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Abstract—In this paper, the sufficient and necessary condi-
tions that a triangular subnorm M is (α, T )-cross-migrative
are given out, where T stands for any of the three prototype
triangular norms, that is, T ∈ {TP , TM , TL}, M is a triangular
subnorm with a continuously additive generator. By comparison
with results of the (α, T )-cross-migrativity of triangular norms
obtained by Fodor, it is in some sense that they are compatible.

I. INTRODUCTION

For a two-stepped information aggregation procedure, it

may happen that in practice the two steps can be exchanged

because there is no reason to perform either of the steps

first. So, one would expect the two processes yield the same

results in any sensible approach. The important property of

this procedure is said to be commuting [14]. To study the

commuting of aggregation operators used usually to model

this procedure, within the class of triangular norms (t-norms

for short), it is [5] that shows the classical commuting

equation

T1(T2(x, y), T2(u, v)) = T2(T1(x, u), T1(y, v)) (1)

has only the trivial solution T1 = T2. Then, by fixing u = 1
and writing y = α in Eq. (1), a weaker functional equation

T1(T2(α, x), y) = T2(x, T1(α, y)) (2)

has been obtained and such a pair (T1, T2) satisfying Eq. (2)

is said to be α-cross-migrative (or, equivalently, that T1

is α-cross-migrative with respect to T2, or T1 is (α, T2)-
cross-migrative) [5]. Finally, the sufficient and necessary

conditions that a t-norm T1 is (α, T2)-cross-migrative had

been given out [5], where T2 belongs to any of the three

prototype t-norms, that is, T2 ∈ {TP , TM , TL}.
On the other hand, to investigate the convex combination

of a continuous t-norm T and the drastic product TD, which

indeed is a special form of the open problem– the convex

combination of t-norms [1], the α-migrativity of a t-norm is

introduced and defined as follows.

Definition 1.1 (see [4]) Let α ∈ (0, 1), a continuous t-

norm T is said to be α-migrative, if for all (x, y) ∈ [0, 1]2,

we have

T (αx, y) = T (x, αy). (3)

The interest of the α-migrativity property comes from its

applications, for instances in decision making processes [11],

when a repeated, partial information needs to be fused in a

global result, or in image processing, since in this context

migrativity expresses the invariance of a given property under

a proportional rescaling of some part of the image. Eq. (3)

and its generalizations have extendedly been studied for t-

norms, t-subnorms, semicopulas, quasi-copulas, copulas and

aggregation functions (see [2], [3]). But so far, one of the

most influential and impressive results about this topic are

probably given out by Fodor and Rudas (see [6], [7], [8],

[9]).

Recently, it is [15] that also investigates α-migrativity

of a triangular subnorm (t-subnorm for short) M with

a continuously additive generator w.r.t. any of the three

prototype t-norms. Along this line, in this paper, we would

like to extend the α-cross-migrativity into continuous

t-subnorms. But note that any continuous t-subnorm is an

ordinal sum of continuously Archimedean t-norms and at

most one continuously Archimedean proper t-subnorm.

Thus the α-cross-migrativity of continuous t-subnorms can

ultimately be come down to the (α, T )-cross-migrativity

of a continuous t-subnorm or t-norm. Hence, in this paper,

according to [5], we are mainly going to investigate the

following functional equation.

Definition 1.2 Let α ∈ [0, 1], M and T be a t-subnorm and

a t-norm respectively. The pair (M,T ) is said to be α-cross-
migrative (or, equivalently, that M is α-cross-migrative with

respect to T , or M is (α, T )-cross-migrative) if the following

functional equation

M(T (x, α), y) = T (x,M(α, y)) (4)

holds for all (x, y) ∈ [0, 1]2.

Although only then absence of one word between α-cross-

migrativity and α-migrativity, they are actually quite differ-

ent. These are the reasons that α-migrativity is completely

determined by two lines T1(α, x) and T2(α, x)(see [6], [7]),

meanwhile α-cross-migrativity is completely determined by

two graphs of T1 and T2 restriction on [0, α]2 and their

neighboring regions [5]. It is in this sense that α-cross-

migrativity and α-migrativivt are not dual, even the α-cross-

migrativity are more complex. In addition, by comparison

with [15] from the above analysis or the following results

and proofs, this paper is very different.
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The paper is organized as follows. In Section II, we recall

some results concerning t-norms and t-subnorms. In Section-

s III, IV and V, we will give all the sufficient and necessary

conditions that a t-subnorm M is α-cross-migrative with

respect to TM , TP and TL, respectively. Finally, Conclusion

is in Section VI.

II. TRIANGULAR NORMS AND SUBNORMS

Definition 2.1 (see [10]) A binary operation T : [0, 1]2

→ [0, 1] is called a t-norm if it is associative, commutative,

increasing and has the neutral element 1, namely, it holds

T (x, 1) = T (1, x) = x for all x ∈ [0, 1].

Clearly, Definition 2.1 implies that for all x, y ∈ [0, 1], it

holds

T (x, y) ≤ min{x, y}. (5)

A t-norm is said to be continuous if it is continuous as a

binary function. The three basic continuous t-norms the mini-

mum TM , the product TP and the Lukasiewicz t-norm TL are

given by, respectively: TM (x, y) = min{x, y}; TP (x, y) =
x · y; TL(x, y) = max{0, x+ y − 1}.

Definition 2.2 (see [12]) A binary operation M : [0, 1]2

→ [0, 1] is called a t-subnorm if it is associative, commu-

tative, increasing and satisfies the inequation (5) mentioned

above.

Observe that each t-norm is a t-subnorm but not vice versa.

Thus a t-subnorm is said to be proper if it is not a t-norm,

that is, there exists some x ∈ [0, 1] such that M(x, 1) < x.

Mesiarová [12] proved that a continuous t-subnorm M is

proper if and only if M(1, 1) < 1. One also use the additive

generators to construct t-subnorms [12]. To be more specific,

let f : [0, 1] → [0,∞] be a continuously non-increasing

mapping, then the operation M : [0, 1]2 → [0, 1] given

by M(x, y) = f (−1)(f(x) + f(y)) is a left-continuous t-

subnorm, where f (−1) : [0,∞]→ [0, 1] is the pseudo-inverse

of f , and is given by f (−1)(x) = f−1(min{x, f(0)}).
Moreover, Mesiarová [12] also proved that M is a con-

tinuously proper t-subnorm if and only if f(1) > 0 and

f |[0,f(−1)(2f(1))] is strictly decreasing. In addition, f (−1) is

strictly decreasing on [f(1), f(0)].

Lemma 2.3 Let T and M be a t-norm and a subnorm
respectively, α ∈ (0, 1], and (M,T ) be α-cross-migrative.
Then the following statements hold.

(i) (M,M) is α-cross-migrative;
(ii) (M,T ) is α-cross-migrative if and only if (T,M) is

α-cross-migrative;
(iii) (M,T ) is α-cross-migrative, then for all (x, y) ∈

[0, 1]2, we have

M(T (x, α), T (y, α)) = T (T (x, y),M(α, α)). (6)

Proof. Here it is enough to prove (iii) since (i) and (ii)

obviously hold. If (M,T ) is α-cross-migrative, repeating

Definition I twice, then for any (x, y) ∈ [0, 1]2 and some

α ∈ (0, 1], it holds

M(T (x, α), T (y, α)) = T (x,M(α, T (y, α)))

= T (x,M(T (y, α), α))

= T (x, T (y,M(α, α)))

= T (T (x, y),M(α, α)).

Therefore (iii) is proved.

Remark 2.4 Note that any t-subnorm is 0-cross-migrative

with respect to any t-norm. In another word, Eq. (4) always

holds when α = 0. Hence, only the case α ∈ (0, 1] is

considered in the following.

Remark 2.5 Obviously, the slight differences between t-

subnorms and t-norms lie in their neutral elements. But these

make t-subnorms more complicated. For example, any con-

tinuously Archimedean t-norm has a continuously additive

generator but not for a continuously Archimedean t-subnorm.

Indeed, some continuously Archimedean t-subnorms have no

any continuously additive generator, even through some non-

continuous t-subnorms have continuously additive genera-

tors. Hence, in the whole paper we only deal with a subclass

of t-subnorms with continuously additive generators.

III. (α, TM )-CROSS-MIGRATIVE T-SUBNORMS

Now, let us characterize all t-subnorms which are (α, TM )-
cross-migrative.

Theorem 3.1 Let α ∈ (0, 1], M be a t-subnorm with a
continuously non-increasing additive generator f : [0, 1] →
[0,∞]. Then (M,TM ) is α-cross-migrative if and only if
f(α) + f(1) ≥ f(0).

As a special case of continuously Archimedean t-

subnorms, any continuously Archimedean t-norm has a con-

tinuous and strictly decreasing additive generator t : [0, 1]→
[0,∞] with t(1) = 0. Hence, we have the following corollary.

Corollary 3.2 Let α ∈ (0, 1] and T be a continuously
Archimedean t-norm, then (T, TM ) is not α-cross-migrative.

Proof. Suppose that T is a continuously Archimedean

t-norm with an additive generator t, by Theorem 3.1,

then (T, TM ) is α-cross-migrative is equivalent with

t(α) + t(1) ≥ t(0). Note that t(1) = 0 and t is non-

increasing, hence t(α) + t(1) ≥ t(0) is also equivalent with

t(α) = t(0), which contradicts with the fact that t is strictly

decreasing.

Remark 3.3
(i) According to Theorem 3.8 in [5], we can also obtain

Corollary III. This shows our results are compatible

with those ones in [5].

(ii) For a t-subnorm M with a continuously additive gener-

ator f : [0, 1]→ [0,∞], [15] has proven that (M,TM )
is α-migrative if and only if either f(α)+f(1) ≥ f(0)
or f(α) = f(1), while our results show that (M,TM )
is α-cross-migrative if and only if f(α)+f(1) ≥ f(0).
Even through the duality of viewpoint, there is no

contradiction because f(α) + f(1) ≥ f(0) includes

f(α) = f(0).
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Example 3.4 Let f(x) = 5 − 3x, x ∈ [0, 1], then

the t-subnorm M generated by f is given by M(x, y) =
max{x + y − 5

3 , 0} for all x, y ∈ [0, 1]. Take α = 1
4 , then

it holds that both f(0) = 5 < ∞ and f( 14 ) + f(1) ≥ f(0).
Then for all x ∈ [0, 1

4 ], y ∈ [0, 1] we have M(x, y) = 0,

M(TM (x, 1
4 ), y) ≤ M( 14 , y) = 0 and TM (x,M( 14 , y)) =

TM (x, 0) = 0. Hence (M,TM ) is 1
4 -cross-migrative.

Example 3.5 Let f(x) = − ln(max{0, x − 0.2}), x ∈
[0, 1]. Then we know f(0) =∞, and then the t-subnorm M
generated by f is given by M(x, y) ={

0.2 + (x− 0.2)(y − 0.2) (x, y) ∈ (0.2, 1]2,

0 otherwise.

Take α = 0.2, then we have that f(0) = f(0.2) = ∞,

f(0.2) + f(1) ≥ f(0) and M(x, y) = 0 for all x ∈
[0, 0.2], y ∈ [0, 1]. Thus it follows that M(TM (x, 0.2), y) ≤
M(0.2, y) = 0 and TM (x,M(0.2, y)) = TM (x, 0) = 0. So

(M,TM ) is 0.2-cross-migrative.

IV. (α, TP )-CROSS-MIGRATIVE T-SUBNORMS

In this section, we will characterize the sufficient and

necessary conditions that (M,TP ) is α-cross-migrative.

Theorem 4.1 Let α ∈ (0, 1] and M be a t-subnorm with a
continuously non-increasing additive generator f : [0, 1] →
[0,∞], then (M,TP ) is α-cross-migrative if and only if one
of the following two conditions holds.

(i) f(α) + f(1) ≥ f(0).
(ii) there exist δ ∈ (−∞, 0), c ∈ (0,∞) and a continuously

non-increasing function g : [α, 1] → [0, δ log cα] with
g(α) = δ log cα such that

f(x) =

{
δ log(cx) if x ∈ [0, α],

g(x) if x ∈ [α, 1].
(7)

Corollary 4.2 Let α ∈ (0, 1) and T be a continuous-
ly Archimedean t-norm with a continuously non-increasing
additive generator t : [0, 1] → [0,∞], then (T, TP ) is α-
cross-migrative if and only if there exist δ ∈ (−∞, 0),
c ∈ (0,∞) and a continuously non-increasing function
g : [α, 1]→ [0, δ log cα] with g(α) = δ log cα such that

t(x) =

{
δ log(cx) if x ∈ [0, α],

g(x) if x ∈ [α, 1].
(8)

Remark 4.3
(i) If a t-subnorm M has a continuously non-increasing

additive generator f satisfying f(α) + f(1) ≥ f(0),
then M is α-cross-migrative with respect to any t-norm

or any t-subnorm (See Example III and III).

(ii) Indeed, Corollary 4.2 can also be obtained from The-

orem 4.2 in [5]. This indirectly and again shows that

our results are compatible with those results given out

by Fodor in [5].

Example 4.4 Let

f(x) =

{
−3 log2(0.5x) x ∈ [0, 0.5],

6.5− x x ∈ [0.5, 1].

Then the t-subnorm M generated by f is given by

M(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2xy x ∈ [0, 0.5], y ∈ [0, 0.5],

2
1
3 (y−6.5)x x ∈ [0, 0.5], y ∈ [0.5, 1],

2
1
3 (x−6.5)y x ∈ [0.5, 1], y ∈ [0, 0.5],

2−
10
3 + x+y

3 x ∈ [0.5, 1], y ∈ [0.5, 1].

Fix α ∈ [0, 0.5], then we easily check that (M,TP ) is

α-cross-migrative. In fact, if x ∈ [0, 0.5], y ∈ [0, 0.5],
then M(αx, y) = 1

2αxy and xM(α, y) = x 1
2αy. If x ∈

[0, 0.5], y ∈ [0.5, 1], then M(αx, y) = 2
1
3 (y−6.5)αx and

xM(α, y) = x2
1
3 (y−6.5)α. If x ∈ [0.5, 1], y ∈ [0, 0.5],

then M(αx, y) = 1
2αxy and xM(α, y) = x 1

2αy. If x ∈
[0.5, 1], y ∈ [0.5, 1], then M(αx, y) = 2

1
3 (y−6.5)αx and

xM(α, y) = x2
1
3 (y−6.5)α.

V. (α, TL)-CROSS-MIGRATIVE T-SUBNORMS

In this section, we will characterize the sufficient and

necessary conditions that (M,TL) is α-cross-migrative.

Theorem 5.1 Let α ∈ (0, 1] and M be a t-subnorm with a
continuously non-increasing additive generator f : [0, 1] →
[0,∞], then (M,TL) is α-cross-migrative if and only if one
of the following two conditions holds.

(i) f(α) + f(1) ≥ f(0).
(ii) f(0) = m < ∞ and there exist a constant d ∈

(0, m
α ) and a continuously non-increasing function

g : [α, 1] → [0,m − dα] with g(α) = m − dα such
that

f(x) =

{
m− dx x ∈ [0, α],

g(x) x ∈ [α, 1].

Corollary 5.2 Let α ∈ (0, 1) and T be a continuously

Archimedean t-norm with an additive generator t : [0, 1] →
[0,∞]. Then (T, TL) is α-cross-migrative if and only if

t(0) < ∞ and there exist a constant d ∈ (0, t(0)
α ) and a

continuously non-increasing function g : [α, 1]→ [0,m−dα]
with g(α) = m− dα such that

t(x) =

{
m− dx x ∈ [0, α],

g(x) x ∈ [α, 1].
(9)

Example 5.3 Let f(x) =

{
4− 6x x ∈ [0, 1

2 ],
3
2 − x x ∈ [ 12 , 1],

then the

t-subnorm M generated by f is given by

M(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{x+ y − 2
3 , 0} x ∈ [0, 1

2 ], y ∈ [0, 1
2 ],

max{x+ y
6 − 1

4 , 0} x ∈ [0, 1
2 ], y ∈ [ 12 , 1],

max{y + x
6 − 1

4 , 0} x ∈ [ 12 , 1], y ∈ [0, 1
2 ],

x+y+1
6 x ∈ [ 12 , 1], y ∈ [ 12 , 1].

Fix α = 1
2 , then we easily check that (M,TL) is α-cross-

migrative. Indeed, if x ∈ [0, 1
2 ], y ∈ [0, 1

2 ], then M(max{x+
α − 1, 0}, y) = 0 and max{x + M(α, y) − 1, 0} = 0. If

x ∈ [0, 1
2 ], y ∈ [ 12 , 1], then M(max{x + α − 1, 0}, y) = 0

and max{x+M(α, y)−1, 0} = max{x+ α+y+1
6 −1, 0} = 0.

If x ∈ [ 12 , 1], y ∈ [0, 1
2 ], then M(max{x + α − 1, 0}, y) =

max{x + α + y − 5
3 , 0} and max{x + M(α, y) − 1, 0} =
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max{x+max{α+y− 2
3 , 0}−1, 0} = max{x+α+y− 5

3 , 0}.
If x ∈ [ 12 , 1], y ∈ [ 12 , 1], then M(max{x + α − 1, 0}, y) =
max{x + α + y

6 − 5
4 , 0} and max{x + M(α, y) − 1, 0} =

max{x+max{α+ y
6− 1

4 , 0}−1, 0} = max{x+α+ y
6− 5

4 , 0}.
VI. CONCLUSIONS

In this paper, we studied and characterized a t-subnorm M
with a continuously additive generator is α-cross-migrative

with respect to a t-norm T , where T ∈ {TP , TM , TL}. If

we can extend a t-subnorm M with a continuously additive

generator into a commonly continuous t-subnorm, which

is not obliged to have a continuously additive generator.

Then, applying the fully similar methods in [5], we easily

obtain that the sufficient and necessary conditions that such

a pair of (M,T ) is α-cross-migrative. This is a reason that

any continuous t-subnorm is an ordinal sum of continu-

ously Archimedean t-norms and at most one continuously

Archimedean proper t-subnorm. But for a fixed and common-

ly continuous t-norm T , it is very difficult to characterize the

t-subnorm M which is α-cross-migrative with respect to T .

In fact, it has something to do with the conjecture proposed

by Fodor et al., in [5]. In further work, we will investigate

this case.
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