
 

  
Abstract—In this study, the improved knowledge-leverage 

based TSK fuzzy system modeling method is proposed in order to 
overcome the weaknesses of the knowledge-leverage based TSK 
fuzzy system (TSK-FS) modeling method. In particular, two 
improved knowledge-leverage strategies have been introduced for 
the parameter learning of the antecedents and consequents of the 
TSK-FS constructed in the current scene by transfer learning 
from the reference scene, respectively. With the improved 
knowledge-leverage learning abilities, the proposed method has 
shown the more adaptive modeling effect compared with 
traditional TSK fuzzy modeling methods and some related 
methods on the synthetic and real world datasets. 

Index Terms—Improved KL-TSK-FS, Fuzzy systems, 
Knowledge leverage, Missing data, Fuzzy modeling, Transfer 
learning 
 

I. INTRODUCTION 
hat is transfer learning? Most modeling methods 

require sufficient data to be collected for model learning. 
On one hand, in many real world applications, the available 
data may be insufficient since the data is scare or very noisy. In 
this situation, many tradition modeling methods become 
unfeasible. On the other hand, for a current scene, usually some 
reference scenes exist along with amounts of useful 
information. Although these reference scenes are different from 
the current scene, they are similar to it to a certain extent. How 
to use useful information in the reference scene to improve the 
modeling effect for the current scene is becoming a significant 
area of research. Transfer learning is just the technique to 
address this topic [1-11]. Recently, transfer learning has been 
studied extensively for different learning tasks, such as 
supervised learning[2-8] and unsurprised learning[9-11]. In this 
study, our focus is transfer learning for fuzzy systems. As a 
kind of classical intelligent models, fuzzy systems have been 
extensively applied in many fields [12]. Thus, for the situation 
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where transfer learning is required, it is very significant that the 
fuzzy system modeling methods with the transferring abilities 
are available. For example, the modeling of fermentation 
process [6, 13] is one example where the transfer learning is 
required.  

How to make the classical fuzzy modeling methods to have 
the ability of transfer learning? In [5], a kernel density 
estimation based transfer learning mechanism is introduced to 
develop the modeling method with the transfer learning 
abilities for the Mamdani-Larsen fuzzy system (ML-FS), i.e., 
the knowledge-leverage based ML fuzzy system (KL-ML-FS) 
modeling method. In [6], one kind of transfer learning 
mechanism is proposed for the development of the transfer 
learning TSK-FS modeling method, i.e., the 
knowledge-leverage based TSK-FS (KL-TSK-FS) modeling 
method. In the above transfer learning fuzzy system modeling 
methods, the KL-TSK-FS modeling method has shown the 
stronger learning abilities than the KL-ML-FS modeling 
method [5,6], but  there are still many rooms to improve it due 
to the following weaknesses for KL-TSK-FS. (1) The 
antecedent parameters of the TSK-FS constructed by 
KL-TSK-FS algorithm is directly inherited from the model 
obtained in the reference scene, which make the obtained 
model not very appropriate to the modeling task of the current 
scene. (2) The knowledge-leverage mechanism used for the 
parameter learning of the consequents is still much weaker. 
Thus, more advanced knowledge-leverage transfer learning 
mechanism can be expected. 

How to further improve the ability of transfer learning for 
KL-TSK-FS? In this study, a novel KL-TSK-FS with improved 
knowledge-transfer (KL-TSK-FS-IKT) is proposed, and we 
have addressed the KL-TSK-FS-IKT from two aspects as 
follows. 

1) The transfer fuzzy c-mean clustering technique is 
proposed to realize the knowledge-leverage for the antecedents, 
which can make the parameter learning in the antecedents from 
the available data in the current scene and the knowledge of the 
reference scene simultaneously. 

2) The improved knowledge-leverage mechanism is also 
introduced for the parameter learning in the consequents. 
Besides the knowledge-leverage term in the original 
KL-TSK-FS modeling method, an additional 
knowledge-leverage term has been introduced, which will 
make the obtained model parameters in the consequents to 
absorb more knowledge from the reference scene in the 
learning procedure. 

The rest of this paper is organized as follows. In section II, 
the concept and principle of classical TSK-FS systems, and the 
KL-TSK-FS modeling method are reviewed, respectively. In 
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Section III, the existing weaknesses of the KL-TSK-FS 
modeling method are discussed. In section IV, the 
KL-TSK-FS-IKT is proposed. The proposed method is 
evaluated with the experiments described in section V, along 
with the results and discussion. The conclusions are given in the 
final section. 

II. CLASSICAL TSK-TYPE FUZZY SYSTEMS 
The TSK model is the most popular fuzzy system model due 

to its effectiveness. In this section, the concept and principle of 
classical TSK-FS are first reviewed briefly. And then the 
KL-TSK-FS is introduced with the more details. 

A. TSK Fuzzy Systems 
For TSK fuzzy systems, the most commonly used fuzzy 

inference rules are defined as follows.  
TS K  Fuzzy Rule :kR  

1 1 2 2IF  is   is   is  k k k
d dx A x A x A∧ ∧ ∧  (1) 

( ) 0 1 1Then  k k k k
d df p p x p x= + + +x , 1, ,k K= . 

In Eq. (1), k
iA  is a fuzzy subset subscribed by the input variable 

ix  for the k-th rule; K is the number of fuzzy rules, and ∧  is a 
fuzzy conjunction operator. Each rule is premised on the input 
vector 1 2[ , , , ]Tdx x x=x , and maps the fuzzy sets in the input 

space k dA R⊂  to a varying singleton denoted by ( )kf x . 
When multiplicative conjunction is employed as the 
conjunction operator, multiplicative implication as the 
implication operator, and additive disjunction as the disjunction 
operator, the output of the TSK fuzzy model can be formulated 
as 
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where ( )kμ x  and ( )kμ x  denote the fuzzy membership 
function and the normalized fuzzy membership associated with 
the fuzzy set kA . These two functions can be calculated by 
using 
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1
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i
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iAi

xμ μ
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= ∏x  and (2.b) 

      ( ) ( ) ( )
1

Kk k k
k

μ μ μ ′
′=

= ∑x x x . (2.c) 

A commonly used fuzzy membership function is the Gaussian 
membership function which can be expressed by 
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2
k
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where the parameters ,k k
i ic δ  can be estimated by clustering 

techniques or other partition methods. For example, with fuzzy 
c-means (FCM) clustering, ,k k

i ic δ  can be estimated as follows, 

     
1 1

N Nk
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where jku  denotes the fuzzy membership of the -thj input data 

1( , , )T
j j jdx x=x , belonging to the -thk  cluster obtained by 

FCM clustering [14]. Here, h  is a scale parameter and can be 
adjusted manually. 

When the premise of the TSK fuzzy model is determined, let  
 (1, )T T

e =x x ,  (3.a) 

 ( )k k
eμ=x x x ,  (3.b) 

 1 2(( ) ,( ) , ,( ) )T T K T T
g =x x x x , (3.c) 

 0 1( , , , )k k k k T
dp p p=p  (3.d) 

and 
 1 2(( ) ,( ) , ,( ) )T T K T T

g =p p p p ,  (3.e) 
then Eq. (2.a) can be formulated as the following linear 
regression model [15] 
 o T

g gy = p x . (3.f) 
Thus, the problem of TSK fuzzy model training can be 
transformed into the learning of the parameters in the 
corresponding linear regression model [6,13,15]. And the 
ε-insensitive criterion and L2-norm penalty based learning 
algorithm of its consequent parameters is proposed in [13]. 

B. KL-TSK-FS 
In order to make the TSK-FS have the ability of transfer 

learning. In [6], a novel knowledge-leverage based TSK-FS is 
proposed, i.e., KL-TSK-FS. The basic idea and its algorithm 
are briefly described in this subsection. 

1) Framework of KL-TSK-FS Learning 
The framework for the construction of the KL-TSK-FS is 

described in Fig.1. As shown in the figure, there are two major 
information sources for the learning of a TSK-FS, namely, data 
of the current scene and knowledge of the reference scenes. 
With these two categories of information, parameter learning is 
carried out and the fuzzy system is obtained for the modeling 
task in the current scene accordingly. 

 

Fig.1 Framework of the KL-TSK-FS 
2) Objective Criterion and Parameter Solution 
The objective function of the KL-TSK-FS is constructed as 

follows [6]. 
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The optimization criterion in Eq. (4) contains two terms. The 
first term refers to learning from the data of the current scene, 
which is directly inherited from the L2-TSK-FS [13]. This term 
is included so that the desired TSK-FS will fit the sampled 
training data of the current scene as accurately as possible. The 
second term refers to knowledge-leverage from the reference 
scene, with 0gp  denoting the knowledge of the model 
parameters learned in the reference scene. The purpose of this 
term is to estimate the desired parameters of the consequents by 
approximating the model parameters in the reference scene. 
The parameter λ  in Eq. (4) is used to balance the influence of 
these two terms and the optimal value can be determined by 
using the commonly used cross-validation strategy in machine 
learning. 

Based on the objective criterion in Eq. (4), the dual problem 
of the corresponding parameter learning of KL-TSK-FS can be 
found in [6]. 

III. EXISTING WEAKNESSES OF KL-TSK-FS 
In this section, we discuss the existing weaknesses of the 

KL-TSK-FS modeling method. For convenience, the learning 
algorithm of the KL-TSK-FS is firstly given below [6]. 
Learning algorithm for KL-TSK-FS 
Step 1 Introduce the knowledge of the reference scenes, i.e., 

the model parameter. 
Step 2 Set the balance parameters ,  τ λ  in Eq. (4). 
Step 3  Use Eqs. (2.d)-(3.e) and the antecedent parameters of 

the fuzzy model obtained from the reference scenes 
to construct the dataset gix  for the model to be 
trained, i.e., the linear regression model in Eq. (3.f), 
which is associated with the fuzzy system to be 
constructed for the current scene. 

Step 4 Use Eq. (4) to obtain the final consequent parameters 
( )g

∗p  of the desired TSK-FS in the current scene. 
Step 5 Use the antecedent parameters inherited from the 

reference scenes and the consequent parameters 
obtained in step 4 to generate the fuzzy system for the 
current scene.  

From the above learning algorithm of the KL-TSK-FS, we 
give the following analysis of the weaknesses of KL-TSK-FS. 

(1) First, we can see that the antecedent parameters of the 
TSK-FS constructed in the current scene are directly inherited 
from the model obtained in the reference scene. This strategy 
results in the antecedent parameters being not particularly 
appropriate for the modeling task in the current scene since they 
cannot be learned from any information, such as the training 
data, in the current scene. 

(2) Second, the consequent parameters can only absorb 
knowledge from the reference scene by the introduced term 

0 0( ) ( )T
g g g g− −p p p p  as shown in Eq.(4). Thus, it seems that the 

knowledge-leverage from the reference scene is still not 
enough. It can be expected that more knowledge-leveraged 
terms can be introduced to improve the learning abilities for the 
consequents of the current scene. 

With the above analysis, we know that it is a very important 
work to investigate the improved KL-TSK-FS modeling 

method. In the sequent sections, an improved KL-TSK-FS 
modeling method will be proposed for this purpose. 

IV. KL-TSK-FS-IKT 

A. Framework of KL-TSK-FS-IKT 
The framework for the proposed KL-TSK-FS-IKT modeling 

method can be described with Fig. 2(b). As shown in the figure, 
there are two following aspects addressed to improve the 
knowledge-leverage abilities: (1) Transfer clustering based 
knowledge-leverage in the antecedent; and (2) Improved 
knowledge-leverage mechanism in the consequents. For a 
comparison, Fig. 2(a) shows the knowledge-leverage 
mechanism of the KL-TSK-FS modeling method in [6]. In the 
sequent subsections, the proposed knowledge-leverage 
mechanisms for the antecedents and consequents are described 
in detail, respectively. Then the algorithm of the 
KL-TSK-FS-IKT modeling method is presented. 

 

(a) 
 

(b)  
Fig. 2 Knowledge-leverage mechanism in the KL-TSK-FS modeling 
method and the proposed KL-TSK-FS-IKT modeling method. (a) 
KL-TSK-FS; (b) KL-TSK-FS-IKT. 

B. Improved Learning for The Antecedents with Transfer 
Clustering 
From Eq.(2.d), we can see that the commonly used Gaussian 

membership function in the antecedents of TSK-FS includes 
two types of the parameters, k

ic  and k
iδ , 1, ,k K= , 

1, ,i d= . For parameter vectors [ , , ]k k k
i dc c=c , they can be 

taken as the cluster centers obtained by a certain clustering 
method on the input data of the training dataset. In 
KL-TSK-FS, the parameters [ , , ]k k k

i dc c=c  of the TSK-FS 
trained in the reference scene are assumed as the available 
knowledge and are directly used for the TSK-FS constructed in 
the current scene. Thus, these parameters are not very proper 
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for the current scene since no information in the current scene is 
used for the learning of these parameters. In order to overcome 
this weakness, the following transfer fuzzy c-mean (TFCM) 
clustering technique is proposed for the learning of the 
antecedent parameters. 

First, we take the parameters , ,[ , , ]r
k k k

i r d rc c=c  as the 
available knowledge in the reference scene, which represent the 
K  centers of the fuzzy partitions in the input space of the 
reference scene. Then, we propose a TFCM clustering method 
to obtain the K  centers of the fuzzy partitions in the input 
space of the current scene with the following objective 
function. 

( )2 2

1 1 1 1,
min  

c

K N K Nm k m k k
jTFCM kj c a kj c rk j k j

J u uλ
= = = =

= − + ⋅ −∑ ∑ ∑ ∑U C
c c cx  

s.t. [0,1]kju ∈ , 
1

1K
kjk

u
=

=∑ , 1 j N≤ ≤ .  (5) 
In Eq.(5), the jx  are the available input data for model 

training in the current scene; k
cc  represent the K  centers of the 

fuzzy partitions in the input space of the current scene; iju  

denotes the membership of data jx  belonging to the k -th 

cluster; [ ]ij K Nu ×=U  and ,[ ]k
i c K dc ×=C  denote the fuzzy 

partition matrix and the center matrix, respectively; aλ  is a 
balance parameter to control the influence of different terms in 
the objective function. 

In particular, we can see that the first term in Eq. (5) is 
directly inherited from the classical FCM algorithm, which is 
used to learn the fuzzy partition matrix and the cluster center 
matrix based on the available data jx  in the current scene. The 
second term in Eq. (5) is a knowledge-leverage term, which can 
be used to learn the cluster centers of the current scene from the 
knowledge of the reference scene. 

With Eq. (5) and the optimization technique used in FCM, 
we can easily obtain the following learning rules for the fuzzy 
partition matrix and the cluster center matrix. 

1 1 1
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From Eq.(6), we can see that the obtained cluster centers of 

the current scene contains two parts, i.e., 
1 1

(1/1 ) /
N Nm m

ja kj kj
j j

u uλ
= =

+ ∑ ∑x  

and ( /1 ) k
a a rλ λ+ c , which can taken the knowledge learned 

from the data in the current scene and the knowledge in the 
related scene, respectively. With the strategy in Eq. (2.f), we 
can easily evaluate the parameters k

iδ  for the current scene 
based on the clustering results obtained by TFCM. 

C. Improved Learning for The Consequents 
In this subsection, we will investigate the improved learning 

mechanism to improve the knowledge-leverage abilities of the 
KL-TSK-FS for the learning of the consequent parameters. In 

particular, the following objective function is proposed for this 
purpose. 
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Comparing Eq.(8.a) with Eq.(4), it can be seen that additional 
terms 01

(1/ ) N T T
g gi g gii

N
ε

τ
=

−∑ p x p x  and (2 / )τ ε⋅  have been 

introduced. The first one of these two terms also contains the 
knowledge of the related scene and is used for the consequent 
learning in the current scene. This term implicates that the 
trained model in the current scene is apt to obtain the consistent 
decision result with that obtained by the model in the reference 
scene if the knowledge of the related scene is useful. For the 
added term (2 / )τ ε⋅ , it is the penalty term of the ε -insensitive 
parameter. As stated in the L2-TSK-FS [13], this insensitive 
parameter can be learned automatically when the penalty term 
(2 / )τ ε⋅  is added in the objective function. 

For easy optimization, by introducing the slack variables and 
the L2-norm penalty terms, Eq.(8.a) can be equivalent 
expressed as follows. 
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For the objective criterion in Eq.(8.b), its dual problem can 
be formulated as the following QP problem. 
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where , , ,+ − + −α α β β  are the Lagrangian multiplier vector, i.e., 
the solution variables of the dual problem of Eq. (8.b). For save 
the space, the derivation of Eq. (8.c) is omitted.  

According to the KTT optimal theory, the optimal 
consequent parameters of the trained TSK-FS, i.e., ( )g

∗p , can 
be finally given by 

( )0 g ,t g
1 1

2 1 (( ) ( ) ) (( ) ( ) )
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where ( ) , ( ) , ( ) , ( )i i i iα α β β+ ∗ − ∗ + ∗ − ∗  are the optimal solutions of 
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the dual problem in Eq. (8.c). Furthermore, Eq. (9.a) can be 
written as follows. 

0( ) + 1-g g gcγ γ∗ =p p p（ ） ,  (9.b) 

with 2
1 2

λγ
λ+

= , g ,t g
1 1
(( ) ( ) ) (( ) ( ) )

N N

gc i i i i i i
i i

α α β β+ ∗ − ∗ + ∗ − ∗

= =
= − + −∑ ∑p x x .  

The final optimal parameter ( )g
∗p  in Eq. (9.b) shows that 

the consequent parameters of the trained TSK-FS still contains 
the knowledge of two parts, i.e. 0gγ ⋅p  and (1- ) gcγ ⋅p . While 

(1- ) gcγ ⋅p  can be regarded as the knowledge learned from the 

data of the current scene, 0gγ ⋅p  can be taken as the knowledge 
inherited from the reference scenes. Please note that in essence 
the (1- ) gcγ ⋅p  term is related with both scenes since the 
involved , , ,+ − + −α α β β  parameters in this term are influenced by 
the information of two scenes simultaneously in the learning 
procedure as shown in Eq. (8.c). Now, comparing the result in 
Eq.(9.b) and the corresponding Eq.(13.a) in [6], we can find 
that  the proposed improved objective function has given much 
stronger knowledge-leverage abilities than that used in [6]. 

D. Algorithm of KL-TSK-FS-IKT 
The learning algorithm of the proposed KL-TSK-FS-IKT is 

described in detail below. 
 

Algorithm for KL-TSK-FS-IKT 
Step 1 Introduce the knowledge of the reference scenes, i.e., 

the model parameter. 
Step 2 Set the balance parameters aλ  in Eq. (5) and , ,τ τ λ  in 

Eq. (8.a), respectively. 
Step 3  Use Eqs. (5)-(7) and (2.f) to learn the antecedent 

parameters of the TSK-FS in the current scene. 
Step 4 Use Eqs. (2.d)-(3.e) and the antecedent parameters of 

the TSK-FS obtained from the Step3 to construct the 
dataset gix  for the linear model to be trained, i.e., the 
linear regression model in Eq. (3.f), which is 
associated with the TSK-FS to be constructed for the 
current scene. 

Step 5 Use Eqs.(8.c) to obtain the consequent parameters of 
the TSK-FS in the current scene. 

 

V. EXPERIMENTAL RESULTS 

A. Experimental Settings 
The proposed learning algorithm for KL-TSK-FS-IKT is 

evaluated by using both synthetic and real-world datasets. 
Details about the evaluation will be described in detail in 
section V-B and V-C respectively. For clarity, the notations of 
the datasets and their definitions are listed in Table I. Here, 
datasets generated from the reference scene and the current 
scene are denoted by D1 and D2 respectively.  

 
TABLE I NOTATIONS OF THE ADOPTED DATASETS AND THEIR DEFINITIONS 

Notation Definitions 
D1 Dataset generated from the reference scene 
D2 Dataset generated from the current scene for training 

D2_test Dataset generated from the current scene for testing 
r Relation parameter between the reference scene and the current 

scene, which is used to construct the synthetic datasets. 

 TABLE II. THE METHODS ADOPTED FOR PERFORMANCE COMPARISON 
Algorithm Descriptions 
L2-TSK-FS (D1) [13] L2-TSK-FS based on the data in the reference 

scene 
L2-TSK-FS (D2) [13] L2-TSK-FS based on the data in the current scene 
L2-TSK-FS (D1+D2)  
[13] 

L2-TSK-FS based on the data in both the current 
scene and the reference scene 

HiRBF [3] Bayesian task-level transfer learning for non-linear 
regression method 

KL-TSK-FS 
(D2+Knowledge) [6] 

Knowledge-leverage based TSK fuzzy system 
modeling method 

KL-TSK-FS-IKT 
(D2+Knowledge) 

The proposed improved KL-TSK-FS modeling 
method 

 
The following generalization performance index J is used in 

the experiments [16], 
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where N is the number of test data, iy  is the output for the i-th 
test input, iy′  is the fuzzy model output for the i-th test input, 

and 
1

N
ii

y y N
=

=∑ . The smaller the value of J, the better the 

generalization performance. 
In the experiments, the hyper parameters of all the methods 

adopted for the comparison are determined by using the five 
folds cross-validation strategy with the training datasets. All the 
algorithms are implemented using MATLAB on a computer 
with Intel Core 2 Duo P8600 2.4 GHz CPU and 2GB RAM.  

B. Synthetic Datasets 
1) Generation of Synthetic Datasets: Synthetic datasets are 

generated to simulate the scenes in the study and the following 
requirements need to be satisfied: 1) the reference scene should 
be related to the current scene, i.e., the reference and current 
scenes are different but related; 2) some of the data of the 
current scene are not available or missing. In other words, the 
data available from the current scene are insufficient. 

Based on the above requirements, the function 
( ) sin( ), [ 10,10]Y f x x x x= = ∗ ∈ −  is used to describe the 

reference scene and to generate dataset D1. On the other hand, 
the function * ( ) * sin( ), [ 10,10]y r f x r x x x= = ∗ ∈ −  is used to 
describe the current scene and to generate dataset D2 and 
testing dataset D2_test for the current scene. Here, r is a 
relation parameter between the reference scene and the current 
scene. The parameter is used to control the degree of 
similarity/difference between these two scenes. When r =1, the 
two scenes are identical. On the other hand, the lack of 
information (data insufficiency) is simulated by introducing 
intervals with missing data into the training set generated for 
the current scene. The settings for generating the synthetic 
datasets are described in Table III. For example, the two 
functions used to simulate the two related scenes, with the 
relation parameter 0.85r = , are shown in Fig. 3(a). The 
datasets of the reference scene and the training sets of the 
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current scene, generated with the same relation parameter (i.e. 
0.85r = ), are shown in Fig. 3(b). The figures also show the two 

data-missing intervals [-6, -3] and [0, 4] introduced into the 
dataset. 

TABLE III DETAILS OF THE SYNTHETIC DATASETS 
Reference 

scene 
Current scene 

Dataset Training set Testing set 
Size of dataset Interval with 

data missing  
Size of 
dataset 

Size of 
dataset 

400 [-6,-3] and [0,4] 144 200 
Relation parameter between the two scenes: r =0.9, 0.85 and 0.75  

 

-10 -5 0 5 10
-10

-5

0

5

10

x

f(
x)

Y=sin(x)*x
y=0.85*sin(x)*x

 
-10 -5 0 5 10

-10

-5

0

5

10

x

f(
x)

D1
D2(r=0.85)

(a) (b) 
Fig.3 Functions representing two different scenes with the relation 
parameter 0.85r =  and the corresponding sampled data from these 
scenes: (a) the functions representing the reference scene (Y) and the 
current scene (y); (b) the data of the reference scene and the training data 
of the current scene with missing data in the intervals [-6,-3] and [0,4] 

2) Performance Comparison: The modeling results of all the 
algorithms on the synthetic datasets are reported in Table IV. 
Fig. 4 shows the modeling effect on the dataset with 0.85r = . 
Since the modeling results on the other synthetic datasets are 
similar to those given in Fig. 4, they are not presented here due 
to space limitations. The following observations can be made 
from the reported results. 

(1) It can be seen from Table IV that the generalization 
performance of the proposed KL-TSK-FS-IKT is better than 
that of several related methods adopted in the experiment. 

(2) Fig. 4(a)-(c) show the modeling results of the L2-TSK-FS 
obtained by using different datasets. The results show that no 
matter how the datasets constitute, the L2-TSK-FS do not have 
the best performance due to its absence of the transfer ability. 

(4) The result of the HiRBF algorithm is shown in Fig.4 (d). 
Although the transfer learning-based method HiRBF has used 
the data in both the current scene and the reference scene in the 
training, it is evident from Fig. 4 (d) that this method cannot 
effectively cope with the problem caused by the missing data 
with its transfer learning mechanism, still exhibiting poor 
generalization ability in the two data-missing intervals.  

(5) Fig. 4(e) and Fig. 4(f) show the modeling effect of the 
KL-TSK-FS and the proposed KL-TSK-FS-IKT. Both 
algorithms have knowledge-leveraged abilities from the related 
scene and show a promising modeling effect. In particular, 

these methods are able to give an acceptable generalization 
capability in the two data-missing intervals, indicating that they 
have effectively leveraged useful knowledge from the reference 
scene and remedied the generalization abilities in the training 
procedure. 

(6) By comparing the KL-TSK-FS with the 
KL-TSK-FS-IKT, we can see that the KL-TSK-FS-IKT 
demonstrates stronger knowledge-leverage abilities from the 
performance index in Table IV and the visual effect in Fig. 4. 
The experimental results confirm that the proposed improved 
knowledge-leverage mechanism in the KL-TSK-FS-IKT is 
advantageous to that used in the KL-TSK-FS. 
TABLE IV GENERALIZATION PERFORMANCE (J) OF THE ADOPTED METHOD ON 

THE SYNTHETIC DATASETS 
Interval 

with 
data 

missing 

Relation  
parameter 

( r ) 

L2-TSK-FS 
(D1) 

L2-TSK-FS  
 (D2) 

L2-TSK-FS 
(D1+D2) 

[-6,-3] 
 and 

[ 0, 4 ] 

0.9 0.1343 0.2858 0.1012 
0.85 0.1908 0.2813 0.1434 
0.75 0.3525 0.2841 0.2627 

Interval 
with 
data 

missing 

Relation 
Parameter 

(r) 
HiRBF KL-TSK-FS 

(D2+Knowledge) 
KL-TSK-FS-IKT 

(D2+Knowledge) 

[-6,-3] 
and 
[0,4] 

0.9 0.2621 0.0501 0.0283
0.85 0.2619 0.0516 0.0332
0.75 0.2639 0.1534 0.1278

C. Real-world Datasets 
1) The Glutamic Acid Fermentation Process Modeling: To 

further evaluate the performance of the proposed 
knowledge-leverage based TSK-FS modeling method, an 
experiment is conducted to apply the method to model a 
biochemical process with a real-world dataset [6, 8]. The 
dataset adopted originates from the glutamic acid fermentation 
process, which is a multiple-input-multiple-output system. The 
input variables of the dataset include the fermentation time h, 
glucose concentration S(h), thalli concentration X(h), glutamic 
acid concentration P(h), stirring speed R(h), and ventilation 
Q(h), where h 0,  2,  , 28= . The output variables are glucose 
concentration S(h+2), thalli concentration X(h+2), and glutamic 
acid concentration P(h+2) at a future time h+2. The TSK-FS 
based biochemical process prediction model is illustrated in 
Fig. 5. The data in this experiment were collected from 21 
batches of fermentation processes, with each batch containing 
14 effective data samples. In this experiment, in order to match 
the situation discussed in this study, the data are divided into 
two scenes, i.e., the reference scene and the current scene, as 
described in Table V. 
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Fig.4 Modeling effect of different methods by using the synthetic datasets shown in Fig.4(b). (a) L2-TSK-FS(D1); (b) L2-TSK-FS (D2); (c) L2-TSK-FS 
(D1+D2); (d) HiRBF; (e) KL-TSK-FS (D2+Knowledge) and (f) KL-TSK-FS-IKT (D2+Knowledge).

 
 

 
 
Fig. 5 Illustration of the glutamic acid fermentation process prediction 
model based on the TSK-FSs. 
 

TABLE V. THE FERMENTATION PROCESS MODELING DATASET 

 
Data of reference 

scene 
(D1) 

Data of current scene 
Training set 

(D2)* 
Testing set 
(D2_test) 

Batches 1-16 17-19 20-21 
Size of 
dataset 224 30 28 

*For training set of the current scene, information is missing at time h = 6, 8, 10, 
12. 

 

2) Performance Comparison: The experiment results of 
fermentation process modeling using different methods are 
given in Table VI.  

Table VI shows that the modeling results of the 
KL-TSK-FS-IKT method are better than the results of the other 
methods. This can be explained again by the fact that the 
proposed method can effectively exploit not only the data of the 
current scene but also useful knowledge of the reference scene 
in the training procedure for the current scene. It can be seen 
from the experiment results that, even if the data in the training 
data of the current scene are missing, the generalization 
capability of the TSK-FSs obtained by KL-TSK-FS and the 
proposed KL-TSK-FS-IKT is not degraded significantly. This 
remarkable feature is very valuable for biochemical process 
modeling since the lack of sampled data is common due to the 

poor sensitivity of sensors in the noisy environment.  
From the results in Table VI, we can see that although the 

KL-TSK-FS method also has knowledge-leverage abilities, due 
to the insufficient knowledge-leverage learning, its 
generalization abilities are much weaker than the proposed 
KL-TSK-FS-IKT method. Thus, the KL-TSK-FS-IKT will be 
more promising than KL-TSK-FS in the practical application of 
fermentation process modeling. 

 
TABLE VI. GENERALIZATION PERFORMANCE (J) OF THE PROPOSED KL-TSK-FS 

METHOD AND THE TRADITIONAL L2-TSK-FS METHODS IN FERMENTATION 
PROCESS MODELING 

Output L2-TSK-FS(D1) L2-TSK-FS(D2) L2-TSK-FS(D1+D2) 
S(h+2) 0.2792 0.3944 0.2804 
X(h+2) 0.8342 1.1203 1.0642 
P(h+2) 0.2842 0.3255 0.2533 
Output HiRBF KL-TSK-FS KL-TSK-FS-IKT 
S(h+2) 0.3510 0.1239 0.1108 
X(h+2) 0.7026 0.4548 0.3578 
P(h+2) 0.4117 0.1482 0.1069 

VI. CONCLUSIONS 
In this study, the improved knowledge-leverage based TSK 

fuzzy system modeling method is proposed in order to 
overcome the existing weaknesses of the existing 
knowledge-leverage based TSK fuzzy system modeling. In 
particular, two improved knowledge-leverage strategies have 
been introduced for the learning of the antecedent parameters 
and consequent parameters, respectively. With the improved 
knowledge-leverage learning abilities, the proposed method 
has shown a better modeling effect compared with traditional 
TSK fuzzy modeling methods and other related methods on 
synthetic and real world datasets. Despite the promising 
performance of the proposed method, there is still room for 
further improvement. For example, more advanced transfer 
learning mechanisms can be expected for TSK fuzzy system 
modeling. In near future, we will have a further study in this 
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issue in depth. 
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