system (2) can be confirmed. After

confirming the stability, the methodology aims to enlarge the

estimated contractively invariant set ΩV as much as possible.

For this purpose, the methodology maximizes β subject to the

constraint Pβ ⊆ ΩV along with the constraints in Theorem

1. By Lemma 2 of [7], if there exists a polynomial function

σ(x) such that

σ(x) is SOS (10)

− [(β − p(x))σ(x) + (V (x)− 1)] is SOS (11)

then Pβ ⊆ ΩV . Therefore, by setting α = −ǫα, where ǫα
is an extremely small positive value, the problem can be

formulated as the following optimization problem:

max
V (x),µi(x),σ(x)

β subject to (6)-(8), (10), (11). (12)

It can be seen that both the problem of solving the

constrains in Theorem 1 and the optimization problem (12)

are bilinear SOS problems. However, bilinear SOS problems

cannot be directly solved by SOS optimization tools (e.g.

SOSTOOLS and SOSOPT). Therefore, the methodology

applies the path following method [14] with SOSOPT to

solve the bilinear SOS problems. The algorithm to solve the

constrains in Theorem 1 by the path-following method is

presented as follows.

Algorithm 1

Step 1: Let η = 0 and randomly choose SOS polynomials

µi0(x).
Step 2: Set µi(x) = µiη(x) and solve the following

optimization problem:

min
V (x)

α subject to (6)-(8) (13)

Step 3: For the V (x) obtained from step 2, solve the

following optimization problem, which is the linearized

version of (6)-(8) around V (x) and µi(x):
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min
δV (x),δµi(x)

α subject to

V (x) + δV (x)− ǫ(x) is SOS (14)

− ∂(V (x) + δV (x))

∂x
Ai(x)x̂(x) + α(V (x) + δV (x))

− (µi(x) + δµi(x))(1 − V (x)) + µi(x)δV (x)

is SOS, i = 1, · · · , r, (15)

µi(x) + δµi(x) is SOS, i = 1, · · · , r (16)

vT1

[
ǫV V

2(x) δV (x)
δV (x) 1

]
v1 is SOS (17)

vT2

[
ǫµµ

2
i (x) δµi(x)

δµi(x) 1

]
v2 is SOS, i = 1, · · · , r (18)

where ǫV , ǫµ ∈ [0.1 0.01] are small positive values for

the purpose of small perturbations and v1, v2 are vectors

independent of x.

Step 4: For the δµi(x) obtained from step 3, update µiη(x)
such that µi(η+1)(x) = µiη(x)+ δµi(x); then set η = η+1,
and go to step 2.

The iteration stops when α < 0 is obtained in step 2, which
means that the solution for the constraints in Theorem 1 is

found. The iteration also stops when α ≥ 0 and α cannot

be improved any more with respect to former iterations in

step 2. In this case, no solution is found for the constraints

in Theorem 1.

Remark 1: The random SOS polynomial µi0(x) can be

generated by setting µi0(x) = Z
T (x)QT

QZ(x), where
Z(x) is a column vector whose entries are all monomials

in x and Q is a randomly chosen square matrix with scalar

entries. For instance, if µi0(x) is determined to be a linear

combination of all monomials of degrees from 2 to 4, then
Z(x) should be a column vector whose entries are all

monomials of degrees from 1 to 2.
If a solution is found by Algorithm 1 to satisfy the

constraints in Theorem 1, the methodology tries to enlarge

the estimated contractively invariant set ΩV by solving

the optimization problem (12). As mentioned before, the

optimization problem (12) is a bilinear SOS problem, and

therefore the path-following method is utilized to solve it.

The algorithm to solve the optimization problem (12) by the

path-following method is presented as follows.

Algorithm 2

Step 1: Let η = 0, α = −ǫα and µi0(x) be the µi(x) of
the solution found by Algorithm 1.

Step 2: Set µi(x) = µiη(x) and solve the following

optimization problem:

max
V (x),σ(x)

β subject to (6)-(8), (10), (11). (19)

Step 3: For the V (x) obtained from step 2, solve the

following optimization problem, which is the linearized

version of (6)-(8), (10), (11) around V (x) and µi(x):

max
δV (x),δµi(x),σ(x)

β subject to (10), (14)-(18) and

− [(β − p(x))σ(x) + (V (x) + δV (x)− 1)] is SOS. (20)

Step 4: For the δµi(x) obtained from step 3, update µiη(x)
such that µi(η+1)(x) = µiη(x)+ δµi(x); then set η = η+1,
and go to step 2.

The iteration stops when the β obtained in step 2 cannot be

improved any more with respect to former iterations. In this

case, ΩV for the V (x) obtained from step 2 is the estimated

contractively invariant set that is enlarged for the polynomial

fuzzy system (2).

IV. EXAMPLES

In this section, two locally asymptotically stable (non-

polynomial) nonlinear systems are considered. The two non-

linear systems are exactly represented by the polynomial

fuzzy system (2). Then, for the polynomial system exactly

representing the nonlinear system, the asymptotical stability

is confirmed by Algorithm 1 and the invariant subset of ROA

is estimated by Algorithm 2.

A. Example 1

Consider the following nonlinear system that is a pendu-

lum equation with friction [18]:

ẋ1 = x2

ẋ2 = −10 sinx1 − x2.
(21)

Figure 1 shows the phase portrait of the nonlinear system.

From Fig. 1, it can be seen that the equilibrium x = 0 of

the nonlinear system (21) is locally asymptotically stable. By

applying the Taylor series technique [9], the function sinx1

can be exactly represented as

sinx1 = h1x1 + h2(x1 −
x3
1

6
) (22)

where

h1 =

{
6(sin x1−x1)

x3

1

+ 1, x1 6= 0

0, x1 = 0
, h2 = 1− h1. (23)

Therefore, with the membership functions (23), the nonlinear

dynamics (21) can be exactly represented in the form of (2),

where r = 2, x̂(x) = x = [x1 x2]
T and

A1 =

[
0 1
−10 −1

]
, A2 =

[
0 1

−10 + 10x2
1/6 −1

]
.

The p(x) for the variable sized region Pβ is given as

p(x) = [x1 x2]

[
0.4 0.2
0.2 0.28

] [
x1

x2

]
. (24)

The notation nV denotes the degree of V (x), i.e. V (x) is
a linear combination of all monomials of degrees from 2 to

nV . Applying Algorithm 1 and Algorithm 2 for nV = 2, the
maximized β of Pβ is obtained as 1.3408. Figure 2 shows

the estimated contractively invariant set ΩV for nV = 2 and
P1.3048. Applying Algorithm 1 and Algorithm 2 for nV =
4, the maximized β of Pβ is obtained as 1.7222. Figure 3

shows the estimated contractively invariant set ΩV for nV =
4 and P1.7222. Moreover, Fig. 4 shows the comparison of the

estimated contractively invariant sets of nV = 2 and nV = 4.
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Fig. 1. Phase portrait of the nonlinear system of Example 1.
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Fig. 2. The estimated contractively invariant set ΩV and P1.3048 for
nV = 2 of Example 1.
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Fig. 3. The estimated contractively invariant set ΩV and P1.7222 for
nV = 4 of Example 1.
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Fig. 4. The comparison of the estimated contractively invariant sets of
nV = 2 and nV = 4 for Example 1.

B. Example 2

Consider the following nonlinear dynamics [10]:

ẋ1 = −x1 + x2
1 + x3

1 + x2
1x2 − x1x

2
2 + x2

ẋ2 = − sin(x1)− x2
(25)

Figure 5 shows the phase portrait of the nonlinear dynamics.

From Fig. 5, it can be seen that the equilibrium x = 0 of

the nonlinear dynamics (25) is locally asymptotically stable.

By applying (22) with the membership functions (23), the

nonlinear dynamics (25) can be exactly represented in the

form of (2), where r = 2, x̂(x) = x = [x1 x2]
T and

A1 =

[
−1 + x1 + x2

1 + x1x2 − x2
2 1

−1 −1

]

A2 =

[
−1 + x1 + x2

1 + x1x2 − x2
2 1

−1 + x2
1/6 −1

]
.

Applying Algorithm 1 and Algorithm 2 with the p(x) in (24),

Fig. 6 shows the comparison of the estimated contractively

invariant sets of nV = 2 and nV = 4.

V. CONCLUSION

In this paper, a SOS-based methodology has been proposed

to estimate the invariant subset of ROA for (non-polynomial)

nonlinear systems represented by polynomial fuzzy system.

The methodology searches a polynomial Lyapunov function

to guarantee the local stability and the contractively invariant

set is presented as the level set of the polynomial Lyapunov

function. The constraints in the methodology are represented

in terms of bilinear SOS problem. Therefore, the algorithms

based on the path-following method have been provided for

searching the polynomial Lyapunov function along with en-

larging the contractively invariant set. Finally, two examples

have been given to illustrated the utility and effectiveness of

the proposed methodology.
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Fig. 5. Phase portrait of the nonlinear dynamics of Example 2.

x
1

x 2

 

 

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Ω
V

 for n
V

=2

Ω
V

 for n
V

=4

Fig. 6. The comparison of the estimated contractively invariant sets of
nV = 2 and nV = 4 for Example 2.
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