
 
 

 

  

 
Abstract—Type-2 fuzzy controllers have been mostly viewed 

and treated as black boxes in that their input-output 
mathematical mappings (i.e., analytical structures) are 
unknown. In contrast, this is never the case for any conventional 
controller. In this paper, we show an innovative analytical 
structure derivation technique for the interval Type-2 TS fuzzy 
controllers whose configurations are as follows: two input 
variables, two linear input fuzzy sets for each input variable, 
linear TS fuzzy rules, Zadeh AND operator, the Karnik-Mendel 
center-of-sets type reducer, and the centroid defuzzifier. 
Revealing the analytical structure of any Type-2 fuzzy 
controller, this one included, is important as it can lead to better 
understanding of the controller and more productive analysis 
and design of the Type-2 fuzzy control system. 

I. INTRODUCTION 

N the past several years, a growing number of research 
results on type-2 (T2) fuzzy control have appeared to 
emerge in the literature [1-7]. Some authors claim that T2 

fuzzy control outperforms its counterpart type-1 (T1) fuzzy 
control (e.g., traditional fuzzy control) by showing better 
control performance data. Some important questions are in 
order. Why is this the case? Do the T2 fuzzy controllers work 
better because their analytical structures are more 
advantageous? What are their analytical structures then? By 
“analytical structure,” we mean a mathematical expression 
that precisely describes the input-output relationship of the 
controller [8, 9]. After the analytical structure becomes 
available, one can have deeper understanding of the T2 fuzzy 
controller and how it functions. One can also analyze and 
design the T2 fuzzy control system better and in the 
framework of the well-developed conventional (nonlinear) 
control theory as the fuzzy control problems will be 
transformed to nonlinear control problems. Many time-tested 
methods can be taken advantage of for the fuzzy control 
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purpose, resulting in better analysis and design outcomes 
(e.g., a less conservative stability condition).  

In the past two decades, researchers have investigated the 
analytical structure of various T1 fuzzy controllers [11, 12]. 
Because a T2 fuzzy controller is always more complicated 
than its T1 counterpart, deriving the analytical structure of a 
T2 fuzzy controller is obviously more difficult. So far, a very 
limited number of papers address the analytical structure of a 
T2 fuzzy controller [8-10, 13-15], and when doing so, it is 
about Mamdani T2 fuzzy controller. No paper has focused on 
the analytical structure of a TS fuzzy controller except [8].  

In this paper, we show an innovative analytical structure 
derivation technique for the interval T2 (IT2) TS fuzzy 
controllers whose configurations are as follows: two input 
variables, two linear input fuzzy sets for each input variable, 
linear TS fuzzy rules, Zadeh AND operator, the 
Karnik-Mendel center-of-sets type reducer, and the centroid 
defuzzifier. 

II. CONFIGURATION OF THE IT2 TS FUZZY CONTROLLERS 

The IT2 TS fuzzy controllers in this study had two input 
variables, 1( )x n  and 2 ( )x n , that were computed from one 
physical input variable (e.g., error and change of error of the 
physical variable), where n  represented the n-th sampling 
instance. They had one output variable, ( )u n , which was 
the change of controller output (i.e., ( ) ( ) ( 1)u n u n u nΔ = − − ). 
For simplicity, 1x , 2x  and u  will be used instead of 1( )x n , 

2 ( )x n  and ( )u n . Suppose that 1x  was defined on 1 1[ , ]L R , 
and two IT2 fuzzy sets, ( 1, 2)iA i = , were used to fuzzify 1x . 
Their upper and lower primary membership functions of iA  
are designated as 1( )

iA xμ  and 1( )
iA xμ , respectively, and 

their membership values were 0 outside the interval. Inside 
the interval, it was assumed that (1) 1 1( ) ( )

i iA Ax xμ μ≥ , and (2) 

1( )
iA xμ  and 1( )

iA xμ  were linear functions. Fig. 1 provides 

two examples. Likewise, 2x  was defined in 2 2[ , ]L R  and was 
fuzzified by two IT2 fuzzy sets, ( 1, 2)jB j = , that met the 
same assumptions above. Their upper and lower primary 
membership functions are denoted by 2( )

jB xμ  and 2( )
jB xμ , 

respectively. 
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Fig. 1. Two example IT2 fuzzy sets for 1x . 

Only four fuzzy rules were needed and they were of the TS 
type as shown below: 

IF 1x  is 1A  AND 2x  is 1B  THEN 1,1 1 1,1 2 1,1u d x e x c= + +  
    (Rule 1) 

IF 1x  is 1A  AND 2x  is 2B THEN 1,2 1 1,2 2 1,2u d x e x c= + +  
    (Rule 2) 

IF 1x  is 2A  AND 2x  is 1B  THEN 2,1 1 2,1 2 2,1u d x e x c= + +  
    (Rule 3) 

IF 1x  is 2A  AND 2x  is 2B  THEN 2,2 1 2,2 2 2,2u d x e x c= + +  
    (Rule 4) 

where Zadeh fuzzy AND operator (i.e., min()) were used and 
,i jc , ,i jd , and ,i je  were constants whose values to be 

determined by the controller designer.  

The firing interval for the IT2 fuzzy sets in Rule k 
( 1, 2,3, 4k = ), denoted by 1 2 1 2[ ( , ), ( , )]k kf x x f x x , was 

calculated as follows [16]:  

1 1 1 1

1 1 2 1 1 2 1 1 2

1 2 1 2

( , ) [ ( , ), ( , )]

[min( ( ), ( )), min( ( ), ( ))]A B A B

f x x f x x f x x

x x x xμ μ μ μ
=

=
 (1) 

1 2 1 2

2 1 2 2 1 2 2 1 2

1 2 1 2

( , ) [ ( , ), ( , )]

[min( ( ), ( )), min( ( ), ( ))]A B A B

f x x f x x f x x

x x x xμ μ μ μ
=

=
 (2) 

2 1 2 1

3 1 2 3 1 2 3 1 2

1 2 1 2

( , ) [ ( , ), ( , )]

[min( ( ), ( )), min( ( ), ( ))]A B A B

f x x f x x f x x

x x x xμ μ μ μ
=

=
 (3) 

2 2 2 2

4 1 2 4 1 2 4 1 2

1 2 1 2

( , ) [ ( , ), ( , )]

[min( ( ), ( )), min( ( ), ( ))]A B A B

f x x f x x f x x

x x x xμ μ μ μ
=

=
 (4) 

Then, the iterative Karnik-Mendel (KM) center-of-sets type 
reducer [17, 6] was employed to link the firing intervals to the 
rule consequents to create [ ],  L Ru u uΔ = Δ Δ , an interval set 
(a special kind of T1 fuzzy set). Denote the consequent of 
Rule k kuΔ . The type reducer arranged the four kuΔ  in the 
ascending orders. Without loss of generality, assume that the 
result was * * * *

1 2 3 4u u u uΔ ≤ Δ ≤ Δ ≤ Δ  (note that *
kuΔ  did not 

necessarily correspond to kuΔ ). One then arranged 1 2( , )kf x x  
and 1 2( , )kf x x  to correspond to * * * *

1 2 3 4 .u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

Suppose the results were *
1 1 2( , )f x x , *

2 1 2( , )f x x , *
3 1 2( , )f x x , 

*
4 1 2( , )f x x  and *

1 21
( , )f x x , *

1 22
( , )f x x , *

1 23
( , )f x x , 

*
1 24

( , )f x x , respectively. The terminal points LuΔ  and RuΔ  

were computed [4]: 
4

* * * *
1 2 1 2

1 1

4
* *

1 2 1 2
1 1

( , ) ( , )

( , ) ( , )

R

R

R

R

P

k k k k
k k P

R P

k k
k k P

f x x u f x x u
u

f x x f x x

= = +

= = +

Δ + Δ
Δ =

+

∑ ∑

∑ ∑
     (5) 

4
* * * *

1 2 1 2
1 1

4
* *

1 2 1 2
1 1

( , ) ( , )

( , ) ( , )

L

L

L

L

P

k k k k
k k P

L P

k k
k k P

f x x u f x x u
u

f x x f x x

= = +

= = +

Δ + Δ
Δ =

+

∑ ∑

∑ ∑
     (6) 

where integers RP  ( 1 3RP≤ ≤ ) and LP  ( 1 3LP≤ ≤ ) were 
switching points whose values depended on the input fuzzy 
sets, rules consequents and the values of 1x  and 2x , and 
hence would vary with n . Finally, the centroid defuzzifier 
was used to reduce the interval set to a number [3]: 

( )1
2 L Ru u u= Δ + Δ                (7) 

 

III. A TECHNIQUE FOR DERIVING THE ANALYTICAL 
STRUCTURE OF THE IT2 TS FUZZY CONTROLLERS 

To derive the explicit mathematical expression for u  in 
equation (7), one must first determine the resulting 
membership value for each of the four rules involving the 
min() operation in equations (1)-(4). To achieve this goal the 
input space spanned by 1x  and 2x  was divided into a number 
of regions, each of which was called IC (input combination) 
so that in each IC, the inequality relationship between 1x  and 

2x  was exclusive (i.e., one variable’s membership value was 
always smaller than the other) [18]. Furthermore, this space 
division process had to be applied simultaneously to three 
different components, namely the input fuzzy sets, the rule 
consequents, and the type reducer. This was achieved by 
considering one component a time first and then 
superimposing the resulting space divisions from each 
component to form an overall input space division.  

A. Input Space Division Concerning Input Fuzzy Sets Only 

Without loss of generality, we suppose that the universe of 
inputs 1x  and 2x  are the same, which are [ 2,2]− . 1A , 2A , 

1B  and 2B  are shown in Fig. 2. These fuzzy sets are 
symmetrically triangular. The mathematical definitions for 

1A , 2A , 1B  and 2B  are listed in Table I. Fig. 3 shows the 
input space division results when the eight terminal points in 
equations (1) to (4) are individually evaluated. 
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Fig. 2. Example interval T2 fuzzy sets for 1x  and 2x . 

 
TABLE I 

THE MATHEMATICAL DEFINITIONS FOR 1A , 2A , 1B  AND 2B . 

Definition Interval 

1 1 1( ) 0.2 0.6A x xμ = − +  [ ]1 2,2x ∈ −  

1 1 1( ) 0.2 0.4A x xμ = − +  [ ]1 2,2x ∈ −  

2 1 1( ) 0.2 0.6A x xμ = +  [ ]1 2,2x ∈ −  

2 1 1( ) 0.2 0.4A x xμ = +  [ ]1 2,2x ∈ −  

1 2 2( ) 0.2 0.6B x xμ = − +  [ ]2 2,2x ∈ −  

1 2 2( ) 0.2 0.4B x xμ = − +  [ ]2 2,2x ∈ −  

2 2 2( ) 0.2 0.6B x xμ = +  [ ]2 2,2x ∈ −  

2 2 2( ) 0.2 0.4B x xμ = +  [ ]2 2,2x ∈ −  

 
In Fig. 3, two of the eight divisions of the input space 

[ 2, 2] [ 2, 2]− × −  for determining the terminal points in 
equations (1)-(4) are shown. For instance, Fig. 3(a) shows the 
ICs for 

1 11 1 2 1 2( , ) min( ( ), ( ))A Bf x x x xμ μ=  from Rule 1, which 

are 1-IC1f  and 1-IC2f . In 1-IC2f , 
1 1( )A xμ ≤

1 2( )B xμ , thus 

11 1 2 1( , ) ( )Af x x xμ= . Notice the notations - each IC label is 

followed by its resulting membership value in parentheses 
(e.g., ( )11 2-IC2 ( )Bf xμ ). There should be eight different 

divisions because of the eight terminal points. Due to the 
space limitation, just one more division result (i.e., 3 1 2( , )f x x ) 
is given (Fig. 3(b)). In Fig. 3(b), boundary A is described by 
the solution of solving 

2 1( )A xμ =
1 2( )B xμ : 

1 20.2 0.4 0.2 0.4x x+ = − + , yielding the boundary 1 2x x= − . 
Once the boundary is determined, just compute the values of 

2 1( )A xμ  and 
1 2( )B xμ  using values of any pair of 1x  and 2x  

in either IC. The membership function producing the smaller 
value is the resulting function of min( ) for that IC. 

These divisions are for the input fuzzy sets in each 
individual fuzzy rule only. Because all the four rules are 
involved in calculating u , they must be simultaneously 
considered. This simultaneous consideration is achieved if we 

superimpose the eight individual input space divisions to 
form an overall input space division (Fig. 4). It turns out that 
there are a total of four ICs, labeled from input-IC1 to 
input-IC4. To differentiate other ICs generated by 
considering the other two factors below, we call each of the 
ICs an input-fuzzy-sets-related IC, or input-IC for short. 

1x

2x

2-2

-2

2

1Aμ  

1Bμ

11 1-IC2( ( ))Af xμ

11 2-IC1( ( ))Bf xμ  

0.8
0.8

 
(a) 

1x
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2-2

-2

2

2Aμ  

1Bμ

0.8

13 2-IC1( ( ))Bf xμ

23 1-IC2( ( ))Af xμ  

0.8

Boundary A

 
(b) 

Fig. 3. Two of the eight divisions of the input space [ 2, 2] [ 2, 2]− × −  for 
determining the terminal points in equations (1)-(4): (a) for 1 1 2( , )f x x  in 

equation (1), and (b) for 3 1 2( , )f x x  in equation (3). 

input-IC1

input-IC2 

input-IC4 

input-IC3 

2
-2

2

-2 1x  

2x

 
Fig. 4. Superimposing the ICs in the eight individual input space divisions to 

create an overall input space division, which results in four input-ICs. 
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Now, for each IC in Fig. 4, we can decide 1 2( , )kf x x  (i.e., 

1 2 1 2[ ( , ), ( , )]k kf x x f x x ). For example, for input-IC4, 

11 1 2 1( , ) ( )Af x x xμ= , 
12 1 2 1( , ) ( )Af x x xμ= , 

13 1 2 2( , ) ( ),Bf x x xμ=  

24 1 2 2( , ) ( ),Bf x x xμ=  
11 1 2 1( , ) ( ),Af x x xμ=  

12 1 2 1( , ) ( ),Af x x xμ=  

13 1 2 2( , ) ( )Bf x x xμ=  and 
24 1 2 2( , ) ( )Bf x x xμ= . This process is 

carried out for all the four input-ICs. The results are listed in 
Table II.  

B. Input Spaces Division Concerning Input Fuzzy Sets and 
Rule Consequents at the Same Time 

For every input-IC, values of u  for the four rule 
consequents vary with x1 and x2. This means whether or not 
the ascending order * * * *

1 2 3 4u u u uΔ ≤ Δ ≤ Δ ≤ Δ  holds depends 
on the values of x1 and x2. As a result, LuΔ  and RuΔ  cannot 
be determined if the variable values are not specified. This is 
a new problem that has never been addressed in the literature 
before. An innovative solution is required so that the input 
space could be divided into regions in such a manner that in 
each region the ascending order would be maintained despite 
change of x1 or x2. We call such a region the 
rule-consequents-related IC or rule-IC for short.  

We show our approach to resolving this issue. Suppose that 
following four linear and symmetrical rule consequents are 
used: 1 1 25 3 4u x xΔ = + + , 2 1 21 2 3u x xΔ = + − , 

3 1 21 2 3u x xΔ = − +  and 4 1 25 3 4u x xΔ = − − . The boundaries 
of the rule-ICs are obtained by first letting two of the four rule 
consequents equal and then solving the resulting equation 
(there are six of such equations). For example, solving the 
equation involving Rule 1 and Rule 2: 

1 2 1 25 3 4 1 2 3x x x x+ + = + −  

gives the boundary 

1 27 4 0x x+ + =  

that divides the space into two rule-ICs. In one IC, uΔ  of 
Rule 1 is always larger than that of Rule 2; in the other IC, the 
opposite is true. On the boundary, they are equal. By the same 
token, the other five boundaries can be determined. For 
distinction, the boundary formed by Rule p and Rule q is 
denoted by pqL . For this specific fuzzy controller, there are 
six pqL  as shown in Fig. 5. All the boundaries are lines owing 

to the symmetric linear rule consequents. The entire input 
space is segmented into 16 rule-ICs (i.e., rule-IC1 to 
rule-IC16), and the sorted order * * * *

1 2 3 4u u u uΔ ≤ Δ ≤ Δ ≤ Δ  for 
each IC is different. Table III lists some of the 16 sorted 
orders of the rule consequents. Take rule-IC1 in Fig. 5 as an 
example, the sorted order is 2 1 4 3u u u uΔ ≤ Δ ≤ Δ ≤ Δ , which 
means that *

1 2u uΔ = Δ , *
2 1u uΔ = Δ , *

3 4u uΔ = Δ  and 
*
4 3u uΔ = Δ . Importantly, the number and line-bounded 

shapes of the ICs are dependent of the rule consequent 
coefficients.  
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Fig. 5. Division of the input space by rule-ICs. 

TABLE III 
 SORTED ORDERS OF THE RULE CONSEQUENTS FOR SOME OF THE 16 RULE-ICS. 

 Sorted orders of the rule consequents 

rule-IC1 2 1 4 3u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC2 2 4 1 3u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC3 2 4 3 1u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC4 4 2 3 1u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC5 4 3 2 1u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC6 2 1 3 4u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC7 2 3 1 4u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC8 2 3 4 1u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC9 3 2 1 4u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

rule-IC10 3 2 4 1u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

TABLE II 
 THE UPPER AND LOWER LIMITS OF THE FIRING INTERVALS FOR ALL THE INPUT-ICS. 

 
Rule 1 Rule 2 Rule 3 Rule 4 

1 21
( , )f x x  

1 21( , )f x x  1 22
( , )f x x 1 22 ( , )f x x 1 23

( , )f x x 1 23 ( , )f x x 1 24
( , )f x x  

1 24 ( , )f x x  
input-IC1 1 2( )B xμ  

1 2( )B xμ  
2 2( )B xμ  

2 2( )B xμ  
2 1( )A xμ  

2 1( )A xμ  
2 1( )A xμ  

2 1( )A xμ  

input-IC2 1 2( )B xμ  
1 2( )B xμ  

1 1( )A xμ  
1 1( )A xμ  

1 2( )B xμ  
1 2( )B xμ  

2 1( )A xμ  
2 1( )A xμ  

input-IC3 1 1( )A xμ  
1 1( )A xμ  

2 2( )B xμ  
2 2( )B xμ  

2 1( )A xμ  
2 1( )A xμ  

2 2( )B xμ  
2 2( )B xμ  

input-IC4 1 1( )A xμ  
1 1( )A xμ  

1 1( )A xμ  
1 1( )A xμ  

1 2( )B xμ  
1 2( )B xμ  

2 2( )B xμ  
2 2( )B xμ  
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In order to derive the analytical structure of the fuzzy 
controller, both the input-ICs and the rule-ICs must be taken 
into account simultaneously, which means the 
superimposition of these two different types of ICs. 
Superimposing Fig. 4 to Fig. 5 will result in 28 new ICs as 
shown in Fig. 6, each of which is termed input-rule-IC. In 
each input-rule-IC, the criteria regarding both the input fuzzy 
sets and the rule consequents are met simultaneously, thus 

*
1 2( , )kf x x , *

1 2( , )kf x x  and *
kuΔ  can all be determined. Now 

for each input-rule-IC, putting the eight membership 
functions resulted from the min() operations in the four rules 
(Table II) and the related rule consequents *

kuΔ  into the type 
reducer in equations (5) and (6), one will obtain RuΔ  and 

LuΔ  if PL and PR in equations (5) and (6) are known. We now 
show how to determine the IC boundaries for different values 
of PL and PR. 
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Fig. 6. Twenty-eight input-rule-ICs are produced after Fig. 4 and Fig. 5 are 

superimposed (only the sequence numbers of the ICs are shown, e.g., 18 
means input-rule-IC18). 

C. Input Space Division Concerning PL and PR Only 

The exact values of PL and PR vary with 1x  and 2x  and 
they range from 1 to 3. Consequently there are a total of 
3 3× =9 possible situations to consider. We call each of them 
a case. Table IV defines these nine cases. Any point in the 
input space is associated with one and only one case. If the 
boundary of every case is drawn, a new type of IC, called a 
case-IC, will be created. 

We now show how to determine the boundaries of the 
case-ICs, each of which is called a case boundary. Two case 
boundaries are due to PR and another two are caused by PL. In 
the iterative KM type reducer, when *

2Ru uΔ ≤ Δ , PR=1; when 
* *
2 3Ru u uΔ ≤ Δ ≤ Δ , PR=2; when *

3Ru uΔ ≥ Δ , PR=3. Therefore, 
solving *

2Ru uΔ = Δ  and *
3Ru uΔ = Δ  will generate two case 

boundaries related to PR. For convenience, let us name them 

B1 and B2. Similarly, there are case boundaries B3 and B4 for 
the three integers of PL. They are obtained by solving 
equations *

2Lu uΔ = Δ  and *
3Lu uΔ = Δ . Note that because 

RuΔ  (or LuΔ ) and *
kuΔ  are different for different 

input-rule-ICs, each input-rule-IC has four curves to form its 
case boundary. The curves divide the input-rule-IC, not the 
entire input space. For the 28 input-rule-ICs of the input space 
[ 2, 2] [ 2, 2]− × −  in Fig. 6, there are at most 28×4 = 112 case 
boundaries. The shape and number of the case-ICs depend on 
the nature of the equation sets (four equations form a set; two 
due to PR and two involve PL) that generate the case 
boundaries, which in turn depend on the input fuzzy sets and 
coefficients of the rule consequents. 

Let us use input-rule-IC4 in Fig. 6 (the grey region labeled 
4) to explain. Keep in mind that input-rule-IC4 is resulted 
from superimposing input-IC2 in Fig. 4 and rule-IC3 in Fig. 5. 
From Table III, we know that *

1 2u uΔ = Δ , *
2 4u uΔ = Δ , 

*
3 3u uΔ = Δ  and *

4 1u uΔ = Δ  for input-rule-IC4. According to 
the iterative KM type-reducer, one must arranges 1 2( , )kf x x  

and 1 2( , )kf x x to correspond to * * * *
1 2 3 4.u u u uΔ ≤ Δ ≤ Δ ≤ Δ  

Therefore, *
1 2( , )

k
f x x  and *

1 2( , )kf x x  in the type-reducer can 

be accordingly obtained: 
1

*
1 2 2 1 2 11

( , ) ( , ) ( )Af x x f x x xμ= = , 

2

*
1 2 4 1 2 12

( , ) ( , ) ( )Af x x f x x xμ= = , 
1

*
1 2 3 1 2 23

( , ) ( , ) ( )Bf x x f x x xμ= = , 

1

*
1 2 1 1 2 24

( , ) ( , ) ( )Bf x x f x x xμ= = , 
1

*
1 1 2 2 1 2 1( , ) ( , ) ( )Af x x f x x xμ= = , 

2

*
2 1 2 4 1 2 1( , ) ( , ) ( )Af x x f x x xμ= = ,

1

*
3 1 2 3 1 2 2( , ) ( , ) ( )Bf x x f x x xμ= =  

and 
1

*
4 1 2 1 1 2 2( , ) ( , ) ( )Bf x x f x x xμ= = . Putting these firing 

intervals and the associated rule consequents into equations 
(5) and (6) and solving *

2Ru uΔ = Δ , *
3Ru uΔ = Δ , *

2Lu uΔ = Δ  
and *

3Lu uΔ = Δ , the case boundaries for input-rule-IC4 in Fig. 
6 can be found as follows: 

B1: 2 2
1 2 1 2 1 25 15 8 33 37 20 0x x x x x x+ + − − + =  

B2: 2 2
1 2 1 2 1 25 6 28 40 24 0x x x x x x+ + − + − =  

B3: 2 2
1 2 1 2 1 25 15 8 35 51 20 0x x x x x x+ + − − + =  

B4: 2 2
1 2 1 2 1 25 6 25 27 20 0x x x x x x+ + − + − =  

TABLE IV 
DEFINING THE NINE CASES RELATED TO PL AND PR. 

Case No. Switching Points 
1 PL=1, PR=1 
2 PL=1, PR=2 
3 PL=1, PR=3 
4 PL=2, PR=1 
5 PL =2, PR=2 
6 PL=2, PR=3 
7 PL=3, PR=1 
8 PL=3, PR=2 
9 PL=3, PR=3 
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which are shown in Fig. 7. Curves B1 and B2 divide 
input-rule-IC4 into three subdivisions and each subdivision 
has different PR. B3 and B4 play a similar role by creating three 
subdivisions for PL. Superimposing the six subdivisions leads 
to the case boundaries of six case-ICs for input-rule-IC4. 
Each case-IC is associated with a case number and in this 
example, there are case 1, case 2, case 3, case 5, case 6, and 
case 9, as shown in Fig. 7.  

Case 6 

Case 1 
Case 5 

Case 3 

Case 2 
(PL=1, PR=2)

Superimposing 

0.4 -1.2 

input-rule-IC4

input-rule-IC4

PR=1 

B1 

B2
PR=2

PR=3

input-rule-IC4 
B3 

B4 

PL=1 
PL=2 

PL=3 

0.4 -1.2 0.4 -1.2 

Case 9 

 
Fig. 7. Boundaries of case-ICs and their associated case numbers (Table IV) 

for input-rule-IC4 in Fig. 6. 

Extending this example to cover all the input-rule-ICs in 
Fig. 6 will reveal the case boundaries and case numbers for 
the entire input space. Because there can be up to 112 case 
boundaries, obtaining them manually is tedious. A computer 
program can be made to automate this task. We outline the 
computation procedure for Fig. 6 as follows: (1) choose a 
number of points in [-2, 2] for 1x  and 2x  (e.g., -2, 
-1.99,…,1.99, 2 for 1x  and -2, -1.99,…,1.99, 2 for 2x  - total 
401×401=160,801 combinations of 1x  and 2x  values; (2) 
Each of the combinations is associated with one of the nine 
pairs of PL and PR (i.e., the nine cases defined in Table IV). 
The case numbers of the 160,801 combinations can be 
determined by executing the KM iterative type-reducer; (3) 
the program will then form case boundaries by finding the 
points that are connected one another and have the same case 
number. Fig. 8 shows the result of this procedure for Fig. 6. 
The entire input space is divided into 33 case-ICs. Note that 
the more points chosen for 1x  and/or 2x , the more accurate 
the boundaries will be. Superimposing Fig. 6 to Fig. 8 
produces Fig. 9, which is the final division of the entire input 
space. There are 102 regions in Fig. 9 and we call each of 
such region a final-IC. 

D. Deriving the Analytical Structure of the Fuzzy 
Controllers 

We continue to use the above specific T2 TS controller as 
an example. There will be 102 different analytical structures, 
one for each final-IC. Let’s use final-IC53 in Fig. 9 as an 
example. Final-IC53 is a result of superimposing input-IC3 in 
Fig. 4 and rule-IC9 in Fig. 5, hence 

11 2 11
( , ) ( )Af x x xμ= , 

11 2 11( , ) ( )Af x x xμ= , 
21 2 22

( , ) ( )Bf x x xμ= , 
21 2 22 ( , ) ( )Bf x x xμ= , 

21 2 13
( , ) ( )Af x x xμ= , 

21 2 13( , ) ( )Af x x xμ= , 
21 2 24

( , ) ( )Bf x x xμ= , 

21 2 24 ( , ) ( )Bf x x xμ= , *
1 3u u= , *

2 2u u= , *
3 1u u=  and 

*
4 4u u= . From Figs. 8 and 9, it can be found that the case 

number for final-IC53 is 5 (i.e., PL=2, PR=2). Using all this 
information along with Table I and equations (5), (6) and (7), 
one obtains the analytical structure for final-IC53 after 
algebraic simplifications: 

2 2
1 2 1 2 1 2

2
2 2
1 2 1 2 1 2

2

5 7 2 4 6 26
4 20

5 7 2 4 6 34
4 20

x x x x x x
u

x

x x x x x x
x

− − − − + +
=

+

− − − − + +
+

+

 

This derivation procedure can be automated by using such 
software as MATLAB Symbolic Toolbox, Mathematica or 
Maple (we used Mathematica). Table V shows the analytical 
structures for some select final-ICs in Fig. 9.  

Case 
1 

Case 5 

1x  

2x

2-2
-2

Case 2

Case 3 

Case 2 

Case 1

Case 
1 

Case 1 

Case 2 

Case 2 
Case 2 

Case 2 
Case 2 

Case 2 

Case 2 
Case 2 

Case 3 

Case 3 

Case 3 

Case 3 

Case 3 

Case 9 

Case 9 

Case 5 

Case 5 

Case 5 

Case 5 

Case 6 

Case 6 

Case 6 

Case 6 

Case 6 

Case 6 

2

 
Fig. 8. Thirty-three case-ICs obtained by our MATLAB program for Fig. 6.
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Fig. 9. Result of superimposing all the input-ICs, rule-ICs, and case-ICs, 

resulting in 102 final-ICs (due to the space limitation, only the sequence 
numbers of the ICs are shown). 
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TABLE V 
THE ANALYTICAL STRUCTURE OF SOME SELECT FINAL-ICS IN FIG. 9. 

final-IC 
No. uΔ  

6 
2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2

5 7 2 6 9 25 5 7 2 5 30
4 18 4 20

x x x x x x x x x x x x
x x

− − − + − + − − − + + ++
− + − +

21 
2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2

5 7 2 10 29 5 7 2 5 30
4 18 4 20

x x x x x x x x x x x x
x x

− − − + − + − − − + + ++
− + − +

91 
2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2

5 7 2 3 13 30 5 7 2 7 2 29
4 20 4 18

x x x x x x x x x x x x
x x

− − − − + + − − − − + ++
+ +

98 
2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2

5 7 2 6 9 25 5 7 2 2 3 35
4 18 4 22

x x x x x x x x x x x x
x x

− − − − + + − − − − + ++
+ +

 

IV. CONCLUSION 
A novel analytical structure-deriving technique for a class 

of interval T2 TS fuzzy controllers has been developed. The 
analytical structures derived will further our understanding 
on the fuzzy controllers as nonlinear controllers and can be 
useful in control system design. 
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