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Abstract—Electrified drive trains for tractors are supposed to
realize great potential of raising performance in heavy operations
via optimal traction control. The paper proposes to apply an
adaptive unscented Kalman filter (UKF) with a fuzzy supervisor
for identification of electrical drive train tractor dynamics. The
key advantage of electrical drive trains lies in feedback of drive
torque which plays crucial role in traction parameter estimation.
It is known that without using special adaptation techniques,
an UKF may cause some divergence problems and lowered
precision of estimation as well as its predecessor, an extended
Kalman filter (EKF). A method based on a fuzzy logic supervisor
in addition to adaptation of an UKF is proposed to maintain
trade-off between tracking strength and estimation accuracy.
Simulation results with a comprehensive tractor dynamics model
showed increase in estimation precision of traction parameters.
Laboratory experiments using a test stand with an electrical load
machine showed appropriate estimation of the load torque

Index Terms—Kalman filter, tire force, online identification,
fuzzy logic, unscented transformation

I. INTRODUCTION

One of the trends in development of agricultural machines
and tractors is implementation of hybrid drive trains [1].
Among several advantages, like better drive train efficiency
in comparison to conventional mechanical drives and lesser
impact on the environment, they provide basis for continuous
control of drive torques to enhance overall performance. A
promising approach is an electrified drive train and, in partic-
ular, an electrified single-wheel drive [2]. Although electrical
wheel-drives have yet some drawbacks in cost and mass of a
vehicle, these disadvantages planned to be overcome in the
nearest future by optimizing the construction of the drive.
Thus, electrical drive trains have good prospects in cost-
weight-comparison with mechanical and hydraulic ones and
offer challenges in development of the concept of a “smart”
drive train [3].

A. Traction parameters and efficiency

Traction efficiency and performance of farm tractors are
characterized via several parameters which highly depend on
slip [4] which is defined as follows:

s = 1− |v|
rd|ωw| , if |v| ≤ |rdωw|,

s = − 1 + rd|ωw|
|v| , if |v| > |rdωw|,

(1)

where v is the travelling velocity, rd is the dynamic rolling
radius and ωw is the wheel revolution speed. The friction force
coefficient µ is defined as follows (see [5], p. 319):

µ =
Fh
Fz
, (2)

where Fh is the horizontal force and Fz is the vertical load.
The rolling resistance coefficient ρ consists of two parts: ρi –
due to tire deformation and ρe – due to soil deformation:

ρ = ρe + ρi, (3)

The net tractive ratio κ and the energy efficiency ηt are
defined as follows:

κ = µ− ρe, (4)
ηt = κ

κ+ρ (1− s). (5)

As can be seen on Fig. 1, soil conditions vary in a
wide range yielding in general different maxima of energy
efficiency.
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Fig. 1. Modeled traction characteristics for different soil types [2]

To define an optimal operating point (i.e. slip) with trade-off
between efficiency and productivity, current traction parameter
identification in real-time is necessary. These problems have
been recently in the focus of research. Pichlmaier [6] addresses
methods of determining drive torque and suggests to calculate
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the actual net tractive ratio and rolling resistance coefficient
from these data together with draft force and wheel load
measurement and use them to detect current soil conditions.
This approach offers challenges in field of optimal usage of
farm tractors, yet having certain drawbacks. As stated by
Pichlmaier himself, identification of traction parameters is
only possible if the velocity and wheel speed are constant,
which is unlikely for farm tractors if taking into account
measurement failures, irregularities of field micro- and macro-
profile, draft force etc.. Current paper proposes a method for
dynamic traction parameter estimation which can be further
used for optimal traction control. To increase performance of
identification, the design of a fuzzy inference system (namely,
a fuzzy supervisor) for adaptation of an UKF is suggested.

B. Methods of tire-ground force identification
It is well known that measurement of forces acting from

ground surface on a track or a tire is difficult and expensive.
The same issue applies to measurement of the torque. On the
other hand, there are many different approaches for identifica-
tion of tire-ground contact dynamics. Eventually, they imply
usage of one or another ground friction model. A substantial
analysis of different static and dynamic tire-ground interaction
models has been carried out (see for example [7], [8]). Some
methods of online identification of the friction coefficient are
based on adaptive techniques (see for example [9]). However,
the difficulty of many classic adaptive algorithms based on
finding a Lyapunov candidate function (LCF) lies in an as-
sumption that unknown model parameters enter the model
linearly which is a limitation for estimation of the friction
coefficient. Ono et al. [10] uses an on-line least square method
to estimate the extended braking stiffness (XBS) of the tire
which enters the wheel deceleration model likewise linearly.
Satisfactory results in estimation of both the longitudinal and
lateral tire forces are obtained in [11] with use of filtering
techniques for calculation of the friction coefficient derivative
with respect to slip (i.e. XBS). Some authors use neural
network estimators based on LuGre model of tire friction
force [12]. On the other hand, a wide range of different
filtering methods have shown appropriate results. Canudas-de-
Wit et al. [13] proposes a non-linear observer to estimate the
longitudinal tire-ground dynamics based on a lumped model.
Kalman filter remains probably the most popular approach for
identification of vehicle dynamics (see for example [14]–[16]).
Taking into account the known computational difficulties of
on-line tire-ground friction identification based on dynamic
tire models, a static model is used in the present paper. The
exact formula is a slightly changed variant from [5, p. 319]:

µ = a0 − c0e−b0s − c1e−b1s, (6)

where a0, c0, c1, b0, b1 are unknown parameters. Two expo-
nents in (6) are supposed to capture different behavior in the
low- and in the high-slip range.

C. Kalman filter approaches
A Kalman filter is in most cases the de facto approach for

on-line system identification. An EKF which is typically used

for non-linear identification problems may however undergo
estimation precision deterioration and even divergence in case
of high non-linearities in a system since it uses only first-
order approximation (with a linearization term of Taylor series
expansion) of system dynamics to propagate an estimate of
mean and covariance of a Gaussian random variable (GRV).
An UKF uses a set of sigma point to completely describe mean
and covariance of a GRV and updates it through a non-linear
state model yielding 2ndorder approximation of non-linearities
[17] while having the same computational complexity order
as EKF [18]. Besides some methods to address linearization
problems (see for example [19]), an UKF does not require
analytic computation of matrix Jacobians or Hessians at all.
However, the main drawback stays the same for both types of
Kalman filter and it lies in a priori knowledge of the state
and measurement noise covariance which may cause flaws
in state estimation and divergence [20]. Several approaches
are successfully used to adapt Kalman filter to get better
convergence in case of estimation failures by increasing the
noise covariance. Many methods are based on noise statistic
estimation. For example, a maximum likelihood approach is
used in [21] to adjust the measurement and/or state noise
covariance. Some experimental results with adaptation of
the noise covariance are given in [22]. Soken et al. [23]
applies multiple adaptation factors (or an adaptation matrix)
in prediction of the estimate covariance which depends on
the innovation vector. This approach is mainly applied to
address sudden change in the noise covariance which result
in significant increase of the residual between the predicted
and the measured output, i.e. estimation failure. The factor
is computed via covariance of the residual. A malfunction is
detected via comparison of a statistical function (a quadratic
form of the residual and the predicted measurement covariance
having χ2-distribution with the number of degrees of freedom
equal to the dimensionality of the measurement vector) with
the corresponding threshold. Although the proposed algorithm
can successfully fix failures in estimation, it does not imply
adaptation when the statistical criterion below the threshold,
while the residual stays unsatisfactory for some purposes
of vehicle longitudinal dynamics identification. There are
also some methods to use a Kalman filter itself as a noise
statistic estimator, this is so called “master-slave” filter. For
example, Cui et al. [24] uses a combination of a particle
filter and an UKF and proposes a method to reduce high
computational complexity of the particle filter. An approach
based on the MIT rule (named after the Massachusetts Institute
of Technology) using partial derivatives of sigma points with
respect to the state noise covariance diagonal elements is
proposed in [25] to recursively solve an optimization problem
in terms of the actual and computed innovation covariance.
Nevertheless, for tractors, calculation of partial derivatives
is of high computational complexity and might not fit the
controller area network (CAN) with its relatively large sample
times. Another approach of using an additional Kalman filter
as a noise statistic estimator is suggested in [26]. However,
the complexity of master-slave filters stays inappropriate for
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tractor microcontrollers. Many of noise statistic estimators are
based on some optimization problem. A maximum a poste-
rior (MAP) helps to update noise covariance by maximizing
unconditional density function of estimate [27]. There are
also ways to adapt Sage-Husa estimators usually used for
an EKF to work with an UKF [28]. The designed algorithm
adjusts the state and measurement noise covariance with a
certain fading factor. A similar procedure is suggested in [29],
but with use of a moving window method. Such methods
are also used for adaptation of either Kalman matrix or the
prior estimate covariance which comprises a fading factor
calculated via a windowed innovation covariance. A fused
estimation from multiple Kalman filters based on adaptive
fading helps to improve identification in case of asynchronous
measurement [30]. On the other hand, application of fuzzy
logic for Kalman filters also demonstrated success in detect-
ing divergence and estimating of the state and measurement
noise covariance. For example, Abdelnour et al. [31] uses
a fuzzy logic supervisor (FLS) to adjust a scaling factor in
the exponential weighting scheme for the estimate covariance.
The mean and covariance of the innovation are used to detect
divergence and a FSL is turned on when they fail testing
for white noise. An approach using a so called degree of
matching (DoM) between theoretical innovation covariance
and its estimated value (via windowed estimation) is suggested
for detecting estimation failures and increasing/decreasing
either the state or measurement noise covariance in [32]. This
algorithm implies purely fuzzy logical adjustment of the noise
covariance. Somewhat similar method, but with help of a
neural network, is proposed in [33], this is a so called adaptive
neuro-fuzzy extended Kalman filter (ANFEKF). Apart from
these approaches, a new fuzzy supervisor works together with
a conventional adaptation algorithm. A combination of fuzzy
systems with conventional adaptation algorithms for Kalman
Filter can be met in literature as well (see for example [34]).
Here, a so called fuzzy logic adaptation system (FLAS) is
used to additionally adjust tuning parameters of a suboptimal
scaling matrix for adaptation of the state covariance of a strong
tracking unscented Kalman filter (STUKF) via a so called
degree of divergence (DoD) and the averaged magnitude of
the innovation. The methodology of the present work involves
besides the innovation vector the measurement itself to adjust
the noise covariance in case if the filter operates normally.
Usage of the measurement to adapt a Kalman filter can be
met in [35] where a fuzzy logic system produces a fuzzy-
adaptive parameter for the estimate covariance depending of
which state the system is.

II. METHODOLOGY

A. Short description of an UKF

Consider a non-linear model of a system in the following
discrete form:

xk = f (xk−1, uk−1) + qk−1, (7)
yk = h(xk) + rk,

where xk ∈ Rn is the state vector, uk ∈ Rp is the input
vector, yk ∈ Rm is the output vector, f (xk−1, uk−1) is the
non-linear state model, h(xk) is the measurement model, qk ∼
N (0,Qk), rk ∼ N (0,Rk) are the state and measurement
noises with zero mean and covariance Qk,Rk respectively,
k is the time step counter. The main difference between an
UKF and an EKF lies in calculation and propagation of so
called sigma-points instead of linearization of the state and
measurement models in (7) via an unscented transform (UT).
Given a mean and covariance, a properly chosen set of sigma-
points is computed having, therefore, a discrete probability
distribution with second central moments completely matching
to ones of the underlying probability distribution, whatever it
was [36]. The algorithm of identification of the state vector in
(7) with an UKF consists of the following steps [18]:
• Initialization

For some initial guess x0, set the mean and covariance
as follows:
x̂0 = E [x0] ,
P0 = E

[
(x0 − x̂0)(x0 − x̂0)T

]
, where E [•] denotes

the expectation value operator.
• Prediction (for steps k = 1...∞)

Compute 2n+ 1 sigma-points of the state as follows:
χ
(0)
k−1 = x̂k−1,

χ
(i)
k−1 = x̂k−1 +

√
n+ λ

(√
Pk−1

)
i
,

χ
(n+i)
k−1 = x̂k−1 −

√
n+ λ

(√
Pk−1

)
i
, i = 1...n,

where (•)i denotes the ithcolumn of a matrix and
√

P
denotes matrix square root of a matrix P satisfying:
√

P
(√

P
)T

= P and calculated via Cholesky
decomposition; λ = α2(n+ κ)− n is a scaling
parameter with α and κ characterizing the spread of
sigma points around mean (chosen as tuning
parameters).
Compute weights of the sigma-points:

W(0)
m =

λ

n+ λ
,

W(0)
c =

λ

n+ λ
+
(
1− α2 + β

)
,

W(i)
m =

λ

2(n+ λ)
,

W(i)
c =

λ

2(n+ λ)
, i = 1...2n

with an additional parameter β which allows to
incorporate any a priori knowledge of the probability
distribution of the state.
Perform time update of the sigma-points using the
model (7):
χ
(i)
k|k−1 = f(χ

(i)
k−1, uk−1).

Compute the predicted estimate mean and covariance:

x̂k|k−1 =
2n∑
i=0

W(i)
m χ

(i)
k|k−1,

Pk|k−1 =
2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·(

χ
(i)
k|k−1 − x̂k|k−1

)T
+ Qk−1.
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• Measurement update
Compute 2n+ 1 sigma-points of the state as follows:
χ
(0)
k|k−1 = x̂k|k−1,

χ
(i)
k|k−1 = x̂k|k−1 +

√
n+ λ

(√
Pk|k−1

)
i
,

χ
(n+i)
k|k−1 = x̂k|k−1 −

√
n+ λ

(√
Pk|k−1

)
i
, i = 1...n.

Perform measurement update of the sigma points:
Υ

(i)
k = h(χ

(i)
k|k−1).

Compute the predicted output mean and innovation
covariance:

ŷk =
2n∑
i=0

W(i)
m Υ

(i)
k ,

Sk =
2n∑
i=0

W(i)
c

(
Υ

(i)
k − ŷk

)(
Υ

(i)
k − ŷk

)T
+ Rk.

Compute the cross-covariance of the state and
measurement:

Ck =
2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)(
Υ

(i)
k − ŷk

)T
.

Compute the filter gain, conditional estimated mean and
covariance given the actual measurement yk:
Kk = CkS

−1
k ,

x̂k = x̂k|k−1 + Kk (yk − ŷk) ,
Pk = Pk|k−1 −KkSkK

T
k .

B. Model of tractor longitudinal dynamics

Translational dynamics of the tractor is described as follows:

mv̇ =

N∑
α=1

Fh,α − Fd − Frr,e. (8)

where m is the tractor mass, Fd is the draft force, i.e.
resistance of the implement, Frr,e = ρeFg is the rolling
resistance force due to soil deformation (or external rolling
resistance), Fg is the vehicle weight and α denotes the wheel
index. The horizontal force is computed via (6). The dynamics
of the wheel reads as follows:

ω̇w = 1
Jw

(Md − rdFz (µ+ ρi)) , (9)

where Jw is the wheel inertia, Md is the drive torque. The
wheel load torque is: Ml = rdFz (µ+ ρi). For an electrified
drive train, the wheel drive torque is defined with the following
model:

Ṁe =− 1
τe

(Me −Mcon) ,

Md =igMe,
(10)

where Me is the electrical motor torque, Mcon = u is the
control input, τe is the electrical time constant, ig is the gear
ratio from the electrical motor to the wheel. The tire dynamic
rolling radius is: rd = r0 − 4f with r0 being the unloaded
tire radius and 4f is the tire radial deformation which can
be estimated using a linear empirical formula given in [37, p.
40]:

4f =
Fz

2π · 105 · pt
√
r0bt/2

,

where pt is the tire air pressure in [bar] and bt is the
tire section width. The draft force is usually measured. The
wheel loads are supposed to be either measured (by hydraulic
pressure sensors of suspension) or estimated (see for example
[38]). The inner rolling resistance coefficient on a loose soil
ρi can be approximated from that on a rigid surface, which is
known for a specific tire [39]. Equations (6) and (9) must
be used for every single wheel indexed by α = 1...N .
Identification is performed in terms of an unknown parameter
vector which is formulated as follows:

θα = (a0,k, c0,α, b0,α, c1,α, b1,α)
T
, α = 1...N

θ = (θ1, θ2, ..., θN , ρe)
T
.

(11)

Therefore, the following augmented state vector is consid-
ered:

x =
(
Me,1, ...,Me,N , ωw,1, ..., ωw,N , v, θT

)T
. (12)

The measurement vector is defined as follows:

y =
(
ωw,1, ωw,2, ..., ωw,N , v

)T
. (13)

The input vector reads as:

u =
(
Mcon,1,Mcon,2, ...,Mcon,N

)T
. (14)

The auxiliary signals Fz,1, ..., Fz,N , rd,1, ..., rd,N ,
ρi,1, ..., ρi,N , Fd are used additionally in the state model, but
computed (or measured) outside. Propagation of the sigma
points through the model is maintained using the fourth-order
Runge–Kutta method. Dynamics of the unknown parameter
vector (11) is modeled using the following equations:

θk = θk−1, (15)

assuming that parameters change slowly in time. Hence,
(11) is estimated using a random-walk procedure in terms of
Kalman filter approach. The net tractive ratio κ is computed
in terms of the whole vehicle as well as the external rolling
resistance coefficient ρe and reads as:

κ =

∑N
α=1

(
a0,α − c0,αe−b0,αsα − c1,αe−b1,αsα

)
Fz,α

Fg
−

− ρe, α = 1...N.
(16)

C. Adaptation mechanism of an UKF

In case if the noise covariance is a priori unknown, changes
with time or in case of measurement fault, it is necessary
to adapt the filter. While the measurement noise covariance
can be set up using extensive knowledge of specific sensor
accuracy for agricultural machinery, the state noise covariance
stays in most cases unknown. Recall firstly the definition of
the theoretical innovation covariance given in II-A in order to
build the adaptation mechanism:

325



Sk =
2n∑
i=0

W(i)
c

(
Υ

(i)
k − ŷk

)(
Υ

(i)
k − ŷk

)T
+ Rk. (17)

When the filter works normally, the innovation sequence
appears to be a zero-mean Gaussian white noise and with
the covariance (17) matching the actual innovation covariance.
The second one can be estimated with use of a forgetting factor
(see for example [34]) or simply via windowed estimation:

S̄k =
1

M − 1

k∑
i=k−M+1

(yk − ŷk) (yk − ŷk)
T
. (18)

where M is the moving window size which is chosen to
be greater than the number of states n in order to avoid
destabilization of the filter according to [21]. For criteria
of choosing an appropriate window size one can refer to
[40]. Notice that all terms in the window contribute equally
which is different to the usage of a forgetting factor. (18)
helps to gather the necessary statistical information about the
innovation sequence online. Further, the theoretical innovation
covariance (17) must equal to the actual one (18):

Sk = S̄k. (19)

As was mentioned above, the main difficulty of identifica-
tion is in knowledge of the state noise covariance. In this sense,
it is suggested to adjust the state noise covariance instead of
the measurement noise covariance. In order to achieve this,
recall the definition of an UKF. Using the definition of the
Kalman gain from II-A for (19) yields:

KkSkK
T
k = KkS̄kK

T
k ⇐⇒

Pk|k−1 −Pk = KkS̄kK
T
k ⇐⇒

2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·(

χ
(i)
k|k−1 − x̂k|k−1

)T
+ Qk−1 −Pk = KkS̄kK

T
k . (20)

In order to adapt the filter, the predicted estimate covariance
must be modified to satisfy (20). As can be seen, there
are several methods to introduce an adaptation factor to the
aforementioned equation, in particular it can be done via
scaling the whole predicted estimate covariance or the Kalman
gain directly (see for example [30]). In general, an adaptive
scaling does not have to be scalar. As was stated in [23]
for high-order systems, the filter performance is different for
different states in (12), thus usage of multiple adaptive factors
(an adaptive matrix) can be applied in more effective way
than a single adaptive factor. Using this fact, modify (20) as
follows:

2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·(

χ
(i)
k|k−1 − x̂k|k−1

)T
+ AkQk−1 −Pk = KkS̄kK

T
k , (21)

where Ak is an adaptive matrix needed to additionally
adjust the state noise covariance so that (19) is fulfilled.

Lemma 1: Adaptive scaling matrix for an UKF
Supposing there is a positive real number qmin > 0 such that

qminIn ≤ Qk for k = 0, 1, 2..., where In denotes an n × n
unit matrix, then the suboptimal adaptive matrix for (21) is
computed as:

Ak =

(
KkS̄kK

T
k −

2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·

(
χ
(i)
k|k−1 − x̂k|k−1

)T
+ Pk

)
Q−1k−1, (22)

Proof: Follows from positive definiteness of Qk−1.
Remark 2: The condition of the lemma states that if the

measurement noise covariance is positive-definite for all steps
k = 0, 1, 2... (in particular, if it is set up at its initial
guess which is positive-definite and stays unchanged) then the
suboptimal adaptive matrix is well-defined.

Thus, the updated estimate covariance is modified in the
following way:

Pk =
2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·(

χ
(i)
k|k−1 − x̂k|k−1

)T
+ AkQk−1 −KkSkK

T
k . (23)

Due to computational issues, the adaptive matrix may ap-
pear not to be diagonal. On the other hand, when its diagonal
elements are lesser than 1, the filter is supposed to be in a
stable state. Hence, the elements of the adaptive matrix are
modified as follows:

Ak = {aij}ni=1
j=1

=

{
min {1, aij} , i = j

0 , i 6= j.
(24)

In case of an estimation fault, if the filter fails to converge,
the adaptation mechanism introduces a scaling matrix to the
state noise covariance by increasing it in a certain way. It can
be seen that if Ak = In, the adaptive filter coincides with an
ordinary UKF given in II-A. Given the adaptation mechanism
(18), (22), (23) an adaptive UKF (or AUKF) is built. An AUKF
helps to address convergence issues of an ordinary UKF by
adjusting the state noise covariance for each state individually.
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D. Fuzzy supervisor for the AUKF

The adaptation mechanism is “switched on” increases diag-
onal elements of (24) in case of an estimation failure. For prac-
tical goals related to agricultural machinery, it is necessary,
however, to additionally adjust the state noise covariance even
in absence of an estimation failure. According to [34], when
aij ≤ 1, the filter operates in a stable mode. Given (15), an
AUKF (which now coincides with an ordinary UKF) predicts
the unknown parameters via a random-walk with “amount
of step” characterized by the state noise covariance. On the
other hand, greater elements of Q result in stronger tracking,
while smaller values give less noisy estimation (or “smoothen”
the estimate [22]). By inspection, increase of the state noise
covariance, the updated estimate covariance Pk and, thus, the
filter gain Kk yields better ability to follow the true mean. On
the other hand, too large Q will make the filter overreact and
produce non-smooth estimate. In general, it is recommended
to keep Q as large as possible to avoid divergence (when the
filter fails to react to strong change in system state) and keep
satisfactory accuracy. As can be seen from (24), the AUKF
does not imply decreasing the state noise covariance. Thus, the
estimate may be too noisy, which is not recommended for use
by tractor microcontrollers, even if the estimation is in stable
mode. In order to achieve trade-off between filter’s ability to
overcome measurement failures and keep convergence on one
side and estimation accuracy and smoothness on the other, a
so called fuzzy supervisor (FS) is proposed to co-operate with
the adaptation mechanism. Unlike the most of the fuzzy logic
techniques applied to a Kalman filter, the FS is based on the
measurement itself instead of the innovation. It is assumed
that the innovation sequence is only used by the adaptation
mechanism to detect estimation failure and eliminate it, while
the FS is supposed to additionally adjust Q according to the
needs of a traction control system (TCS). For tractors, a large
change in system dynamics is related strong fluctuations of the
draft force or field micro-profile followed by fluctuations of
the wheel load torque and vehicle travelling velocity. Such
effects can be generally captured by measurement of the
wheel revolution speed and travelling velocity. Further, it can
be concluded that the filter should track the state stronger
during the aforementioned phases of large change in dynamics.
Otherwise, Q may be decreased when the change is negligible
and the tractor moves evenly. The main purpose of the FS is to
adjust Q additionally in the stable phase using extra parameter
for the adaptive matrix in the following way:

Ak = {aij}ni=1
j=1

=

{
min {κfuzz, aij} , i = j, aij ≥ κfuzz

0 , i 6= j,

(25)

where κfuzz, κ̄fuzz ≤ κfuzz ≤ 1 is the fuzzy adjustment
parameter and a real number κ̄fuzz > 0 is a tuning parameter
indicating the lower bound of κfuzz and is fixed in the FS. The
reason of the fuzzy adjustment parameter introduced such way
is that it does not affect the ability of the adaptation mechanism

to eliminate divergence via increasing Q. Indeed, if the left-
hand side of (21) becomes lesser than the right-hand side,
the certain adaptive gains will take values aij ≥ κfuzz ≥ 1
which is consistent with the ordinary adaptation mechanism.
The way to determine κfuzz is done via a Takagi-Sugeno (T-S)
fuzzy system taking the measurement vector as its input. The
FS captures amount of change in vehicle dynamics using the
following difference equations for some step k:

4ωw =

∣∣∣∣∣
N∑
α=1

(ωw,α(k)− ωw,α(k − L+ 1))

∣∣∣∣∣,
4v = |v(k)− v(k − L+ 1)|,

(26)

where L is the moving window size of the FS which helps
to avoid measurement noise by taking two values located at
appropriate distance. For simplicity, averaging is performed
over all wheels indexed by α = 1...N . Variables (26) are
quantified using an empirical value amax characterized by
typical range of farm tractor acceleration (or approximately
calculated given the vehicle mass and static axle weight
distribution with an assumption of having a high friction force
coefficient about 0.7 ÷ 0.8, for concrete methods one can
refer to [8]). Thus, quantification of the input is computed
as follows:

qω =
4ωwr0
amaxLts

, qv =
4v

amaxLts
, (27)

where ts is the sample time and the corresponding fuzzy
variables are W and V - amount of change in the wheel revolu-
tion speed and in the velocity respectively. The quantifiers can
not be greater than 1: qω = max {1, qω} , qv = max {1, qv} .
The fuzzy output variable is denoted Ψ. Three fuzzy levels
are chosen to describe the fuzzy variables: Hi- “high”, Av-
“average” and Lo- “low”. The corresponding bell-shaped
membership functions are defined as follows:

σj(qi) =
1

1 +
∣∣qi−λj/ξ∣∣2ζ ,

where constants ζ and ξ characterize the spread and λj
characterize the middle value of a curve, index i takes values
of {ω, v} and index j takes values of {Hi,Av, Lo} . A fuzzy
decision is made using the following rule base:

(if VLo and ¬WHi) or (WLo and ¬VHi) then ΨLo

(if VHi and ¬WLo) or (WHi and ¬VLo) then ΨHi

else ΨAv

(28)

with corresponding membership functions Rj , j ∈
{Hi,Av, Lo} . Defuzzification is made via the discrete center
of area (CoA) rule:

qκ,j =
∑L
l=1

(
4q·(l+1)·σj(4q·(l+1))+4q·l·σj(4q·l)

)
∑L
l=1

(
σj(4q·(l+1))+σj(4q·l)

) , (29)

where 4q = L/L+1 is the step size, L is the amount of
discretization points, j ∈ {Hi,Av, Lo} and σj denotes a
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membership function with removed “top” above the corre-
sponding value of Rj . Thus, the output quantifier is computed
via centroid function over Rj and qκ,j :

qκ =

∑
qκ,jRj∑
Rj

, j ∈ {Hi,Av, Lo} . (30)

Dequantification is, hence, simple: κfuzz = max {κ̄fuzz, qκ}.

E. Stability analysis of the AUKF-FS

In this section, a stability analysis for the AUKF-FS is
provided. It is shown that suggested modifications for an UKF
do not affect the stochastic boundedness of the estimation
error. It is assumed that the measurement model is linear:

hk(xk) = Hkxk, . (31)

According to (13) of Section II-B, Hk = H =(
O(N+1)×N IN O(N+1)×(5N+1)

)
, where Ol×m de-

notes an l × m zero matrix. Recall firstly the definition of
exponential boundedness in mean square [41]:

Definition 3: A stochastic process εk is said to be exponen-
tially bounded in mean square, if there are real strictly positive
numbers α, β and 0 < ϑ < 1 such that

E[||εk||2] ≤ α||ε0||2ϑn + β

holds for every k ≥ 0.|| • || denotes the Euclidean norm of
a vector. The estimation and prediction errors are defined as
follows:

x̃k = xk − x̂k,
x̃k|k−1 = xk − x̂k|k−1.

(32)

Suppose functions f (xk, uk, wk−1) and h(xk) are of class
C∞, then according to [42], using Taylor series expansion of
the estimate and the true state, the prediction error can be
approximated as follows:

x̃k|k−1 = Fkx̃k−1 + qk−1, (33)

where the matrix of partial derivatives is: Fk =

∂
∂xf(x, uk, wk)

∣∣∣∣
x=x̂k−1

. By analogy, rewrite the innovation

covariance as follows:

ỹk = yk − ŷk = Hx̃k|k−1 + rk. (34)

Let the diagonal instrumental matrix be introduced as fol-
lows: βk = diag

{
β1,k, β2,k, ... βn,k

}
such that:

x̃k|k−1 = βkFkx̃k−1 + qk.

Supposing the conditions of Lemma 1 are satisfied and given
the adaptation mechanism (25), rewrite the term AkQk−1 of
(23) as follows:

AkQk−1 = Q̃k +4Qk, (35)

where Q̃k ≤ q̃ < qminκ̄fuzz for some real number q̃ >
0. Thus by inspection 4Qk ≥ qminκ̄fuzz − q̃ > 0 since
AkQk−1 ≥ qminκ̄fuzz for k = 0, 1, 2...Consider an ordinary
UKF given in Section II-A with the state noise covariance
given as Q̃k. Thus, the AUKF-FS can be interpreted as a
modified UKF with the predicted estimate covariance given
as follows:

P̂k|k−1 =
2n∑
i=0

W(i)
c

(
χ
(i)
k|k−1 − x̂k|k−1

)
·(

χ
(i)
k|k−1 − x̂k|k−1

)T
+ Q̃k +4Qk.

(36)

On the other hand, the actual estimate covariance can be
expressed as:

P̄k|k−1 = E[x̃k|k−1x̃
T
k|k−1] =

E
[
(βkFkx̃k−1 + qk) (βkFkx̃k−1 + qk)

T
]

=

βkFkP̂k|k−1F
T
k βk + E

[
(βkFkx̃k−1) (βkFkx̃k−1)

T
]
−

βkFkP̂k|k−1F
T
k βk + Q̃k =

βkFkP̂k|k−1F
T
k βk +4Pk|k−1 + Q̃k,

with an instrumental matrix 4Pk|k−1 =

E
[
(βkFkx̃k−1) (βkFkx̃k−1)

T
]

− βkFkP̂k|k−1F
T
k βk.

Consider the residual between the predicted estimate
covariance and the actual one: δPk|k−1 = Pk|k−1 − P̄k|k−1.
Thus, (36) can be rewritten as:

P̂k|k−1 = βkFkP̂k|k−1F
T
k βk + Q̂k,

with Q̂k = 4Pk|k−1 + δPk|k−1 + Q̃k +4Qk.
Hence, the conditional estimate covariance is:

P̂k = P̂k|k−1 −KkSkK
T
k . (37)

Theorem 4: Consider the non-linear system (7) with a linear
measurement model (31) and the AUKF-FS given in Section
II-A with (22), (25) and reformulated with (35), (36), (37).

Let the following assumptions hold for k = 0, 1, 2...:
• the conditions of Lemma 1 are satisfied,
• there are nonzero real numbers
fmin, fmax, hmin, hmax, βmin, βmax such that:
f2min ≤ FkF

T
k ≤ f2max,

h2min ≤ HkH
T
k ≤ h2max,

β2
min ≤ βkβTk ≤ β2

max,
• there are positive real numbers q̂min, q̂max, rmin, p̂min, p̂max

such that:
q̂min ≤ Q̂k ≤ q̂max,
Rk ≥ rminIm,
p̂min ≤ P̂k ≤ p̂max,

then the estimation error x̃k is bounded in mean square.
Proof: Set Q̃k ≤ q̃ < qminκ̄fuzz according to (35). Further

proof of the theorem is given in [42], p. 264, Theorem 1.
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Remark 5: It can be seen from the formulation of the AUKF-
FS that the term AkQk−1 plays a role of some enlarged state
noise covariance Q̃k in the suggested scheme of a modified
UKF from [42], thus, stability is the same as for this set-up. As
it was stated by the authors themselves, the term 4Qk should
be adaptively adjusted in response to changing environment,
therefore, the AUKF-FS can be considered as one of possible
solutions.

III. SIMULATION RESULTS

Simulation was carried out using a multi-body model of
the tractor in MATLAB c©/SimMechanicsTMwith stochastic
input signals, i.e. the draft force and the field micro-profile.
Input signals were modeled using statistical characteristics
of on-field measurement data. White Gaussian noise was
added to the measurement signals in the model to imitate
physical sensors. The standard deviation of the measure-
ment noise was set up as follows: 0.1 mps for travelling
velocity, 0.1 rad/s for wheel speed and 0.25 kN for the
draft force and wheel load. The tractor performed tillage
on a sandy loam, the working depth was 7.5 cm and
width was 5 m. The initial measurement and state covari-
ances are: R = diag

{
0.01, 0.01, 0.01, 0.01, 0.1

}
,

Q =
[

0.1 · I4, 0.01 · I4, 10−5, 10−5 · I21
]
. Parameters

of the FS are the following: amax = 3m/s2, κ̄fuzz = 0.15,
L = 10, λLo = 0.05, λAv = 0.5, λHi = 0.95, ξ = 0.2
and ζ = 2. Simulation integration step was 1 ms. CAN-bus
was modeled with the sample time of 10 ms. Monte-Carlo
simulations with 17500 samples were performed for the UKF,
AUKF and AUKF-FS. Results of identification of the traction
parameters are shown on Fig. 2 and Fig. 3. A measurement
failure was simulated at 9 s in the following way: measured
v and ωw were 4 times amplified during 100 ms.
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Fig. 2. Identification of the net tractive ratio

The results show that the ordinary UKF does not provide
convergent estimate after the measurement failure happens.
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Fig. 3. Identification of the external rolling resistance coefficient

02
46
8 ×104

01020
3040

0 2 4 6 8 10 12 14 16t,s

5060

Fig. 4. Trace of the adaptive matrix Ak . Measurement failure is at 9 s.
Bottom dashed line shows nκ̄fuzz and the top line is n

The AUKF is able to restore convergence, but the elements
of the state noise covariance Q become high. This affects
estimation of the friction force coefficients µ and due to
high dispersion of them, ρe becomes slightly biased. The
estimate of κ is highly noisy. The AUKF-FS overcomes the
measurement failure as well, but restores its Q back to normal
mode according to the algorithm (25). Notice that the AUKF-
FS also provides smoother estimate in the normal mode before
the measurement failure happens. The normalized root mean
squared error (NRMSE) of the net tractive ratio κ estimates in
time range 10...17.5 s was 57.3, 11.9 and 3.81 % for the UKF,
AUKF and AUKF-FS respectively. For the external rolling
resistance coefficient ρe, these values were >100, 20.96 and
1.02 % for the UKF, AUKF and AUKF-FS respectively. By
analyzing (4), it is seen that during the measurement fault the
adaptation mechanism of the AUKF-FS increases the Ak and
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thus Qk to restore convergence. This process is consistent with
the FS, i.e. the FS sets only the lower bound when the filter
works normally.

IV. EXPERIMENTAL RESULTS

Laboratory tests for verification of the identification system
based on the AUKF-FS were carried out at the AST. Ex-
perimental set-up consists of the specially installed prototype
tractor RigiTrac EWD 120 equipped with electrical single-
wheel drives. The general view of the laboratory stand is given
on Fig. 5.

Fig. 5. Laboratory stand. On the picture: 1 - electrical load machine, 2 -
electrical motor, 3 - power electronics

BM3~ACDC M3~

ACDCG3~DieselBengine

ACAC
3~B400V/50HzdSPACE

LoadBresistance

HBMBcatman®

Measurementstation

Virtualwheel

SiemensBmicrocontroller

LoadBmachine

ElectricalBmotor
Fig. 6. Experimental set-up

Fig. 6 illustrates the experimental set-up. At the current
stage, the experiments were carried out together with a TCS in
couple with an imitation of a wheel (so-called ”virtual wheel”).
The electriacl load machine imitated on-field conditions in a
from of a load torque. The travelling velocity of the virtual
wheel was imitated. From this signal and from the electrical
motor speed, virtual wheel slip was determined. The TCS
held it at the desired value by compensatinf the load torque.
The AUKF-FS and TCS were implemented into dSPACE
MicroAutoBox from a computer by means of DS1103 PC-
card. Additionally, DS 815 card was used to load the program
code. Connection of virtual channels, which are programmed

in the MATLAB c©/SimMechanicsTMmodel, to physical CAN-
bus channels was performed using dSPACE-Toolbox. At this
stage, sampling times, addresses and data frame structure for
CAN-bus channels were configured. Execution of the program
algorithm was performed by means of RealTime-Toolbox. In
the experiment, the command of the input torque M∗in was
generated. The desired value of the load torque M∗L was set up
by a microcontroller from Siemens. The desired diesel engine
speed n∗DM was set up manually. The contactless measurement
station from HBM has functions to measure both the speed
nEM and torque ML. Measurement accuracy is of class less
than 0.5 %. The experiments were carried out in several stages
with different ranges of the load toque and with controller
modes. The estimated load torque was compared with that
from the load machine. Results of one of the experiments
are given on Fig. 7 as an example. It can be seen that
the dynamics of the electrical motor together with the load
machine has a specific oscillatory component with frequency
of about 5.5 Hz which was likely due to mechanical properties
of the construction. In the test stand, such effects are not
significant, but nevertheless, the identification system was able
to track this dynamics with appropriate accuracy. This ability
becomes important in the field operation where dynamical
components arise from multiple different sources and have
significant impact on traction. In all experiments, NRMSE of
estimation was below 5 %.
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Fig. 7. Estimation of the load machine torque in phases of active/inactive
slip control. For the sake of clarity, the estimate in the bottom part is sampled
every 0.25 s

V. CONCLUSIONS

In the present paper, a new algorithm of adaptive filtering
for the UKF in application to tractor dynamics was designed.
The basic idea of this approach comprises a combination
of somewhat conventional adaptation algorithm applied for
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the state noise covariance and a fuzzy logic system, namely
a fuzzy supervisor. The main goal of it is to additionally
adjust the state noise covariance in order to achieve smoother
estimate while keeping the abilities of the adaptation algorithm
to eliminate divergence in case of measurement or estimation
failures. It was shown that incorporation of the FS into the
AUKF does not affect stability of the estimation error in
mean square. Simulations results have shown the ability of
the AUKF-FS to eliminate divergence as well as the AUKF
and estimate the traction parameters with better quality in the
stable mode. The new filter was successfully experimentally
tested using the tractor with electrical single-wheel drives.
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friction force estimation,” Engineering Applications of Artificial Intelli-
gence, vol. 21, no. 3, pp. 442–456, Apr 2008.

[13] C. Canudas-de Wit, M. L. Petersen, and A. Shiriaev, “A new nonlinear
observer for tire/road distributed contact friction,” in Decision and
Control, 2003. Proceedings. 42nd IEEE Conference on, vol. 3. IEEE,
2003, pp. 2246–2251.

[14] L. R. Ray, “Nonlinear tire force estimation and road friction identifi-
cation: Simulation and experiments,” Automatica, vol. 33, no. 10, pp.
1819–1833, 1997.

[15] J. Dakhlallah, S. Glaser, S. Mammar, and Y. Sebsadji, “Tire-road forces
estimation using extended kalman filter and sideslip angle evalua-
tion.”IEEE, Jun 2008, pp. 4597–4602.

[16] X. Zhu, C. Qiu, L. Guo, and Y. Zhang, “New method for slip and
tire force estimation of wheeled mobile robot on inclined terrain,” in
Robotics and Biomimetics (ROBIO), 2011 IEEE International Confer-
ence on. IEEE, 2011, pp. 2264–2269.

[17] R. Van Der Merwe, E. A. Wan, and S. Julier, “Sigma-point kalman filters
for nonlinear estimation and sensor-fusion-applications to integrated
navigation,” in Proceedings of the AIAA Guidance, Navigation & Control
Conference, 2004, pp. 16–19.

[18] E. Wan and R. Van Der Merwe, “The unscented kalman filter for
nonlinear estimation.” IEEE, 2000, pp. 153–158.

[19] Z. Zhang and J. Zhang, “A novel strong tracking finite-difference
extended kalman filter for nonlinear eye tracking,” Sci China Ser F-Inf
Sci, vol. 52, no. 4, pp. 688–694, Apr 2009.

[20] R. Fitzgerald, “Divergence of the Kalman filter,” vol. 16, no. 6, pp.
736–747, 1971.

[21] A. H. Mohamed and K. P. Schwarz, “Adaptive kalman filtering for
ins/gps,” J. Geodesy, vol. 73, no. 4, pp. 193–203, 1999.

[22] E. P. Herrera, R. Quirós, and H. Kaufmann, “Analysis of a kalman
approach for a pedestrian positioning system in indoor environments,”
in Euro-Par 2007 Parallel Processing. Springer, 2007, pp. 931–940.

[23] H. E. Soken and C. Hajiyev, “Adaptive unscented Kalman filter with
multiple fading factors for pico satellite attitude estimation,” in Proc.
4th Int. Conf. Recent Advances in Space Technologies RAST ’09, 2009,
pp. 541–546.

[24] P. Cui and H. Zhang, “Qmrpf-ukf master-slave filtering for the attitude
determination of micro-nano satellites using gyro and magnetometer,”
Sensors, vol. 10, no. 11, pp. 9935–9947, Nov 2010.

[25] Q. Song and J.-D. Han, “An adaptive ukf algorithm for the state and
parameter estimations of a mobile robot,” Acta Automatica Sinica,
vol. 34, no. 1, pp. 72–79, May 2008.

[26] Q. Song and Y. He, “Adaptive unscented kalman filter for estimation of
modelling errors for helicopter,” in Robotics and Biomimetics (ROBIO),
2009 IEEE International Conference on. IEEE, 2009, pp. 2463–2467.

[27] L. Zhao and X. Wang, “An adaptive ukf with noise statistic estimator.”
IEEE, May 2009, pp. 614–618.

[28] S. Zhang, “An adaptive unscented Kalman filter for dead reckoning
systems,” in Proc. Int. Conf. Information Engineering and Computer
Science ICIECS 2009, 2009, pp. 1–4.

[29] G. Hu, S. Gao, and L. Xue, “A novel adaptive unscented Kalman
filter,” in Proc. Third Int Intelligent Control and Information Processing
(ICICIP) Conf, 2012, pp. 497–502.

[30] V. Fathabadi, M. Shahbazian, K. Salahshour, and L. Jargani, “Compari-
son of adaptive kalman filter methods in state estimation of a nonlinear
system using asynchronous measurements,” in Proc., World Congress
on Engineering and Computer Science, vol. 2, 2009, pp. 1–8.

[31] G. Abdelnour, S. Chand, and S. Chiu, “Applying fuzzy logic to the
Kalman filter divergence problem,” in Proc. Conf. Int Systems, Man and
Cybernetics ’Systems Engineering in the Service of Humans’, 1993, pp.
630–635.

[32] P. Escamilla-Ambrosio and N. Mort, “Adaptive kalman filtering through
fuzzy logic,” in Proc. of the 7th UK Workshop on Fuzzy System, Recent
Advances and Practical Applications of Fuzzy, Nero-Fuzzy, and Genetic
Algorithm-Based Fuzzy Systems, UK, Sheffield, 2000, pp. 67–73.

[33] R. Havangi, M. A. Nekoui, and M. Teshnehlab, “Adaptive neuro-fuzzy
extended kaiman filtering for robot localization,” in Power Electronics
and Motion Control Conference (EPE/PEMC), 2010 14th International.
IEEE, 2010, pp. T5–130.

[34] D.-J. Jwo and S.-Y. Lai, “Navigation integration using the fuzzy strong
tracking unscented kalman filter,” Journal of Navigation, vol. 62, no. 02,
p. 303, Apr 2009.

[35] X. Tian, Y. P. Cao, and S. Chen, “Process fault prognosis using a fuzzy-
adaptive unscented kalman predictor,” International Journal of Adaptive
Control and Signal Processing, vol. 25, no. 9, pp. 813–830, Sep 2011.

[36] S. J. Julier, Jeffrey, and K. Uhlmann, “Unscented filtering and nonlinear
estimation,” 2004.

[37] V. Guskov, N. Velev, Y. Atamanov, N. Bocharov, I. Ksenevich, and
A. Solonsky, “Tractors. theory (in Russian),” Mashinostroenie, 1988.

[38] M. Doumiati, A. Victorino, A. Charara, D. Lechner, and G. Baffet,
“An estimation process for vehicle wheel-ground contact normal forces,”
IFAC WC, pp. 7110–7115 , vol. 8, 2008.

[39] M. Schreiber and H. Kutzbach, “Comparison of different zero-slip
definitions and a proposal to standardize tire traction performance,”
Journal of Terramechanics, vol. 44, no. 1, pp. 75–79, Jan 2007.

[40] A. Almagbile, J. Wang, and W. Ding, “Evaluating the performances of
adaptive kalman filter methods in gps/ins integration,” Journal of Global
Positioning Systems, vol. 9, no. 1, pp. 33–40, Jun 2010.

[41] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, “Stochastic stability
of the discrete-time extended kalman filter,” IEEE Transactions on
Automatic Control, vol. 44, no. 4, pp. 714–728, Apr 1999.

[42] K. Xiong, H. Zhang, and C. Chan, “Performance evaluation of ukf-based
nonlinear filtering,” Automatica, vol. 42, no. 2, pp. 261–270, Feb 2006.

331




