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Abstract— This paper addresses local H∞ controller design
problems for continuous-time Takagi–Sugeno (T–S) systems
with magnitude- and energy-bounded disturbances. The design
procedure is formulated as optimizations subject to linear
matrix inequalities (LMIs) which can be solved by means of
convex optimization techniques. The designed controllers not
only guarantee the H∞ performance but also ensure the state
not to escape an invariant set that is included by the region
where the T–S fuzzy model is defined. Finally, examples are
given to illustrate the proposed method.

I. INTRODUCTION

Stability analysis analysis and control design of Takagi–

Sugeno (T–S) fuzzy systems have attracted a great deal

of attention for decades. Approaches based on Lyapunov

stability theory are the most popular way to deal with those

problems, since they enable the problems to be described

as linear matrix inequalities (LMIs) for which LMI solvers

are available [1]–[3]. Among them, the simplest method is

the common quadratic Lyapunov function approach [4], [5],

which is in general overly conservative because a common

Lyapunov matrix should be found for all subsystems of fuzzy

systems. To reduce the conservatism, significant efforts have

been made to date. Nowadays, there is immense literature ad-

dressing the relaxation problem through various approaches,

just to name a few:

• slack variable approaches that develop quadratic-

Lyapunov-function-based LMI conditions that reflect

more information on the properties of the unit simplex

[6]–[9];

• LMI conditions that reflect some information on the

membership functions’ shape [10], [11];

• convergent LMI relaxation techniques that exploit

Pólya’s theorem [12];

• approaches based on piecewise Lyapunov functions that

are piecewise quadratic with respect to some partitions

of the state space [13]–[15], fuzzy Lyapunov functions
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that are linearly dependent on the membership functions

[16]–[20], a class of Lyapunov functions using line

integral [21], polynomial Lyapunov functions whose de-

pendence on the state variables are expressed as polyno-

mial forms [22]–[25], switching polynomial Lyapunov

function [26], polynomial fuzzy Lyapunov functions

that are polynomial in the membership functions [27]–

[30];

• the so-called k-samples variation approaches which use

augmented fuzzy Lypunov functions depending on the

states over several samples [31]–[33];

• approaches using new bounding techniques on the time

derivative of the membership functions [34]–[36];

• local stability and stabilization approaches [37]–[43]

that guarantee the asymptotic stability only in some

local region of the state space.

Among the promising results, in this paper, we focus on

the local stability approaches. Recently, the local stability

methods were extended to deal with the H∞ control prob-

lems in [44], [45] and to address the local stabilization

problems with invariant set analysis subject to magnitude-

and energy-bounded disturbances in [46]. Especially, [46]

developed LMI conditions to design controllers that ensure

the state to be confined within the region where the T–S fuzzy

model is defined when the magnitude- and energy-bounded

disturbances exist.

Motivated by the results in [46], in this paper, we suggest

three LMI-based approaches for invariant set analysis and

H∞ control of continuous-time T–S fuzz systems subject to

magnitude- and energy-bounded disturbances. First of all, we

present an LMI-based procedure to design controllers that

locally stabilize the system when the disturbance vanishes

and otherwise guarantee that the invariant set of the state

is confined within the region where the T–S fuzzy model is

defined. Notice that the proposed first LMI approach is not

entirely new and can be viewed as a version of Theorem 2 in

[46]. However, the proposed LMI condition is derived from

a slightly different framework that was used in [46], and we

have made some efforts to improve the rigorousness of the

proof. Secondly, by using Schur complement several times,

the first LMI condition is then modified to linearize some

nonlinear search parameter in the first LMI optimization.

This might be viewed as an advantage over our first LMI

condition and Theorem 2 in [46] since the elimination of

the parameter’s search procedure significantly reduces the
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computational effort of the overall design procedure. Finally,

the first LMI approach is extended to tackle the H∞ control

problem. The designed H∞ controller also guarantees that

the state starting inside some set of the state variables will not

escape an invariant set which is confined within the region of

T–S fuzzy models. Numerical examples are given to illustrate

the proposed methods.

II. PRELIMINARIES

A. Notation

The adopted notation is as follows: AT : transpose of

matrix A; A ≻ 0 (A ≺ 0, A � 0, and A � 0, respectively):

symmetric positive definite (negative definite, positive semi-

definite, and negative semi-definite, respectively) matrix A;

0n: origin of R
n; He{A} := A + AT ; ∗ inside a ma-

trix: transpose of its symmetric term; Ir := {1, 2, . . . , r};

R≥0 := {t ∈ R : t ≥ 0}; R>0 := {t ∈ R : t > 0};

Υ(ξ) :=
r∑

i=1

hi(ξ(t))Υi; I: identity matrix of appropriate

dimensions.

B. Problem Formulation

Let us consider the continuous-time T–S fuzzy system


ẋ(t) =
r∑

i=1

hi(ξ(t))(Aix(t) +Bu, iu(t) +Bw, iw(t))

z(t) =
r∑

i=1

hi(ξ(t))(Cix(t) +Du, iu(t) +Dw, iw(t))

∀x(t) ∈ L, (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input,

w(t) ∈ R
p is the disturbance, z(t) ∈ R

q is the controlled

output, Ai ∈ R
n×n, Bu, i ∈ R

n×m, Bw, i ∈ R
n×p, Ci ∈

R
q×n, Du, i ∈ R

q×m, Dw, i ∈ R
q×p are constant matrices,

i ∈ Ir := {1, 2, . . . , r} is the rule number, ξ(t) ∈ R
s is the

vector containing premise variables in the fuzzy inference

rule, hi(ξ(t)) is the membership function (MF) for each rule,

L ⊆ R
n is a set of state variables where the T–S fuzzy

system is defined, and the vector of the MFs h(ξ(t)) :=
[ h1(ξ(t)) · · · hr(ξ(t)) ]T ∈ R

r lies in the unit simplex

Λr for all (t, x(t)) ∈ [0, ∞) × L, where Λr := {α ∈ Rr :
α1 + · · · + αr = 1, 0 ≤ αi ≤ 1, i ∈ Ir}. In this paper, we

assume that

ξ(t) = T x(t) =




T1
...

Ts


x(t) ∈ R

s, T ∈ R
s×n,

i.e., the premise variables are linear combinations of the state

variables and that L is described as

L := {x ∈ R
n : Tix ∈ [−ξi,max, ξi,max], i ∈ Is},

where ξi,max > 0, i ∈ Is are a priori given real numbers.

The first problem addressed in this paper can be roughly

stated as follows.

Problem 1: (Local stabilization and invariant set analysis).

Determine a state-feedback control law u(t) = K(ξ)x(t)
such that

1) under w(t) = 0p, the zero equilibrium point of (1) is

locally asymptotically stable and estimate an invariant

subset of the domain of attraction (DA) [47];

2) under w(t)Tw(t) ≤ δ, ∀t ∈ [0, ∞) and∫∞

0
w(τ)Tw(τ)dτ ≤ ε, any trajectories starting

from some domain do not escape region L for all

t ∈ [0, ∞).
The second problem can be briefly summarized as follows.

Problem 2: (Local H∞ control problem). Determine a

state-feedback control law u(t) = K(ξ)x(t) such that

statements 1), 2) of Problem 1 are fulfilled, and the H∞

performance

√∫∞

0
z(τ)T z(τ)dτ

/∫∞

0
w(τ)Tw(τ)dτ < γ1/2

is satisfied under x(0) = 0n.

Remark 1: Notice that Problem 1 was already addressed

in [46] in a systematical manner. Inspired by the ideas in [46],

we present an LMI-based optimization procedures which can

be viewed as modified versions of Theorem 2 in [46]. In this

paper, the proof is based on the ideas in [46] and also follows

the lines similar to those in [40], [42], [43] which deal with

the local stability problem.

Remark 2: In [41], the local stability analysis was ad-

dressed without considering the local controller synthesis

problem. On the other hand, in this paper, we consider the

local stabilization with the local H∞ performance provided

in Problem 2. Moreover, in [41], different definitions and sets

of the state variables were used.

C. Main Result

In this section, we present LMI-based optimization proce-

dures to solve the Problems 1 and 2. For Pi ≻ 0, i ∈ Ir,

let

V (x(t)) :=x(t)T

(
r∑

i=1

hi(ξ(t))Pi

)−1

x(t)

=x(t)TP (ξ)−1x(t)

be a candidate of Lyapunov functions. In addition, let us

consider the so-called non-parallel distributed compensation

state-feedback control law [18]:

u(t) =

(
r∑

i=1

hi(ξ(t))Fi

)(
r∑

i=1

hi(ξ(t))Pi

)−1

x(t)

=F (ξ)P (ξ)−1x(t),

where F (ξ) :=
∑r

i=1 hi(ξ(t))Fi. Combining the above

control law with (1), the resulting closed-loop system is given

by{
ẋ(t) = (A(ξ) +Bu(ξ)F (ξ)P (ξ)−1)x(t) +Bw(ξ)w(t);
z(t) = (C(ξ) +Du(ξ)F (ξ)P (ξ)−1)x(t) +Dw(ξ)w(t);

∀x(t) ∈ L. (2)

For the development of the main results, we also need to

define the following sets:

1) H(b) := {x ∈ L : |hi(ξ)| ≤ b, ξ = T x, i ∈ Ir};

2) Ω(γ) := {x ∈ L : V (x) ≤ γ};
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3) W(δ, ε): set of continuous functions w : R≥0 →
R

q such that w(t)Tw(t) ≤ δ, ∀t ∈ [0, ∞) and∫∞

0
w(τ)Tw(τ)dτ ≤ ε.

4) V: set of vertices of {v ∈ R
r : −b ≤ vi ≤ b, i ∈

Ir, v1 + v2 + · · ·+ vr = 0};

5) Gi: set of vertices of a polytope that includes ∂hi(ξ)/∂ξ
for all ξ = Tix, x ∈ L.

Remark 3: Note that the assumption of magnitude-

bounded and energy-bounded disturbances was already used

in [46]. In addition, the assumption of magnitude-bounded

disturbances was also used in [44], [45]. Compared to

[46], we add the continuity assumption of w(t) to improve

rigorousness of the proof.

Remark 4: A remark on how to calculate set V is in order.

In case r = 2, set V is simply V =

{[
b
−b

]
,

[
−b
b

]}
. For

the general case, first note that set M := {v ∈ R
r : −b ≤

vi ≤ b, i ∈ Ir, v1+v2+· · ·+vr = 0} is a polyhedron which

is the intersection of polytope {v ∈ R
r : −b ≤ vi ≤ b, i ∈

Ir} and hyper plane {v ∈ R
r : v1 + v2 + · · · + vr = 0}.

The problem of computing vertices of the polyhedron M is

known as the vertex enumeration problem in computational

geometry and can be solved using program Polyhedron

in Multi-Parametric Toolbox 3.0 [49].

Remark 5: If one does not want to put additional com-

putational efforts to compute set V , then the slack variables

approache in [20] or the bounding techniques developed in

[37]–[39] can be applied alternatively.

To proceed further, we need to recall the following relax-

ation lemma presented in [7].

Lemma 1 ( [7]): Given symmetric matrices Υij , (i, j) ∈
I2
r ,
∑r

i=1

∑r
j=1 hi(ξ(t))hj(ξ(t))Υij ≺ 0 holds for all

x(t) ∈ L if LMIs Υii ≺ 0, ∀i ∈ Ir and (2/(r − 1))Υii +
Υij +Υji ≺ 0, i 6= j, ∀(i, j) ∈ I2

r are fulfilled.

We are now in position to establish LMI-based optimiza-

tion procedure that solves Problem 1.

Theorem 1: Let parameters (b, δ, η, β) ∈ R>0 × R>0 ×
R>0×R>0 be given. Suppose that there exist matrices Pi =
PT
i ∈ R

n×n, Fi ∈ R
n×m, i ∈ Ir, and a number ε ∈ R>0

such that the following optimization problem is satisfied:

max
Pi, Fi, ε

ε subject to

[
− 1

1+ηε
Pi ∗

TjPi −ξ2j,max

]
≺ 0, ∀(i, j) ∈ Ir × Is, (3)

Υii(g) ≺ 0, ∀i ∈ Ir, ∀g ∈ Gk, ∀k ∈ Ir, (4)

2

r − 1
Υii(g) + Υij(g) + Υji(g) ≺ 0,

(i, j) ∈ ∀{(i, j) ∈ Ir × Ir : i 6= j}, ∀g ∈ Gk, ∀k ∈ Ir,
(5)[

−β−1In ∗
In −Pi

]
≺ 0, ∀i ∈ Ir, (6)

Ψii(v) ≺ 0, ∀i ∈ Ir, ∀v ∈ V, (7)

2

r − 1
Ψii(v) + Ψij(v) + Ψji(v) ≺ 0,

∀(i, j) ∈ {(i, j) ∈ Ir × Ir : i 6= j}, ∀v ∈ V, (8)

where

Υij(g) :=


 − 1

1+ηε+δ

[
Pi 0
0 I

]
∗

gT
[
AiPj +Bu, iFj Bw, i

]
−b2I


 ,

Ψij(v) :=


 He{(AiPj +Bu, iFj)} −

r∑
k=1

Pkvk ∗

BT
w, i −ηI


 .

Then, the following statements are true:

1) Ω(1 + ηε) ⊂ L;

2) If w(t) ∈ W(δ, ε) and x(0) ∈ Ω(1 + ηε), then Ω(1 +
ηε) ⊂ H(b);

3) {x ∈ R
n : xTx ≤ β} ⊂ Ω(1);

4) If w(t) = 0p, then closed-loop system (2) is locally

asymptotically stable and an invariant subset of the DA

for the closed-loop system is given by Ω(1 + ηε);
5) If w(t) ∈ W(δ, ε) and x(0) ∈ Ω(1), then all the future

trajectories will remain within Ω(1 + ηε), i.e., x(t) ∈
Ω(1 + ηε), ∀t ∈ [0, ∞).
Proof: To begin with, note that using Lemma 1 and

relation ∂hi(ξ)/∂ξ ∈ Gi, ∀x(t) ∈ L, ∀i ∈ Ir, LMIs (3)-(8)

guarantee[
− 1

1+ηε
P (ξ) ∗

TjP (ξ) −ξ2j,max

]
≺ 0, ∀(x(t), j) ∈ L × Is,

(9)
 − 1

1+ηε+δ

[
P (ξ) 0
0 I

]
∗

∂hi(ξ)
∂ξ

T
[
A(ξ)P (ξ) +Bu(ξ)F (ξ) Bw(ξ)

]
−b2I




≺ 0, ∀(x(t), i) ∈ L × Ir, (10)[
−β−1I ∗

I −P (ξ)

]
≺ 0, ∀x(t) ∈ L, (11)

[
He{(A(ξ)P (ξ) +Bu(ξ)F (ξ))} − Ṗ (ξ) ∗

Bw(ξ)
T −ηI

]

≺ 0, ∀x(t) ∈ H(b). (12)

Then, the proof consists of several parts.

Proof for statement 1): Let ζ(t) :=

[
P (ξ)−1

ξ−2
j,maxTj

]
x(t).

We multiply (9) by ζ(t)T on the left and ζ(t) on the right

to obtain

ξ−2
j,maxξj(t)

2 <
1

1 + ηε
V (x(t)), ∀(x(t), j) ∈ L\{0n} × Is,

which implies 1 + ηε < V (x(t)), ∀x(t) ∈ ∂L, where ∂L
is the boundary of L. This means ∂L ∩ ∂Ω(1 + ηε) = ∅.

It is important to note that the level set is defined only in

L. Also, it is easy to see that conditions (9)-(12) ensure that

V (x(t)) is positive definite in L. At this stage, there may

be no guarantee that any level set Ω(σ), σ ∈ R>0 inside L
is connected because there is no guarantee that V (x(t)) is

a Lyapunov function in L. However, since V (0n) = 0 and

V (x(t)) is continuous in L, we know that at least Ω(1+ηε)
is nonempty, and from ∂L∩ ∂Ω(1+ ηε) = ∅, it can be seen

that Ω(1+ηε) is strictly included by L, i.e., Ω(1+ηε) ⊂ L.
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Proof for statement 2): Pre- and post-multiplying (10) by

diag(P (ξ)−1, I, I) and applying Schur complement yield

b−2
[
A(ξ) +Bu(ξ)F (ξ)P (ξ)−1 Bwz(ξ)

]T
× T T ∂hi(ξ(t))

∂ξ(t)

T
∂hi(ξ(t))

∂ξ(t)
T

×
[
A(ξ) +Bu(ξ)F (ξ)P (ξ)−1 Bw(ξ)

]
−

1

1 + ηε+ δ

[
P (ξ)−1 0

0 I

]
≺ 0, ∀x(t) ∈ L.

Once again, pre- and post-multiply the above inequality by

[ x(t)T w(t)T ] and its transpose, respectively, and use

relation ḣi(ξ(t)) = (∂hi(ξ(t))/∂ξ(t))T ẋ(t) to obtain

1

b2
ḣi(ξ)

2 <
1

1 + ηε+ δ
(x(t)TP (ξ)−1x(t) + w(t)Tw(t)),

∀x(t) ∈ L\{0n}. Since w(t) ∈ W(δ, ε), we have

(1/b2)ḣi(ξ(t))
2 < (1 + ηε + δ)−1(x(t)TP (ξ)−1x(t) +

δ), ∀x(t) ∈ L\{0n}, which implies (1/b2)ḣi(ξ(t))
2 < (1 +

ηε+δ)−1(1+ηε+δ) = 1, ∀x(t) ∈ L\{0n}∩Ω(1+ηε)\{0n}.

From statement 1), Ω(1 + ηε) ⊂ L and hence, we have

(1/b2)ḣi(ξ(t))
2 < 1, ∀x(t) ∈ Ω(1 + ηε)\{0n} ⇒ Ω(1 +

ηε)\{0n} ⊂ H(b) ⇒ Ω(1 + ηε) ⊂ H(b).
Proof for statement 3): Pre- and post-multiplying (11)

by [ x(t)T x(t)T ] and its transpose, respectively, we have

that inequality (11) ensures

V (x(t)) < β−1x(t)Tx(t), ∀x(t) ∈ L\{0n}

⇔ V (x(t))− 1 < β−1x(t)Tx(t)− 1, ∀x(k) ∈ L\{0n}

⇔ V (x(t))− 1 < β−1(x(t)Tx(t)− β), ∀x(k) ∈ L\{0n}

⇒ {x ∈ R
n : xTx ≤ β} ⊂ Ω(1).

Proof for statement 4): From the first block diagonal of

(12), it follows that

He{(A(ξ)P (ξ) +Bu(ξ)F (ξ))} − Ṗ (ξ) ≺ 0, ∀x(t) ∈ H(b).

Left- and right-multiplying the above inequality by P (ξ)−1

and using relation −P (ξ)−1Ṗ (ξ)P (ξ)−1 = d(P (ξ)−1)/dt,
we have

He{P (ξ)−1(A(ξ) +Bu(ξ)F (ξ)P (ξ)−1)}

+ d(P (ξ)−1)/dt ≺ 0, ∀x(t) ∈ H(b).

Under w(t) = 0p, the last inequality implies V̇ (x(t)) <
0, ∀x(t) ∈ H(b)\{0n} ⇒ H(b)\{0n} ⊆ {x ∈ L :
V̇ (x) < 0}. On the other hand, from statement 2), one has

Ω(1 + ηε) ⊂ H(b), ∀w(t) ∈ W(δ, ε) ⇒ Ω(1 + ηε) ⊂
H(b), ∀w(t) = 0p, so together with Ω(1 + ηε) ⊂ H(b),
H(b)\{0n} ⊆ {x ∈ L : V̇ (x) < 0} implies Ω(1 + ηε) ⊂
{x ∈ L : V̇ (x) < 0}. By Lyapunov theory [47], (2) with

w(t) = 0p is locally asymptotically stable and Ω(1 + ηε) is

an invariant subset of the DA [47].

Proof for statement 5): Pre- and post-multiply (12)

by [ x(t)TP (ξ) w(t)T ] and its transpose, respectively,

and use relation −P (ξ)−1Ṗ (ξ)P (ξ)−1 = d(P (ξ)−1)/dt to

obtain

V̇ (x(t))− ηw(t)Tw(t) < 0, ∀x(t) ∈ H(b)\{0n}. (13)

Now the proof is done by contradiction. Suppose that (13)

holds but x(t) starting from x(0) ∈ Ω(1) satisfies{
x(t) ∈ Ω(1 + ηε)\∂Ω(1 + ηε), t ∈ [0, τ1);
x(τ1) ∈ ∂Ω(1 + ηε),

for some τ1 ∈ R>0, where ∂Ω(1 + ηε) is the boundary of

Ω(1 + ηε). From statement 2), Ω(1 + ηε) ⊂ H(b) holds,

and from which we know that x(t) ∈ H(b) holds for all

t ∈ [0, τ1]. This means that (13) is satisfied for all t ∈ [0, τ1].
Therefore, we can integrate the left-hand side of (13) from

0 to τ1 to obtain

V (x(τ1)) < V (x(0)) + η

∫ τ1

0

w(τ)Tw(τ)dτ .

By assumptions w(t) ∈ W(δ, ε) and x(0) ∈ Ω(1), it is true

that ∫ τ1

0

w(τ)Tw(τ)dτ <

∫ ∞

0

w(τ)Tw(τ)dτ ≤ ε.

and V (x(0)) ≤ 1. Hence, it follows from the last two

inequalities that

V (x(τ1)) < V (x(0)) + η

∫ τ1

0

w(τ)Tw(τ)dτ

< V (x(0)) + ηε ≤ 1 + ηε,

so x(τ1) /∈ ∂Ω(1 + ηε) which gives a contradiction. This

implies that state x(t) will not reach the boundary of Ω(1+
ηε). From the continuity assumption of w(t), x(t) is also

continuous, and x(t) starting from x(0) ∈ Ω(1) will not

escape domain Ω(1 + ηε). This completes the proof.

Remark 6: The optimization problem of Theorem 1 is

an one-dimensional maximization problem subject to LMI

constraints, and for fixed ε, conditions (3)-(8) are LMIs

tractable via LMI solvers [1]–[3]. Thus, the optimization

problem can be solved by means of a sequence of LMI

optimizations, i.e. a line search or a bisection process over

ε.

In Theorem 1, (δ, β) are considered as prescribed design

parameters chosen by the designer depending on the required

performances of the controller, while (b, η) are considered

as parameters to be searched over R>0 × R>0 as in [46].

In this paper, a version of Theorem 1 is developed, and it

can be shown that η can be incorporated into the LMIs as

a linear decision variable. It is established in the following

theorem.

Theorem 2: Let parameters (b, δ, β) ∈ R>0×R>0×R>0

be given. Suppose that there exist matrices Pi = PT
i ∈

R
n×n, Fi ∈ R

n×m, i ∈ Ir, and numbers ε ∈ R>0, φ ∈ R>0

such that the following optimization problem is satisfied:

max
Pi, Fi, ε, φ

ε subject to


 −Pi ∗ ∗

TjPi −ξ2j,max ∗

TjPi 0 −φ
ε
ξ2j,max


 ≺ 0, ∀(i, j) ∈ Ir × Is,

(14)

LMIs (4) − (8)
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with Υij(g) and Ψij(v) replaced, respectively, by

Υij(g) :=


−

[
Pi 0
0 I

]
∗ ∗

gT
[
AiPj +Bu, iFj Bw, i

]
− b2

1+δ
I ∗

gT
[
AiPj +Bu, iFj Bw, i

]
0 −φb2

ε
I


 ,

(15)

Ψij(v) := He{(AiPj +Bu, iFj)} −
r∑

k=1

Pkvk + φBw, iB
T
w, j .

(16)

Then, statements 1)-5) in Theorem 1 hold with η = φ−1.

Proof: Let us start with conditions (9)-(12) in the

proof of Theorem 1. Applying Schur complement to (10)

and multiplying the resulting condition by 1 + ηε+ δ yield

−

[
P (ξ) 0
0 I

]
+

1 + δ

b2
ΞTΞ +

ηε

b2
ΞTΞ ≺ 0,

∀(x(t), i) ∈ L × Ir, where

Ξ :=
∂hi(ξ)

∂ξ
T
[
A(ξ)P (ξ) +Bu(ξ)F (ξ) Bw(ξ)

]
.

Then, by applying the Schur complement twice to the above

inequality with change of variable η−1 = φ and by applying

Lemma 1, we obtain (4) and (5) with Υij(g) replaced by

(15). Similar procedures can be performed to derive (14) by

using (9). On the other hand, applying Schur complement to

(12) with change of variable η−1 = φ and using Lemma 1

give (7) and (8) with Ψij(v) replaced by (16). This completes

the proof.

Remark 7: The incorporation of search parameter η into

LMIs in Theorem 2 significantly reduces the computational

efforts of the entire design procedure. Note also that follow-

ing the similar lines, Theorem 2 in [46] can be modified in

order to remove search parameter η.

Remark 8: Using the similar line, δ can be also incor-

porated into the LMIs as a linear decision variable. This

modification can be used optionally.

Theorem 1 can be then extended to cope with the H∞

controller design problem. It is established in the following

theorem.

Theorem 3: Let parameters (b, δ, η, β, γ) ∈ R>0×R>0×
R>0×R>0×R>0 be given. Suppose that there exist matrices

Pi = PT
i ∈ R

n×n, Fi ∈ R
n×m, i ∈ Ir, and a number

ε ∈ R>0 such that the following optimization problem is

satisfied:

max
Pi, Fi, ε

ε subject to (3) − (6) and

Φii(v) ≺ 0, ∀i ∈ Ir, ∀v ∈ V, (17)

2

r − 1
Φii(v) + Φij(v) + Φji(v) ≺ 0,

∀(i, j) ∈ {(i, j) ∈ Ir × Ir : i 6= j}, ∀v ∈ V, (18)

where

Φij(v) :=




He{(AiPj +Bu, iFj)} −
r∑

k=1

Pkvk ∗ ∗

BT
w, i −ηI ∗

CiPj +Du, iFj Dw, i −γ
η
I


 .

Then, 1)-5) in Theorem 1 and the following statement hold:

6) If w(t) ∈ W(δ, ε) and x(0) = 0n, then all the future

trajectories will remain within Ω(1 + ηε) and the H∞

performance

√∫∞

0
z(τ)T z(τ)dτ

/∫∞

0
w(τ)Tw(τ)dτ <

γ1/2 is satisfied.

Proof: First of all, it is easy to prove that the feasibility

of the optimization problem of Theorem 3 assures the

feasibility of the optimization problem of Theorem 1 because

the first block diagonal matrix of Φij(v) of dimension n+ p
in Theorem 3 is equivalent to Ψij(v) in Theorem 1. For

this reason, proofs for statements 1)-5) are equivalent to

those in Theorem 1. Therefore, it suffices to prove just

statement 6) here. The first statement of 6) is true because

x(0) = 0n ∈ Ω(1) and hence all the future trajectories will

remain within Ω(1 + ηε) from statement 5). For the second

statement of 6), suppose that LMIs (17) and (18) hold. From

Lemma 1, we have
 He{A(ξ)P (ξ) +Bu(ξ)F (ξ)} − Ṗ (ξ) ∗ ∗

BT
w(ξ) −ηI ∗

C(ξ)P (ξ) +Du(ξ)F (ξ) Dw(ξ) −γ
η
I




≺ 0, ∀x(t) ∈ H(b).

Pre- and post-multiply the above inequality by

diag(P (ξ), I, I), use relation −P (ξ)−1Ṗ (ξ)P (ξ)−1 =
d(P (ξ)−1)/dt, apply Schur complement, and pre- and

post-multiply the resulting condition by [ x(t)T w(t)T ]
and its transpose, respectively to show

V̇ (x(t)) + (η/γ)z(t)T z(t)− ηw(t)Tw(t) < 0,

∀x(t) ∈ H(b)\{0n}. (19)

From statement 5), x(t) ∈ Ω(1+ ηε), ∀t ∈ [0, ∞) and from

statement 2), we deduce Ω(1 + ηε) ⊂ H(b) ⇒ x(t) ∈
H(b), ∀t ∈ [0, ∞). This ensures that (19) holds for all

t ∈ [0, ∞). Integrating the left-hand side of (19) from 0
to ∞, one gets

(η/γ)

∫ ∞

0

z(τ)T z(τ)dτ − η

∫ ∞

0

w(τ)Tw(τ)dτ < 0

⇔

∫ ∞

0

z(τ)T z(τ)dτ

/∫ ∞

0

w(τ)Tw(τ)dτ < γ.

This completes the proof.

Remark 9: What has been performed in Theorem 2 can

be also done for Theorem 3 to linearize search parameter

η. The modified version of Theorem 3 is not presented here

due to the lack of space.

Remark 10: A brief outline of the local H∞ controller

synthesis procedure based on Theorem 3 is presented in

the sequel. Step 1: Given continuous-time nonlinear system

ẋ(t) = f(x(t), u(t), w(t)), z(t) = g(x(t), u(t), w(t)), cal-

culate membership functions hi(ξ(t)), the system matrices,

premise variables ξ(t) = T x(t), and L for T–S fuzzy model
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(1). Step 2: Calculate ∂hi(ξ(t))/∂ξ(t) and its vertices in

Gi for all i ∈ Ir. Step 3: Construct vertex set V using the

methods given in Remark 4. Step 4: Solve the optimization

of Theorem 3 or the modified optimization of Theorem 3

stated in Remark 9. Step 5: If infeasible, Problem 2 cannot be

solved via the proposed optimization procedure. Otherwise,

if feasible, then Problem 2 can be solved. In other words,

statements 1)-5) in Theorem 1 and statement 6) in Theorem

3 hold.

III. EXAMPLES

All numerical examples in the sequel were treated with

the help of MATLAB R2012b running on a Windows 7 PC

with Intel Core i7-3770 3.4GHz CPU, 32GB RAM. The LMI

problems were solved with SeDuMi [2] and Yalmip [3].

Example 1: In this example, we make a comparison be-

tween Theorem 1 and Theorem 2 in [46]. For more fair

comparisons, a few slight modifications of Theorem 2 in

[46] are made as follows:

1) Condition (6) in Theorem 1 is included to guarantee

that the one-sublevel set of V (x(t)) is larger then {x ∈
R

n : xTx ≤ β}.

2) In order that the invariant set is included by only the

region L where the T–S fuzzy system is defined, LMIs

in (26) of [46] are modified as follows:[
α2

q

1+εη
L(k)Pi

PiL
T
(k) Pi

]
� 0, (i, k) ∈ Ir × Ip,

where p is the number of premise variables in [46].

3) When Theorem 2 in [46] is used in combination with

Lemma 2 in [46], to the best of the authors’ knowledge,

Lemma 2 might need to be slightly modified because

Theorem 2 in [46] only assures that the state will remain

within Ω(1+ηε) not Ω(1). The modified version would

be Lemma 2 in [46] with Ψij replaced by

Ψij :=


 1

1+εη

(
µk

2λk

)2
∗

(AjPi +BjFi)
TLT

(k) Pi


 .

Let us consider the following T–S fuzzy model of the chaotic
Lorenz system taken from [46]:

A1 =





−σ1 σ1 0
σ2 −1 20
0 −20 −σ3



 , A2 =





−σ1 σ1 0
σ2 −1 −30
0 30 −σ3



 ,

Bu, 1 =





σ1 0
0 σ2

σ3 0



 , Bu, 2 =





0 −σ1

−σ2 0
0 σ3



 ,

Bw, 1 = Bw, 2 =





σ1 0 0
0 σ1 0
0 0 σ1



 ,

T =
[

1 0 0
]

, ξ1(t) = T x(t) = x1(t),

L = {x ∈ R
n : −ξ1,max ≤ T x ≤ ξ1,max}, ξ1,max = 30,

h1(ξ1(t)) =
−ξ1(t) + ξ1,max

2ξ1,max
, h2(ξ1(t)) =

ξ1(t) + ξ1,max

2ξ1,max
,

(σ1, σ2, σ3) = (5, 30, 2).

Fig. 1. Example 1. εmax obtained using Theorem 1 for all (b, η) ∈

{10−5, 10−5+0.2, . . . , 103}2.

In this case, we have

∂h1(ξ1(t))

∂ξ1(t)
=

−1

2ξ1,max
∈ co

{
−1

2ξ1,max

}
, ∀x(t) ∈ L,

∂h2(ξ1(t))

∂ξ1(t)
=

1

2ξ1,max
∈ co

{
1

2ξ1,max

}
, ∀x(t) ∈ L,

where co{·} denotes the convex hull, and hence

G1 =

{
−1

2ξ1,max

}
, G2 =

{
1

2ξ1,max

}
.

In addition, V is the set of vertices of{[
v1
v2

]
∈ R

2 : −b ≤ vi ≤ b, i ∈ {1, 2}, v1 + v2 = 0

}

and given by V =

{[
b
−b

]
,

[
−b
b

]}
. On the other hand,

for Theorem 2 in [46], we set




λ1 = λ2 = 1
2ξ1,max

= 1
60 ;

L1 =
[
1 0 0

]
;

α1 = 30.
Let us assume that the maximum magnitude of w(t)Tw(t)

is δ = 10, and assume that we want for the one-sublevel

set Ω(1) to be larger than {x ∈ R
n : xTx ≤ β =

102}. In this case, in order to obtain the least conser-

vative results, we need to perform exhaustive search of

parameters (b, η) for Theorem 1 and search of param-

eters (µ1, η) for Theorem 2 in [46]. Figure 1 shows

the values of maximum ε, denoted by εmax, obtained by

using Theorem 1 with (b, η) searched over ∆2, where

∆ := {10−5, 10−5+0.2, 10−5+0.4, 10−5+0.6, . . . , 103}. In

addition, Figure 2 plots εmax computed by using Theorem 2

in [46] with (µ1, η) searched over ∆2. By comparing the

figures, we can see that both approaches produce similar

results for this example. For Theorem 1, setting (b, η) =
(102, 10−2) gives εmax = 199.1433, and for Theorem 2 in

[46] with (µ1, η) = (102, 10−2) gives εmax = 199.2958.

The estimated regions Ω(1) and Ω(1 + ηε) of both methods

are depicted in Figure 3, where the outer blue surface is the

cross section of Ω(1+ηε) and the inner red elliptical sphere

is Ω(1).
On the other hand, if one solves the problem using

Theorem 2, then the search of parameters (b, η) over ∆2

in Theorem 1 reduces to the search of parameter b over ∆.
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Fig. 2. Example 1. εmax obtained using Theorem 2 in [46] for all
(µ1, η) ∈ {10−5, 10−5+0.2, . . . , 103}2.

(a) (b)

Fig. 3. Example 1. Ω(1) (inner red elliptical sphere) and cross section
of Ω(1 + ηε) (outer blue surface) obtained using (a) Theorem 1 and (b)
Theorem 2 in [46].

Thus, the computational efforts can be significantly reduced.

Figure 4 shows εmax obtained using Theorem 2 for all b ∈ ∆
and reveals that Theorem 2 produces results similar to our

Theorem 1 and Theorem 2 in [46].

Example 2: In this example, we illustrate the pro-

posed H∞ control design method. Let us consider the

system in Example 1 again with the controlled out-

put matrices




C1 = C2 =
[
1 0 0

]
;

Du, 1 = Du, 2 =
[
0 0

]
;

Dw, 1 = Dw, 2 =
[
0 0 0

]
.

. Solving

the optimization of Theorem 3 with (b, η, γ, δ, β) =
(102, 10−2, 0.5, 10, 102), we obtained εmax = 139.6874.

Regions Ω(1) and Ω(1+ ηε) in this case are very similar to

those shown in Figure 3, so omitted here due to space lim-

itations. For simulation, we used the following disturbance

signal: 


w(t) =
√

δ
3


 sin(10t)

sin(10t)
sin(10t)


 , t ∈ [0, 5);

w(t) = 03, t ∈ [5, ∞),

which satisfies w(t)Tw(t) ≤ δ = 10, ∀t ∈ [0, ∞) and∫∞

0
w(τ)Tw(τ)dτ ≤ 25.1269 < ε = 139.6874. With

the zero initial condition, simulation results are shown

in Figure 5, where the blue solid line is the values of∫ t

0
z(τ)T z(τ)dτ

/∫ t

0
w(τ)Tw(τ)dτ as a H∞ performance

measure and the dashed red line indicates the H∞ per-

−5 −4 −3 −2 −1 0 1 2 3
0

50

100

150

200

250

log
10

 b

ε
m

a
x

Fig. 4. Example 1. εmax obtained using Theorem 2 for all b ∈

{10−5, 10−5+0.2, . . . , 103}.
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Fig. 5. Example 2.

∫
t
0
z(τ)T z(τ)dτ

∫
t
0
w(τ)Tw(τ)dτ

(blue solid line) and γ = 0.5 (red

dashed line).

formance bound γ = 0.5. From the figure, it can be

seen that the designed controller satisfies H∞ performance√∫∞

0
z(τ)T z(τ)dτ

/∫∞

0
w(τ)Tw(τ)dτ <

√
0.5.

IV. CONCLUSIONS

In this paper, we have proposed LMI-based procedures to

design local H∞ controller for continuous-time T–S systems

with magnitude- and energy-bounded disturbances. Examples

have illustrated the proposed method. The extension of the

proposed strategy to the local H∞ controller design for

discrete-time T–S fuzzy systems will be a possible future

research topic.
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