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Abstract—Commuting is an important property in any two-
step information merging procedure where the results should
not depend on the order in which the single steps are performed.
In the case of bisymmetric aggregation operators with the neu-
tral elements, Saminger, Mesiar and Dubois, already reduced
characterization of commuting n-ary operators to resolving
the unary distributive functional equations, but only some
sufficient conditions of unary functions distributive over two
particular classes of uninorms are given out. Along this way of
thinking, in this paper, we will investigate and fully characterize
the following functional equation f(U(x, y)) = U(f(x), f(y)),
where f : [0, 1] → [0, 1] is an unknown function, a uninorm
U ∈ Umin has a continuous underlying t-norm TU and a
continuous underlying t-conorm SU . Our investigation shows
the key point is a transformation from this functional equation
to the several known ones. Moreover, this equation has non-
monotone solutions different completely with those obtained
ones.

I. INTRODUCTION

The aggregation of information inherent to the human

thinking is viewed as the process of merging all collected

data into a concrete representative value [2], [21]. More

specifically, the aggregation process is carried out as a two-

stepped procedure whereby several local fusion operations

are performed in parallel and then the results are merged

into a global result [18]. It may happen that in practice the

two steps can be exchanged because there is no reason to

perform either of the steps first [20]. Thus one would expect

the two procedures yield the same results in any sensible

approach, and then operations are said to be commuting.

In fact, early examples of commuting appear in probability

theory for the merging of probability distributions. Suppose

two joint probability distributions are merged by combining

degrees of probability point-wisely. It is natural that the

marginals of the resulting joint probability function are the

aggregates of the marginals of the original joint probabilities.

To fulfill this requirement the aggregation operation must

commute with the addition operation involved in the deriva-

tion of the marginals. McConway showed that a weighted

arithmetic mean is the only possible aggregation operation

for probability functions [12].

After this, the commuting aggregation operators caught

more and more attention. For instances, they are used to

preserve the transitivity when aggregating preference matri-

ces or fuzzy relations [4], [11], [13], [19] or some form of

additivity when aggregating set functions [5]. Specially, when

Saminger, Mesiar, and Dubois [20] investigated the prop-

erty of commuting for aggregation operators in connection

with their relationship to bisymmetry, they gave out a full

characterization of commuting operators in case that one of

them is bisymmetric with some neutral element and further

showed that these operators can be attained through functions

distributive over the bisymmetric aggregation operator with

neutral element involved. Thus they reduced characterization

of commuting n-ary operators to resolving the unary distribu-

tive functional equations. Note that a full characterization of

all bisymmetric aggregation operators with neutral elements,

in particular if the neutral elements are from the open

interval, is still missing [1], [3] and the characterization of

the set of unary functions distributing with such operators

is heavily influenced by the structure of the underlying

operators [15], [17]. Hence they only focused on several

special subclasses of bisymmetric aggregation operators with

neutral elements, namely on continuous t-norms, continuous

t-conorms and particular classes of uninorms. For classes

of uninorms, but only some sufficient conditions of unary

functions distributive over two particular classes of uninorms

are given out. Indeed, it is very difficult to get the full

characterization of these equations because they are bound up

with many generalizations of the famous Cauchy functional

equation which have not been completely solved so far [1],

[14], [16]. Along this way of thinking, in this paper, we will

investigate the following two functional equation

f(U(x, y)) = U(f(x), f(y)), (x, y) ∈ [0, 1]2, (1)

where f : [0, 1]→ [0, 1] is an unknown function, a uninorm

U ∈ Umin has a continuous underlying t-norm TU and

a continuous underlying t-conorm SU . Our investigation

shows the key point is a transformation from this functional

equation to the several known ones. Moreover, this equation

has non-monotone solutions different completely with those
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obtained.
The paper is organized as follows. In Section 2, we present

some results concerning basic fuzzy logic connectives. In

Sections 3 and 4, the main sections of this paper, we will

investigate and describe all solutions of Eq. (1). Finally,

conclusion is in Section 5.

II. PRELIMINARIES

Definition 1 ([7], [8]) A binary operation T : [0, 1]2 →
[0, 1] is called a t-norm if it is associative, commutative,

increasing and has neutral element 1, namely, it holds

T (x, 1) = T (1, x) = x for all x ∈ [0, 1].
Definition 2 ([10]) A t-norm T is said to be

(i) continuous, if for all convergent sequences (xn)n∈N,
(yn)n∈N ∈ [0, 1]N, we have T ( lim

n→∞xn, lim
n→∞ yn) =

lim
n→∞T (xn, yn);

(ii) Archimedean, if for every x, y ∈ (0, 1), there exists

some n ∈ N such that xn
T > y, where x1

T = x, x2
T =

T (x, x), xn
T = T (xn−1

T , x);
(iii) strict, if T is continuous and strictly monotone, i.e.,

T (x, y) > T (x, z) whenever x ∈ (0, 1] and y > z;

(iv) nilpotent, if T is continuous and if for each x ∈ (0, 1)
there exists some n ∈ N such that xn

T = 0.

Remark 1 ([8], [9])

(i) A t-conorm T is strict if and only if each continuous

additive generator t of T satisfies t(0) =∞.
(ii) A t-conorm T is nilpotent if and only if each contin-

uous additive generator t of T satisfies t(0) <∞.

Theorem 1 ([10]) T is a continuous t-norm, if and only
if one of the following three cases holds.

(i) T = min,
(ii) T is continuously Archimedean, i.e., there exists a ad-

ditive generator, namely, a continuous, strictly decreas-
ing function t : [0, 1] → [0,∞] with t(1) = 0, which
is uniquely determined up to a positive multiplicative
constant, such that

T (x, y) = t−1(min(t(x) + t(y), t(0))), x, y ∈ [0, 1].
(2)

(iii) There exists a family {(am, bm), Tm}m∈A such that T
is the ordinal sum of this family denoted by T = (<
am, bm, Tm >)m∈A. In other words, it holds for all
x, y ∈ [0, 1], T (x, y) =⎧
⎨

⎩

am + (bm − am)Tm( x−am

bm−am
, y−am

bm−am
)

(x, y) ∈ [am, bm]
2
,

min(x, y) otherwise,
where {(am, bm)}m∈A is a countable family of non-
over lapping, open, proper subintervals of [0, 1] with
each Tm being a continuously Archimedean t-norm,
and A is a finite or countable infinite index set. For
every m ∈ A, (am, bm) is called an open generating
subinterval of T , and Tm is called a correspondingly
generating t-norm on (am, bm) (or [am, bm]) of T .

Definition 3 ([10]) A binary operation S : [0, 1]2 → [0, 1]
is called a t-conorm if it is associative, commutative, increas-

ing and has neutral element 0, namely, it holds S(x, 0) =
S(0, x) = x for all x ∈ [0, 1].

Definition 4 ([8]) A t-conorm S is said to be

(i) continuous, if for all convergent sequences (xn)n∈N,
(yn)n∈N ∈ [0, 1]N, we have S( lim

n→∞xn, lim
n→∞ yn) =

lim
n→∞S(xn, yn);

(ii) Archimedean, if for every x, y ∈ (0, 1), there exists

some n ∈ N such that xn
S > y, where x1

S = x, x2
S =

S(x, x), xn
S = S(xn−1

S , x);
(iii) strict, if S is continuous and strictly monotone, i.e.,

S(x, y) < S(x, z) whenever x ∈ [0, 1) and y < z;

(iv) nilpotent, if S is continuous and if for each x ∈ (0, 1)
there exists some n ∈ N such that xn

S = 1.

Theorem 2 ([10]) S is a continuous t-conorm, if and only
if one of the following three cases holds

(i) S = max,
(ii) S is continuously Archimedean, i.e., there exists a addi-

tive generator, namely, a continuous, strictly increasing
function s : [0, 1] → [0,∞] with s(0) = 0, which
is uniquely determined up to a positive multiplicative
constant, such that

S(x, y) = s−1(min(s(x) + s(y), s(1))), x, y ∈ [0, 1].
(3)

(iii) There exists a family {(am, bm), Sm}m∈B such that S
is the ordinal sum of this family denoted by S = (<
am, bm, Sm >)m∈B . In other words, it holds for all
x, y ∈ [0, 1], S(x, y) =⎧
⎨

⎩

am + (bm − am)Sm( x−am

bm−am
, y−am

bm−am
)

(x, y) ∈ [am, bm]
2
,

max(x, y) otherwise,
where {(am, bm)}m∈B is a countable family of non-
over lapping, open, proper subintervals of [0, 1]with
each Sm being a continuously Archimedean t-conorm,
and B is a finite or countable infinite index set. For
every m ∈ B, (am, bm) is called an open generating
subinterval of S, and Sm is called a correspondingly
generating t-conorm on (am, bm) (or [am, bm]) of S.

Definition 5 ([6], [22]) A uninorm U is a binary operator

U : [0, 1]× [0, 1]→ [0, 1], which is commutative, associative,

non-decreasing in each variable and there exists some ele-

ment e ∈ [0, 1] called neutral element such that U(e, x) = x
for all x ∈ [0, 1].

It is clear that the binary operator U becomes a t-norm

when e = 1 while U a t-conorm when e = 0. For any other

value e ∈ (0, 1) the operation works as a t-norm in the square

[0, e]2, and as a t-conorm in [e, 1]2.

Theorem 3 ([6]) Let U : [0, 1]2 → [0, 1] be a uninorm with
neutral element e ∈ (0, 1). Then, the sections x �→ (x, 1) and
x �→ (x, 0) are continuous at each point except perhaps at
e if and only if U is given by one of the following formulas.

(i) If U(0, 1) = 0, then U(x, y) =

⎧
⎨

⎩

eTU (
x
e ,

y
e ) (x, y) ∈ [0, e]2,

e+ (1− e)SU (
x−e
1−e ,

y−e
1−e ) (x, y) ∈ [e, 1]2,

min{x, y} otherwise.
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(ii) If U(0, 1) = 1, then U(x, y) =
⎧
⎨

⎩

eTU (
x
e ,

y
e ) (x, y) ∈ [0, e]2,

e+ (1− e)SU (
x−e
1−e

y−e
1−e ) (x, y) ∈ [e, 1]2,

max{x, y} otherwise.

In the following, the set of uninorms as in Case (i) be

denoted by Umin and the set of uninorms as in Case (ii)

by Umax. We will denote a uninorm U in Umin with a

continuous underlying t-norm TU , a continuous underlying t-

conorm SU and neutral element e as U ≡ 〈TU , e, SU 〉min,cos

and in a similar way, a uninorm U in Umax as U ≡
〈TU , e, SU 〉max,cos.

Note that the main results in Ref. [16], i.e., Theorem 4.17,

only consider the case that S1 and S2 are continuous but not

Archimedean t-conorms. In fact, they hold for all continuous

t-conorms. Therefore, the conditions that S1 and S2 are not

Archimedean can be dropped. Then, set I(x, y) = fx(y) and

apply this theorem, we can obtain the following character-

izations of the Cauchy-like functional equations based on

continuous t-conorms.

Theorem 4 ([16]) Consider two continuous t-conorms S1

and S2, and a unary function f : [0, 1] → [0, 1]. The triple
of functions (S1, S2, f) satisfies

f(S1(x, y)) = S2(f(x), f(y)) (4)

for all x, y ∈ [0, 1] if and only if f is increasing, pre-
serves the idempotent property (i.e., if S1(x, x) = x then
S2(f(x), f(x)) = f(x)) and has the following form in every
generating subinterval (αm, βm) of S1,

(i) If S1 is strict on its own generating subinterval
(αm, βm) with the additive generator sm and S2 on
the generating subinterval (cj , dj) has the additive
generator sj . Then we have one of the following two
subcases.
(a) f(x) = r when f(x) 	∈ (cj , dj) for any x ∈ (αm,

βm). Where r is idempotent, i.e., S2(r, r) = r,
and satisfies f(αm) ≤ r ≤ f(βm).

(b) There exists some constant c ∈ (0,∞) such that
f(x) =

cj +(dj−cj) ·s−1
j (min(csm(

x− αm

βm − αm
), sj(1)))

(5)

for any x ∈ (αm, βm), when there exists some
x0 ∈ (αm, βm) for which f(x0) ∈ (cj , dj).

(ii) If S1 is nilpotent on its own generating subinterval
(αm, βm) with the additive generator sm and S2 on
the generating subinterval (cj , dj) has the additive
generator sj . Then we have one of the following two
subcases.
(a) f(x) = βm when it holds that f(x) 	∈ (cj , dj)

for any x ∈ (αm, βm).
(b) There exists some x0 ∈ (αm, βm) such that f(x)

has the form Eq. (5) for any x ∈ (αm, βm),
when there exists some x0 ∈ (αm, βm) for which
f(x0) ∈ (cj , dj).

From now on, we investigate and characterize the func-

tional equation

f(U(x, y)) = U(f(x), f(y)), (6)

where f : [0, 1]→ [0, 1] is an unknown function, a uninorm

U ≡ 〈TU , e, SU 〉min,cos, i.e., U ∈ Umin has a continu-

ous underlying t-norm TU and a continuous underlying t-

conorm SU . But our method are also suit for a uninorm

U ≡ 〈TU , e, SU 〉max,cos. For the sake of convenience,

write Ran(f) = {f(x)|x ∈ [0, 1]} and Id(U) = {x ∈
[0, 1]|U(x, x) = x}, respectively.

Lemma 1 ([20]) Consider a uninorm U ≡ 〈TU , e, SU

〉min,cos with neutral element e ∈ (0, 1), and a unary function
f : [0, 1] → [0, 1]. If f satisfies Eq. (6), then all of the
following statements hold.

(i) If x ∈ Id(U), then f(x) ∈ Id(U).
(ii) If x ∈ [0, 1], then U(f(e), f(x)) = f(x).

(iii) If e ∈ Ran(f), then f(e) = e.
Lemma 2 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and there exists some x0 ∈ [0, e) such that
f(x0) < e. If f satisfies Eq. (6), then it holds that f(x) < e
for all x ∈ [0, x0].

Due to Lemma 2, define E = {x ∈ [0, e)|f(x) < e}, then

we observe e 	∈ E and define

α = supE. (7)

It is obvious that α ≤ e and we can prove that α is an

idempotent element of U , namely, U(α, α) = α. Next,

depending on the order relation between α and e, we need

to consider two cases: (I) α < e and (II) α = e. We first

consider the case α < e.

III. CASE: α < e

Lemma 3 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbol α fulfilling α < e. If
f satisfies Eq. (6), then all of the following statements hold.

(i) f |[0,α) is increasing, Ran(f |[0,α)) ⊆ [0, e).
(ii) f |(α,e) is decreasing, Ran(f |(α,e)) ⊆ [f(1), 1].

(iii) f |[e,1] is increasing, Ran(f |(e,1]) ⊆ [e, f(1)].
Lemma 4 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbol α fulfilling α < e. If
f satisfies Eq. (6), then one of the following three statements
hold.

(i) If f(α) < e, then f(α) = max(Ran(f |[0,α])).
(ii) If f(α) > e, then f(α) = max(Ran(f |[0,1])).

(iii) f(α) = e.

Suppose x, y < α, define two functions φ : [0, α]→ [0, 1]
and ϕ : [0, e] → [0, 1] by the formulas φ(x) = x

α and

ϕ(x) = x
e , respectively. Then there exists some continuous

t-norm T1 such that two sides of Eq. (6) are respectively writ-

ten as U(x, y) = φ−1T1(φ(x), φ(y)) and U(f(x), f(y)) =
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ϕ−1TU (ϕ(f(x)), ϕ(f(y))). Therefore, for any x, y < e,

Eq. (6) can be rewritten as f(φ−1T1(φ(x), φ(y))) =
ϕ−1TU (ϕ(f(x)), ϕ(f(y))), from which we get (ϕ1 ◦ f ◦
φ−1)(T1(φ(x), φ(y))) = TU (ϕ(f(x)), ϕ(f(y))). By routine

substitutions, g = ϕ◦f ◦φ−1, a = φ(x), b = φ(y), we have

the Cauchy like functional equation

g(T1(a, b)) = TU (g(a), g(b)) for a, b ∈ [0, 1], (8)

where g : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when x, y < α is reduced to

characterize all solutions of Eq. (8). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Suppose α < x, y < e, define yet two functions φ′ : [α, e]
→ [0, 1] and ϕ′ : [f(1), 1]→ [0, 1] by the formulas φ′(x) =
x−α
e−α and ϕ′(x) = x−f(1)

1−f(1) , respectively. Then there exist

a continuous t-norm T2 and a continuous t-conorm S1

such that two sides of Eq. (6) are respectively written as

U(x, y) = (φ′)−1T2(φ
′(x), φ′(y)) and U(f(x), f(y)) =

(ϕ′)−1S1(ϕ
′(f(x)), ϕ′(f(y))). Hence, for any α < x, y <

e, Eq. (6) is rewritten as f((φ′)−1T2(φ
′(x), φ′(y))) =

(ϕ′)−1S1(ϕ
′(f(x)), ϕ′(f(y))), from which we get (ϕ′ ◦

f ◦ (φ′)−1)(T2(φ
′(x), φ′(y))) = S1(ϕ

′(f(x)), ϕ′(f(y))). By

routine substitutions, g′ = ϕ′ ◦ f ◦ (φ′)−1, a′ = φ′(x), b′ =
φ′(y), we have the Cauchy like functional equation

g′(T2(a
′, b′)) = S1(g

′(a′), g′(b′)), for a′, b′ ∈ [0, 1],
(9)

where g′ : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when α < x, y < e is reduced

to characterize all solutions of Eq. (9). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Suppose x, y > e, define also two functions ψ : [e, 1] →
[0, 1] and ω : [e, f(1)] → [0, 1] by the formulas φ(x) =
x−e
1−e and ω(x) = x−e

f(1)−e respectively. Then there exists

some continuous t-norm T ′
2 such that two sides of Eq. (6)

are respectively written as U(x, y) = ψ−1SU (ψ(x), ψ(y))
and U(f(x), f(y)) = ω−1T ′

2(ω(f(x)), ω(f(y))). There-

fore, for any (x, y) ∈ (e, 1]2, Eq. (6) can be rewritten

as f(ψ−1SU (ψ(x), ψ(y))) = ω−1T ′
2(ω(f(x)), ω(f(y))),

from which we get (ω ◦ f ◦ ψ−1)(SU (ψ(x), ψ(y))) =
T ′
2(ω(f(x)), ω(f(y))). By routine substitutions, h = ω ◦

f ◦ ψ−1, c = ψ(x), d = ψ(y), we have the Cauchy like

functional equation

h(SU (c, d)) = T ′
2(h(c), h(d)), for c, d ∈ [0, 1], (10)

where h : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when (x, y) ∈ [e, 1]2 is reduced to

characterize all solutions of Eq. (10). Fortunately, this case

can be obtained by the method of Theorem 4.

According to the above analyses and lemmas, we have the

following theorem.

Theorem 5 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbols α, g, g′, h fulfilling

α < e. Then f satisfies Eq. (6) if and only if all of the
following statements hold.

(i) It holds that f(x) ∈ Id(U) for all x ∈ Id(U).
(ii) It holds that U(f(e), f(x)) = f(x) for all x ∈ [0, 1].

(iii) f |[0,α) is increasing, Ran(f |[0,α)) ⊆ [0, e), g satisfies
Eq. (8).

(iv) f |(α,e) is decreasing, Ran(f |(α,e)) ⊆ [f(1), 1], g′

satisfies Eq. (9).
(v) f |(e,1] is increasing, Ran(f |(e,1]) ⊆ [e, f(1)], h satis-

fies Eq. (10).
(vi) One of the following three statements hold:

a) If f(α) < e, then f(α) = max(Ran(f |[0,α])),
b) If f(α) > e, then f(α) = max(Ran(f |[0,1])),
c) f(α) = e.

IV. CASE: α = e

In this section, we discuss the case α = e. We first assume

that there exists some y0 ∈ (e, 1] such that f(y0) < e, but it

is not essential.

Lemma 5 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbol α fulfilling α = e
and there exists some y0 ∈ (e, 1] such that f(y0) < e.
If f satisfies Eq. (6), then it holds that f(y) < e for all
y ∈ [y0, 1].

Due to Lemma 5, define F = {x ∈ (e, 1]|f(x) < e}, then

we observe e 	∈ F and define

β = inf F. (11)

It is obvious that e ≤ β and we can prove that β is an

idempotent element of U , namely, U(β, β) = β. Next,

depending on the order relation between β and e, we need

to consider two subcases: (i) β = e and (ii) β > e. At first,

let us consider the subcase β = e.

A. Subcase: β = e

Lemma 6 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbols α and β fulfilling
α = β = e. If f satisfies Eq. (6), then the following two
statements hold.

(i) f |[0,e) is increasing, Ran(f |[0,e)) ⊆ [0, f(1)].
(ii) f |(e,1] is decreasing, Ran(f |(e,1]) ⊆ [f(1), e).

Suppose x, y ∈ [0, e), define two functions φ1 : [0, e] →
[0, 1] and ϕ1 : [0, f(1)]→ [0, 1] by the formulas φ1(x) =

x
e

and ϕ1(x) = x
f(1) respectively. Then there exists some

continuous t-norm T3 such that both sides of Eq. (6)

can be written as U(x, y) = φ−1
1 TU (φ1(x), φ1(y)) and

U(f(x), f(y)) = ϕ−1
1 T3(ϕ1(f(x)), ϕ1(f(y))). Thus, for

x, y ∈ [0, e), Eq. (6) can be rewritten as f(φ−1
1 TU (φ1(x),

φ1(y))) = ϕ−1
1 T3(ϕ1(f(x)), ϕ1(f(y))), from which we get

(ϕ1◦f◦φ−1
1 )(TU (φ1(x), φ1(y))) = T3(ϕ1(f(x)), ϕ1(f(y))).
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By routine substitution, g1 = ϕ1◦f ◦φ−1
1 , a1 = φ1(x), b1 =

φ1(y), we have the Cauchy like functional equation

g1(TU (a1, b1)) = T3(g1(a1), g1(b1)), for a1, b1 ∈ [0, 1],
(12)

where g1 : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when x, y ∈ [0, e] is reduced to

characterize all solutions of Eq. (12). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Suppose x, y > e, define two functions ψ1 : [e, 1]→ [0, 1]
and ω1 : [f(1), e] → [0, 1] by the formulas ψ1(x) = x−e

1−e

and ω1(x) = x−f(1)
e−f(1) respectively. Then there exists some

continuous t-norm T4 such that two sides of Eq. (6) are

respectively written as U(x, y) = ψ−1
1 SU (ψ1(x), ψ1(y)) and

U(f(x), f(y)) = ω−1
1 T4(ω1(f(x)), ω1(f(y))). Thus, for any

(x, y) ∈ [e, 1]2, Eq. (6) can be rewritten as f(ψ−1
1 SU (ψ1(x),

ψ1(y))) = ω−1
1 T4(ω1(f(x)), ω1(f(y))), from which we get

(ω1◦f ◦ψ−1
1 )SU (ψ1(x), ψ1(y))) = T4(ω1(f(x)), ω1(f(y))).

By routine substitution, h1 = ω1◦f◦ψ−1
1 , c1 = ψ1(x), d1 =

ψ1(y), we have the Cauchy like functional equation

h1(SU (c1, d1)) = T4(h1(c1), h1(d1)), for c1, d1 ∈ [0, 1],
(13)

where h1 : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when (x, y) ∈ [e, 1]2 is reduced to

characterize all solutions of Eq. (13). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Theorem 6 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and g1, h1, α, β are the above-defined symbols
fulfilling α = β = e. Then f satisfies Eq. (6) if and only if
all of the following statements hold.

(i) It holds that f(x) ∈ Id(U) for all x ∈ Id(U).
(ii) It holds that U(f(e), f(x)) = f(x) for all x ∈ [0, 1].

(iii) f |[0,e) is increasing, Ran(f |[0,e)) ⊆ [0, f(1)], g1
satisfies Eq. (12).

(iv) f |(e,1] is decreasing, Ran(f |(e,1]) ⊆ [f(1), e), h1

satisfies Eq. (13).
Remark 1 Take f(1) = f(e) in Theorem 6, then we get

a part of Proposition 33 in Ref. [20].

Next, consider the remaining case β > e.

B. Subcase: β > e

Lemma 7 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbols α and β fulfilling
α = e < β. If f satisfies Eq. (6), then all of the following
statements hold.

(i) f |[0,e) is increasing, Ran(f |[0,e)) ⊆ [0, f(1)].
(ii) f |(e,β) is increasing, Ran(f |(e,β)) ⊆ [e, 1].

(iii) f |(β,1] is decreasing, Ran(f |(β,1]) ⊆ [f(1), e).
Lemma 8 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], and the above-defined symbol α and β fulfilling

α = e < β. If f satisfies Eq. (6), then one of the following
statements holds.

(i) If f(β) < e, then f(β) = max(Ran(f |[β,1])).
(ii) If f(β) > e, then f(β) = max(Ran(f |[0,1])).

(iii) f(β) = e.

Suppose x, y ∈ [0, e), define two functions φ2 : [0, e] →
[0, 1] and ϕ2 : [0, f(1)]→ [0, 1] by the formulas φ2(x) =

x
e

and ϕ2(x) = x
f(1) respectively. Then there exists some

continuous t-norm T5 such that both sides of Eq. (6)

can be written as U(x, y) = φ−1
2 TU (φ2(x), φ2(y)) and

U(f(x), f(y)) = ϕ−1
2 T5(ϕ2(f(x)), ϕ2(f(y))). Hence, for

x, y ∈ [0, e), Eq. (6) can be rewritten as f(φ−1
2 TU (φ2(x),

φ2(y))) = ϕ−1
2 T5(ϕ2(f(x)), ϕ2(f(y))), from which we get

(ϕ2◦f◦φ−1
2 )(TU (φ2(x), φ2(y))) = T5(ϕ2(f(x)), ϕ2(f(y))).

By routine substitution, g2 = ϕ2◦f ◦φ−1
2 , a2 = φ2(x), b2 =

φ2(y), we have the Cauchy like functional equation

g2(TU (a2, b2)) = T5(g2(a2), g2(b2)), for a2, b2 ∈ [0, 1],
(14)

where g2 : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when x, y ∈ [0, e] is reduced to

characterize all solutions of Eq. (14). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Suppose x, y ∈ (e, β), define two functions φ′
2 : [e, β]→ [

0, 1] and ϕ′
2 : [e, 1] → [0, 1] by the formulas φ′

2(x) = x−e
β−e

and ϕ′
2(x) = x−e

1−e respectively. Then there exists some

continuous t-conorm S3 such that two sides of Eq. (6) can

be written as U(x, y) = (φ′
2)

−1S3(φ
′
2(x), φ

′
2(y)) and U(f(

x), f(y)) = (ϕ′
2)

−1SU (ϕ
′
2(f(x)), ϕ

′
2(f(y)). Therefore, for

x, y ∈ (e, β), Eq. (6) can be rewritten as f((φ′
2)

−1S3(φ
′
2(x),

φ′
2(y))) = (ϕ′

2)
−1SU (ϕ

′
2(f(x)), ϕ

′
2(f(y)), from which we

have (ϕ′
2 ◦ f ◦ (φ′

2)
−1)(S3(φ

′
2(x), φ

′
2(y))) = SU (ϕ

′
2(f(x)),

ϕ′
2(f(y))). By routine substitution, g′2 = ϕ′

2 ◦ f ◦ (φ′
2)

−1,
a′2 = φ′

2(x), b
′
2 = φ′

2(y), we have the Cauchy like functional

equation

g′2(S3(a
′
2, b

′
2)) = SU (g

′
2(a

′
2), g

′
2(b

′
2)), for a′2, b′2 ∈ [0, 1],

(15)

where g′2 : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when x, y ∈ [e, β) is reduced to

characterize all solutions of Eq. (15). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Suppose x, y ∈ (β, 1], define two functions ψ2 : [β, 1]→ [
0, 1] and ω2 : [f(1), e] → [0, 1] by the formulas ψ2(x) =
x−β
1−β and ω2(x) = x−f(1)

e−f(1) respectively. Then there exist

a continuous t-conorm S4 and a continuous t-norm T6

such that two sides of Eq. (6) are respectively written

as U(x, y) = ψ−1
2 S4(ψ2(x), ψ2(y)) and U(f(x), f(y)) =

ω−1
2 T6(ω2(f(x)), ω2(f(y))). Therefore, for any (x, y) ∈

[β, 1]2, Eq. (6) can be rewritten as f(ψ−1
2 S4(ψ2(x), ψ2(y)))

= ω−1
2 T6(ω2(f(x)), ω2(f(y))), from which we have (ω2 ◦

f ◦ ψ−1
2 )(S4(ψ2(x), ψ2(y))) = T6(ω2(f(x)), ω2(f(y))). By

routine substitution, h2 = ω2 ◦ f ◦ ψ−1
2 , c2 = ψ2(x), b2 =
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ψ2(y), we have the Cauchy like functional equation

h2(S4(c2, d2)) = T6(h2(c2), h2(d2)), for c2, d2 ∈ [0, 1],
(16)

where h2 : [0, 1]→ [0, 1] is an unsolved function. This means

that resolving of Eq. (6) when (x, y) ∈ [β, 1]2 is reduced to

characterize all solutions of Eq. (16). Fortunately, the full

characterization of this case can be obtained by the method

of Theorem 4.

Theorem 7 Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos

with neutral element e ∈ (0, 1), a unary function f : [0, 1]
→ [0, 1], all of α, β, g2, g′2, h2 are the-above defined
symbols fulfilling α = e < β. Then f satisfies Eq. (6) if and
only if all of the following statements hold.

(i) It holds that f(x) ∈ Id(U) for all x ∈ Id(U).
(ii) It holds that U(f(e), f(x)) = f(x) for all x ∈ [0, 1].

(iii) f |[0,e) is increasing, Ran(f |[0,e)) ⊆ [0, f(1)], g2
satisfies Eq. (14).

(iv) f |(e,β) is increasing, Ran(f |(e,β)) ⊆ [e, 1], g′2 satisfies
Eq. (15).

(v) f |(β,1] is decreasing, Ran(f |(β,1]) ⊆ [f(1), e), h2

satisfies Eq. (16).
(vi) One of the following three statements hold:

a) If f(β) < e, then f(β) = max(Ran(f |[β,1])).
b) If f(β) > e, then f(β) = max(Ran(f |[0,1])).
c) f(β) = e.

V. EXAMPLE

Example 1 Consider the following uninorm U with neutral

element e = 1
2 ,

U(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

8x+ 8y − 8xy − 7, (x, y) ∈ [ 78 , 1]
2,

7x+ 7y − 8xy − 21
4 , (x, y) ∈ [ 34 ,

7
8 ]

2,
max(x, y),

(x, y) ∈ [ 12 , 1]
2 \ ([ 78 , 1]2 ∪ [ 34 ,

7
8 ]

2),
1
8 (8x− 1)(8y − 1) + 1

8 , (x, y) ∈ [ 18 ,
1
4 ]

2,
8xy, (x, y) ∈ [0, 1

8 ]
2,

min(x, y), otherwise.

Then we know

TU (x, y) =

⎧
⎨

⎩

4xy, (x, y) ∈ [0, 1
4 ]

2,
1
4 (4x− 1)(4y − 1) + 1

4 , (x, y) ∈ [ 14 ,
1
2 ]

2,
min(x, y), otherwise,

and

SU (x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8(x+ 1) + 8(y + 1)− 4(x+ 1)(y + 1)− 15,
(x, y) ∈ [ 34 , 1]

2,
7(x+ 1) + 7(y + 1)− 4(x+ 1)(y + 1)− 23

2 ,
(x, y) ∈ [ 12 ,

3
4 ]

2,
max(x, y),

otherwise.

In fact, TU and SU are two ordinal sums with twice

the product as summands and twice the probabilistic sum

as summands respectively. Let us recall that the product

TP = xy has a additive generator y = − lnx while the

probabilistic sum SU = x+ y − xy has a additive generator

y = − ln(1− x).

(i) Take α = 1
8 , then we know from Theorem 5 that

f(x) =

⎧
⎪⎪⎨

⎪⎪⎩

1
8 , x ∈ [0, 1

8 ],
1, x ∈ ( 18 ,

1
2 ),

1
2 , x = 1

2 ,
3
4 , x ∈ ( 12 , 1],

is a solution of Eq. (6).

(ii) Take α = e = β = 1
2 , then we know from Theorem 6

that

f(x) =

⎧
⎨

⎩

1
8 , x ∈ [0, 1

2 ),
1
2 , x = 1

2 ,
3
4 , x ∈ ( 12 , 1],

is a solution of Eq. (6).

(iii) Take α = e = 1
2 , β = 7

8 , then we know from

Theorem 7 that

f(x) =

⎧
⎨

⎩

1
8 , x ∈ [0, 1

2 ),
3
4 , x ∈ [ 12 ,

7
8 ],

1
4 , x ∈ ( 78 , 1],

is a solution of Eq. (6).

VI. CONCLUSION

To investigate property of commuting for bisymmetric

aggregation operators with neutral element, according to

Saminger, Mesiar and Dubois’s suggestion [20], in this paper,

we have investigated and fully characterized the following

functional equation f(U(x, y)) = U(f(x), f(y)), where

f : [0, 1] → [0, 1] is an unknown function, a uninorm

Consider a uninorm U ≡ 〈TU , e, SU 〉min,cos with neu-

tral element e ∈ (0, 1). Our investigation shows the key

point is a transformation from this functional equation to

the several known ones. Moreover, this equation has non-

monotone solution different completely with those obtained

ones. These results are an important step toward obtaining

complete characterization of the mentioned-above other u-

nary distributive functional equations. Obviously, there are

several unary distribute functions not to be consider in this

direction. Thus, future work will be devoted to deal with

f(U(x, y)) = U(f(x), f(y)), where f : [0, 1] → [0, 1] is

an unknown function and U comes from the other kind of

special uninorms.
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