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Abstract— As a consequence of aging population and an 

increasing prevalence of obesity and diabetes there are more and 

more patients with heart failure. This leads to a lack of 

professionals who can treat them and to escalating costs. An 

interesting solution appears to be home telemonitoring with an 

intelligent clinical decision support system. In this paper, the use 

of cumulative information estimations for risk assessment of 

heart failure patients with such a system is analyzed. These 

cumulative information estimations are utilized for creation of an 

algorithmic model using fuzzy decision trees that combine 

decision trees and notions of fuzzy logic. The algorithmic model 

employs mutual cumulative information and relative mutual 

cumulative information for association of an important piece of 

data about the patients with a decision node. The risk assessment 

with the presented solution is analyzed from the point of view of 

minimization of life-threatening situations and minimization of 

costs. Comparisons with a Bayesian network method, a nearest 

neighbor method, and a logistic regression method show it is a 

promising solution. 

Keywords—cumulative information estimation, decision tree, 

home telemonitoring, e-health, heart failure, cardiology 

I. INTRODUCTION 

Given the rapidly growing aging population, the increased 

prevalence of obesity and diabetes, the increased burden of 

heart failure, and the increasing healthcare costs, there is an 

urgent need for the development, implementation, and 

deployment of new models of healthcare services. The burden 

of heart failure affects 2%-3% of the adult population with 

disabling symbols, the most common of which are fatigue and 

dyspnea, while in terms of disability, the end stage of the 

disease is comparable to the end stage of terminal cancer [13]. 

2%-3% of the adult population means over 26 million people 

with heart failure worldwide and this number is growing 

rapidly with newly diagnosed people every year. In the UK, 

heart failure affects about 900,000 people with 60,000 new 

cases annually [5]. Heart failure is characterized by a poor 

prognosis: up to 70% of all patients with heart failure die 

within 5 years after their first hospital admission [18]. In 

addition to a poor prognosis, a common feature of advanced 

heart failure is multiple hospital (re-)admissions [5]. A 

promising strategy that can cope with these challenges seems 

to be a greater use of home telemonitoring in which 

physiological data is transferred from the patients’ home to the 

center to monitor them, interpret the data, and make clinical 

decisions [14]. Home telemonitoring should be integrated with 

a clinical decision support system that identifies both the 

nature and optimal response to a problem rather than just its 

mere existence [4]. 

Clinical outcomes such as hospital admission and 

mortality are normally used as regression or classification 

goals in the analysis of medical data. Traditionally, techniques 

belonging to the data modeling culture rather than to the 

algorithmic modeling culture are employed there. Existing 

methods include Cox regression [6], EFFECT Risk Scoring 

system [10], Emergency Heart Failure Mortality Risk Grade 

(EHMRG) [11], logistic regression [1] or Seattle Heart Failure 

Model (SHFM) [8]. Algorithmic models such as data mining 

methods do not usually assume there is a causal relationship 

between home telemonitoring data and clinical outcomes, 

which is useful as there does not have to be any. Moreover, 

their goal is predictive accuracy primarily and some of them 

can store the knowledge about patients in an easily 

interpretable and understandable way. Data mining methods 

such as decision tree methods, nearest neighbor methods and 

neural network methods are employed in [2][15]-[17][21]. In 

[2], a knowledge based platform of services for more effective 

and efficient clinical management of heart failure within 

elderly population is presented. A platform to enhance 

effectiveness and efficiency of any worsening in a heart 

failure patient's condition is proposed in [15]. In [16], 

hospitalization for heart failure is predicted with decision tree 

methods, nearest neighbor methods and neural network 

methods. Papers [17] and [21] discuss the issues of 

preprocessing in heart failure data. 

The research reported in the paper considers risk 

assessment of heart failure patients, i.e. predicting the 
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possibility of death for a heart failure patient within six 

months, with an algorithmic model creating knowledge 

represented as a fuzzy decision tree or a set of IF-THEN rules 

derived from the tree. This set of IF-THEN rules is used by an 

algorithm that creates the predictions. The fuzzy decision tree 

and the derived set of IF-THEN rules make use of the notions 

of fuzzy logic such as fuzzy sets, membership degrees and 

linguistic variables. The incorporation of fuzzy logic allows us 

to take cognitive uncertainties such as vagueness into 

consideration. Vagueness is associated with the difficulty to 

make clear or precise distinctions in the real world [9]. For 

example, it is strange to consider a patient's age "young" when 

the patient is 42 and "mid aged" when the patient is 43. Small 

changes in numerical values can cause changes in categorical 

values, which can lead to significant changes in predictions 

[19]. The knowledge should also be easily readable by the 

clinicians so that they can make more sophisticated data 

interpretation and decision-making, and for this reason the 

number of IF-THEN rules in the set and their lengths are 

analyzed. The computations in the algorithms within the 

domain of fuzzy logic are based on cumulative information 

estimations offering criteria for association of an important 

piece of data about heart failure patients with the decision 

node. 

The organization of the paper is as follows. Section II 

describes the data about heart failure patients and its 

processing. Employed cumulative information estimations are 

formulated in Section III. The algorithmic model used for risk 

assessment of heart failure patients is explained in Section IV. 

Section V contains the experimental results. Section VI 

concludes the paper. 

II. CLINICAL HEART FAILURE DATA 

The data used is extracted from Hull LifeLab which is 

large, epidemiologically representative, information-rich 

clinical data [3]. It contains information about 2032 heart 

failure patients which are studied for the purpose of diagnosis, 

delivery of improved treatment to patients, and estimation of 

associated costs to health services and society. 

Mathematically, the patients are represented as set  , i.e. each 

patient    . Nine attributes   are identified with queries 

about clinical findings and physiological measurements in the 

data. These are referred to as describing attributes in the paper 

and they are systematically characterized in Table I. 

Mathematically, these attributes are defined as   = {  ; …; 

  ; …;   }. If    is a categorical attribute,    = {    ; …; 

    ; …;      
} where     , …,     , …;      

 are possible 

categorical values. The data is further divided into two groups: 

a) patients who passed away within six months after the data 

had been obtained and b) patients who were alive six and 

more months after the data had been obtained. This is 

reflected in the Risk Outcome ( ) attribute (referred to as the 

class attribute as well) with two possible categorical values    

(dead) and    (alive). Mathematically,   = {  ;   }. The 

particular value for an attribute    ( ) and a patient     is 

marked as       (    ). 

 

TABLE I.  IDENTIFIED ATTRIBUTES IN THE HEART FAILURE DATA 

Attribute Data Type Values 

NT-proBNP Level (  ) Numerical 0.89 – 18236 

Pulse Rate (  ) Numerical 38 - 150 

Sex (  ) Categorical 
male (    ) 

female (    ) 

Age (  ) Numerical 27 - 96 

Height (  ) Numerical 1.20 – 1.96 

Weight (  ) Numerical 29.80 – 193.80 

Blood Creatinine Level (  ) Numerical 37 - 1262 

Blood Sodium Level (  ) Numerical 123 - 148 

Blood Uric Acid Level (  ) Numerical 0.11 - 1.06 

Risk Outcome ( ) Categorical 
dead (  ) 

alive (  ) 

 

Vagueness and interpretability are taken into consideration 

through fuzzification of attributes in   and attribute  . Each 

attribute    in   is fuzzified into linguistic variable    = 

{    ; …;     ; …;      
}, i.e. describing linguistic variables   

= {  ; …;   ; …;   }. Attribute   is fuzzified into class 

linguistic variable   = {  ;   }. The data is also transformed 

through definition of membership degrees so that fuzzification 

is reflected. Membership degrees         (     ) are defined 

for all           (all     ) and all     using our 

expert knowledge. 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 
Fig. 1.  Fuzzification of NT-proBNP Level for patients who are 75 
years old or younger.  
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Fig. 2.  Fuzzification of NT-proBNP Level for patients older than 75. 
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Fig. 3.  Fuzzification of Pulse Rate.  
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Definition of all membership degrees           but any 

        is through membership functions in Fig. 1, Fig. 2, 

Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig. 10, 

Fig. 11, Fig. 12, and Fig. 13. Linguistic terms defined for 

linguistic variable Sex (  ) match possible values of attribute 

  , i.e. values male and female. Membership degree         = 

        equals 1 if            and 0 if       
      . Membership degree         =           equals 1 

if              and 0 if           . Linguistic terms 

defined for linguistic variable Risk Outcome (  ) match 

possible values of attribute  , i.e. values dead and alive. 

Membership degree       =         equals 1 if      
     and 0 if           . Membership degree       = 

         equals 1 if            and 0 if          . 

III. CUMULATIVE INFORMATION ESTIMATIONS 

Marks, terms, and cumulative information estimations 

employed in the paper are defined and summarized here. Let 

Height be a linguistic variable defined as Height = {short; 

average; tall}. It is said short, average, tall are associated 

with (are defined for) Height. Membership degree to which a 

patient   is an element of the fuzzy set associated with short is 

symbolized by short( ). If   is the fuzzy set associated with 

short, #(short) is the cardinality of  . If short is chosen from 

the linguistic terms predefined for Height, it is denoted by 

‘Height is short’. A new linguistic term can be derived from 

linguistic terms defined for linguistic variables when 

conjunction ‘AND’ is used and its membership degree is 

computed with t-norm           .  

 

3.1 Definition. Let   be the set of all possible patients with 

heart failure and let     be described by linguistic variables 

  = {  ; …;   ; …;   }. A linguistic condition   is a 

linguistic term associated with a subset terms( ) of linguistic 

terms defined for variables in  . Its lexical name is a 

connection of terms in terms( ) with conjunction ‘AND’. For 

any possible variable in   there is at most one linguistic term 

from the linguistic terms defined for this variable.   is 

associated with a fuzzy set whose membership degree     , 

   , is defined as follows:        if terms(  ) =  , 

otherwise the value of      is the result of t-norm applied on 

all              .  

Linguistic term      in terms( ) of a linguistic condition  , 

         , is equally replaced by ‘   is     ’ and vice 

versa.    /     means terms( ) =  / terms( )    . If 

there is a linguistic term/no linguistic term defined for 

linguistic variable    in terms( ),     /    . Symbol 

     means removing the linguistic term         from 

terms( ) if present.       ,      is a linguistic condition, 
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Fig. 4.  Fuzzification of Age for male patients.  
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Fig. 5.  Fuzzification of Age for female patients.  
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Fig. 6.  Fuzzification of Height for male patients. 

 

 

 

 

 
Fig. 7.  Fuzzification of Height for female patients. 
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Fig. 8.  Fuzzification of Weight.  
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Fig. 10.  Fuzzification of Blood Creatinine Level for female patients. 
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Fig. 9.  Fuzzification of Blood Creatinine Level for male patients. 
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Fig. 11.  Fuzzification of Blood Creatinine Level for female patients. 
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Fig. 12.  Fuzzification of Blood Uric Acid Level for male patients. 
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Fig. 13.  Fuzzification of Blood Uric Acid Level for female patients. 
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where ‘  AND    is     ’ if     and ‘   is     ’ if    . 

Membership degree (      )( ) =  (            ), where 

  is t-norm.      is a linguistic term ‘  AND   is   ’ if 

    and ‘   is   ’ if    , where   is a linguistic 

condition,    is a linguistic term defined for class variable  . 

Membership degree (    )( ) equals  (          ).  

The cumulative information estimations such as cumulative 

information, conditional cumulative information, mutual 

information, cumulative information, and relative mutual 

information are introduced in [12] and they are formulated 

with the use of the above-mentioned marks and terms in the 

following definitions. 
 

3.2 Definition. Cumulative information of linguistic condition 

  (linguistic term     ,     ) for known patients   is: 

 
        {

                

                
, (1) 

                          . (2) 
 

3.3 Definition. Information of linguistic condition   

(linguistic term     ,     ) for known patients   is: 

                        , (3) 

   (      )                     . (4) 
 

3.4 Definition. Conditional information (conditional 

cumulative information) of      for known patients   

provided that   is known is defined as: 

                           (      )  

       . 
(5) 

 

3.5 Definition. Mutual information             for 

determining the amount of information which is obtained 

about   if values of     ,    ,        ,          , 

   , are known is defined as:  

             ∑ ∑                    
     

                , where 
(6) 

    (           )     (      )  

   (        )     (           )  

        . 

(7) 

 

3.6 Definition. Cumulative entropy of linguistic variable 

     on known patients     is defined as: 

           ∑                
   (      ). (8) 

 

3.7 Definition. Relative mutual information                

for determining the amount of information obtained about   

independently from #(  ) if values of     ,    ,        , 

         ,    , are known is defined as: 

                 
           

        
. (9) 

3.8 Definition. Frequency of class linguistic term      for 

known patients   provided that   is known is defined as: 

  (      )              . (10) 

IV. ALGORITHMIC MODEL 

The algorithmic model supposes known patients   are 

complex, and, at least, partly unknowable. What is observed is 

a set of describing linguistic variables   = {  ; …;   ; …; 

  } and class linguistic variable  . The problem is to find an 

algorithm such that for all membership degrees        , 

         ,   is any heart failure patient, the algorithm will 

be a good predictor of      ,     . The algorithmic model 

used in this paper utilizes an algorithm based on [12]. It 

creates knowledge about known patients and this knowledge is 

represented as a fuzzy decision tree or a set of IF-THEN rules 

derived from the tree. This set of IF-THEN rules is used by 

another algorithm that creates predictions for a patient    , 

  is the set of all possible heart failure patients. The 

algorithmic model employs mutual cumulative information 

defined in Definition 3.5 and relative mutual cumulative 

information defined in Definition 3.7 for association of an 

important piece of data about known patients in   with a 

decision node. They are referred to as criterion for association 

             as one. The growth of the fuzzy decision tree 

is controlled by two parameters: frequency-of-branch 

threshold         and frequency-of-class threshold 

       . Parameter   controls its growth on the basis of 

frequency of branch. The higher the value of this parameter, 

the lower its height (or equally, the lower the number of 

assignments in the conditions of the IF-THEN rules) is. 

Parameter   controls its growth on the basis of frequency of 

    . The lower the value of the parameter, the lower its 

height (or the lower the number of assignments in the 

conditions of the IF-THEN rules) is. The algorithm for 

creation of knowledge represented as a fuzzy decision tree is 

as follows: 

1) Create the root of the tree and associate linguistic variable 

      =                          with it. Create a 

branch for each        , associate each      with the 

particular branch, connect the branches with the root, and 

consider the branches unprocessed; 

2) END if there is no unprocessed branch. Otherwise, choose 

one of the unprocessed branches and consider it the current 

branch. For the current branch, create linguistic term   

consisting of  all assignments “Linguistic variable is 

linguistic term” in the path from the root to the current 

branch connected with operator “AND”; 

3) Set branchII =         and set minClassI =          (   

   ) . If {branchII                } or {minClassI   

        } or {     }, go to step 4, otherwise step 5; 

4) Create a leaf, connect this leaf with the current branch, and 

consider this branch to be processed. Associate 

           
  (      )  for both      with the leaf. 

Associate class linguistic term             (      )  

with the leaf. Go to step 2; 

5) Create a node, connect it with the current branch, consider 

this branch processed. Associate       =    

                                 with the node. 

Associate each            with a newly created branch, 

connect the branches with the created node, and consider 

the branches unprocessed. Go to step 2. 
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A set of IF-THEN rules is derived as follows: 

1) For each leaf      , mark the linguistic term associated 

with it as       . For each      , take the branch going to it 

and formulate linguistic condition    for this branch.     

consists of all assignments “Linguistic variable is 

linguistic term” in the path from the root to the branch 

connected with operator “AND”. For each      , set      

= {           
  |            

  associated with      }; 

2) For each   , create a rule in the form of “IF    THEN   is 

       (    )”. 
 

The following algorithm uses a set of IF-THEN rules for 

risk assessment of a patient    : 

1) For each rule “IF    THEN   is        (    )”, compute 

     ; 

2) For each     , set linguistic term        

∑                      
           

 ,            
      . 

V. EXPERIMENTAL RESULTS 

An experimental study aimed at comparison of the 

algorithmic model using cumulative information estimations 

with other methods was conducted. Two different criteria for 

association of a linguistic variable with a node for the 

algorithmic model were also compared. The core algorithms 

for the methods, other than the described algorithmic model, 

are implemented in Weka [20]. The performance of the 

methods is measured with sensitivity = (tp) / (tp + fn) and 

specificity = (tn) / (tn + fp). Value tp/fp/fn/tn is the number of 

true positives/false positives/false negatives/true negatives. “  

is     ”/”   is     ” is considered positive and “   is 

     ”/”  is      ” is considered negative. Values tp, fp, fn 

and tn are computed during 10-fold cross-validation. The 

(fuzzified) data is partitioned into 10 folds. The partition is 

random, but all folds contain roughly the same proportions of 

alive and dead patients. A patient is considered dead/alive in 

the data if the value assigned to   is dead/alive. A patient is 

considered dead in the fuzzified data if 

                      ,   is a known patient; otherwise 

the patient is alive. Of the 10 folds, a single fold is retained as 

the testing data for evaluation, and the remaining 9 folds are 

used as the learning data. The learning data is analyzed by the 

method. The validation is repeated 10 times, with each of the 

10 folds used exactly once as the testing data. 

The accuracy results achieved in 10-fold cross-validation 

are in Table II. MCI is the algorithmic model described in the 

previous section with mutual information as the criterion for 

association. The parameters which gave the best results were 

used (𝜔 = 0.2 and 𝛿 = 0.9). RMCI is the algorithmic model 

described in the previous section with relative mutual 

information as the criterion for association (𝜔 = 0.1 and 𝛿 = 

0.9). BNM denotes a Bayesian network method implemented 

in Weka as class BayesNet. NNM is a feedforward neural 

network method using multilayer perception implemented in 

Weka as class MultilayerPerception. LRM denotes a logistic 

regression model implemented in Weka as class Logistic. Sen 

is sensitivity and Spec is specificity, both in percentages. 

The sum of sensitivity and specificity is an indicator of 

how well the method predicts if a patient is alive or dead 

within six months. Sensitivity is associated with classification 

of dead patients as alive ones, which leads to life-threatening 

situations. Specificity is associated with classification of alive 

patients as dead ones, which leads to increase in costs. The 

higher the sum of sensitivity and specificity for a method, the 

better the method predicts. The algorithmic models described 

in the previous section (MCI and RMCI) achieve better results 

on the fuzzified heart failure data than the other methods 

according to Table II. However, the difference between MCI 

with 125.36% and RMCI with 125.24% is insignificant. It 

means the choice between mutual cumulative information and 

relative mutual cumulative information for association of a 

linguistic variable with a decision node in the algorithmic 

model is not important for the used fuzzified heart failure data. 

In general, it is likely unimportant if the number of linguistic 

terms defined for a linguistic variable is small such as three or 

four. The worst result with 112.98% is achieved with NNM. 

Algorithmic models MCI and RMCI use decision trees for 

knowledge representation initially. The knowledge can also be 

interpreted as IF-THEN rules using the transformation 

described in Section IV. Particular groups of IF-THEN rules 

for particular algorithmic models can be compared using 

interpretability measures derived from [7]. The measures are 

computed for ten groups of IF-THEN rules discovered for 

particular nine folds in ten-fold cross-validation (learning 

data) and the average is taken. Number of IF-THEN rules is 

the average number of IF-THEN rules in the ten groups. 

Length of a fuzzy rule is the average number of linguistic 

variables in the conditions of all IF-THEN rules in the ten 

groups. Longest IF-THEN rule is any IF-THEN rule in all ten 

groups with the highest number of linguistic variables in its 

condition. Shortest IF-THEN rule is any IF-THEN rule in all 

ten groups with the lowest number of linguistic variables in its 

condition. The values for particular interpretability measures 

are in Table III. IF-THEN rules associated to the algorithmic 

model using mutual information as the criterion for 

association of a linguistic variable with a node (MCI) are 

much more interpretable than IF-THEN rules associated to the 

algorithmic model using relative mutual information (RMCI). 

The average number of IF-THEN rules is 11.00 for MCI in 

comparison to 24.80 for RMCI. The average length of an IF-

THEN rule is 2.94 in comparison to 3.64 for RMCI. The 

average longest IF-THEN rule is 4.00 for MCI in comparison 

to 5.00 for RMCI. The average shortest IF-THEN rule is 1.00 

for MCI in comparison to 2.00 for RMCI. 

TABLE II.  ACCURACY RESULTS 

Method Sen Spec Sen + Spec 

MCI 34.42 90.94 125.36 

RMCI 34.23 91.01 125.24 

BNM 24.04 95.37 119.41 

NNM 24.62 88.36 112.98 

LRM 22.69 96.43 119.12 
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TABLE III.  INTERPRETABILITY RESULTS 

Interpretability Measure MCI RMCI 

Number of IF-THEN rules (avg.) 11.00 24.80 

Length of an IF-THEN rule (avg.) 2.94 3.64 

Longest IF-THEN rule (avg.) 4.00 5.00 

Shortest IF-THEN rule (avg.) 1.00 2.00 

VI. CONCLUSION 

An algorithmic model using a fuzzy decision tree or a set 

of IF-THEN rules derived from the tree and using cumulative 

information estimations in computations was employed for 

prediction of a heart failure patient’s death within six months. 

In the process of learning, the algorithmic model was executed 

on data about heart failure patients where nine important 

pieces of data had been identified with queries about clinical 

findings and physiological measurements. The data had also 

been preprocessed with fuzzification allowing us to take 

vagueness in real-world medical situations and interpretability 

of the obtained knowledge into consideration. The accuracy of 

the obtained knowledge and the algorithmic model was 

evaluated using 10-fold cross-validation with the aim of 

minimization of life-threatening situations and minimization 

of costs. Interpretability of the knowledge was evaluated with 

measures such as number of IF-THEN rules, length of an IF-

THEN rule, longest IF-THEN rule, and shortest IF-THEN 

rule. It was found that the difference between the use of 

mutual cumulative information and relative mutual cumulative 

information for association of a linguistic variable with a 

decision node is not significant for accuracy (125.36% vs. 

125.24% for the sum of sensitivity and specificity). However, 

the use of mutual cumulative information led to much more 

interpretable knowledge (11.00 vs. 24.80 IF-THEN rules and 

2.94 vs. 3.64 assignments in the condition of one IF-THEN 

rule). In the future, the accuracy of the obtained knowledge 

could be improved through the adoption of modifiers such as 

“very” or “more or less”. 
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