

Abstract—Design of a fuzzy neural network (FNN) consists of
optimization of network structure and parameters. The objectives
are to minimize the network model size with minimum training
error at the same time, causing a conflict between the two
objectives in the design problem. To address this problem, the
multi-objective, rule-coded, advanced, continuous-ant-colony
optimization (MO-RACACO) is applied to design FNNs in this
paper. The MO-RACACO-designed FNNs are applied to time
sequence prediction and nonlinear control problems to verify its
performance. Performance of this approach is verified through
three simulation examples with comparisons with various
multi-objective population-based optimization algorithms and
detailed discussions of the results. The results show that the
MO-RACACO-based FNN design approach outperforms the
multi-objective population-based algorithms used for
comparisons in the control and prediction examples.

I. INTRODUCTION
UZZY neural networks (FNNs) have been successfully
applied to different areas such as control, prediction, and
pattern recognition [1]-[6]. FNNs are generally built via

learning from data and the design consists of structure and
parameter learning. Structure learning includes the
determination of rules and the number of fuzzy sets in each
input variable. Parameter learning determines the optimal
antecedent and consequent parameters in fuzzy rules. One
popular approach for structure learning is clustering in the
input or input-output space. Based on this approach, different
learning algorithms have been proposed. In [1][5], the firing
strength of a rule is used as the criterion for the generation of a
new rule. For a given datum, if the maximum firing strength is
smaller than a threshold, then a new rule is generated to cover it.
This structure learning algorithm ensures that all input data are
properly covered by the rules. This approach has been extended
to structure learning in a self-evolving interval type-2 fuzzy
neural network in which the average of upper and lower rule
firing strengths is used as the criterion for the generation of an
interval type-2 fuzzy rule [7]. An online version of subtractive
clustering was proposed for structure learning in [2]. In this
approach, the potential of a data was compared against the
potential of existing rules to determine whether or not a new
rule should be added. For these clustering-based structure
learning approaches, only one structure is determined at a time.
As to the parameter optimization, a gradient descent algorithm

The authors are with the Department of Electrical Engineering, National
Chung-Hsing University, Taichung 402, Taiwan, R.O.C. (e-mail: cfjuang@
dragon.nchu.edu.tw).

This work was supported by the National Science Council, Taiwan, under
Grant NSC 102-2221-E-005-056-MY2.

has been widely used; however, this algorithm suffers from the
local solution problem. Several evolutionary fuzzy systems that
optimize fuzzy systems using genetic algorithms [8], particle
swarm optimization [9], or continuous ant colony optimization
[10] have been proposed aiming to avoid the local-solution
problem. However, these studies focus on the optimization the
fuzzy systems with a fixed structure. In general, an FNN with a
larger number of rules (i.e., a larger network size) tends to show
a smaller training error after optimization. Therefore, there is a
trade-off between network size and training error. This design
problem can be regarded a multi-objective optimization
problem, and a list of Pareto optimal solutions would be helpful
to the users for selection according to their preferences. To
address the above problems, multi-objective population–based
optimization (MOPO) algorithms may be employed.

Several MOPO algorithms have been proposed in literature,
among which the strength Pareto-evolutionary algorithm 2
(SPEA2) [11] and the non-dominated sorting genetic algorithm
II (NSGA-II) [12] have been applied to the optimization of
fuzzy systems for regression problems [13][14]. These
approaches select significant fuzzy rules from all the possible
rules generated from a grid-type partition, which faces the curse
of dimensionality in candidate rule base for high-dimensional
inputs. A multi-objective, rule-coded, advanced,
continuous-ant-colony optimization (MO-RACACO) was
proposed to address the problem of fuzzy control of a mobile
robot for wall-following control [15], where the input space in a
fuzzy system is flexibly partitioned. This paper applies the
MO-RACACO to FNN-based control and sequence prediction
problems and studies its performance in the application. Both
the control/prediction error and the network size are used to
evaluate the performance of an individual (FNN). Distributions
of the Pareto-optimal solutions in the two-objective function
space provide clear observation of the results and analysis of
the performance among different optimization algorithms.
Performance of the MO-RACACO is compared with various
MOPO algorithms to show its advantage in the design of FNNs
for control and prediction applications.

This paper is organized as follows. Section II describes the
structure and node functions in an FNN and the configuration
of the MO-RACACO-based FNN control and prediction
problems. Section III describes the MO-RACACO algorithm
for FNN optimization. Section IV presents simulation results
of the MO-RACACO in three control and prediction examples
and

Structure and Parameter Optimization of FNNs Using
Multi-objective ACO for Control And Prediction

Chia-Feng Juang and Chia-Hung Hsu

F

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE 928

R1 R2

x1 x2

y1

w1

μ1 μ2 …

Layer 1
(input nodes)

Layer 2
(antecedent nodes)

Layer 3
(rule nodes)

Layer 4
(output nodes)

…
…

R3

x3

μ3

w2

w3

Fig. 1 Structure of the FNN.

performance comparisons with various MOPO algorithms.
Finally, Section V presents conclusions.

II. EVOLUTIONARY FNN FOR CONTROL AND PREDICTION

A. FNN Structure and Functions
The FNN to be optimized consists of zero-order

Takagi-Sugeno (TS)-type fuzzy rules, each of which is of the
following form:

1
1Rule : If is And, ... , And is ,

 Then is , 1,...,

k kn
n

k

k x A x A

u w k r=
 (1)

where ix is an input variable, kiA is a fuzzy set, u is a output

variable, kw is a real consequent value, and r is the total
number of rules. Fig. 1 shows the structure of the FNN with the
followings detail the function in each layer.

Layer one: Each node in this layer represents one input
variable ix . The node transmits the input variable to the next
layer after a proper scaling operation so that each scaled input
variable falls in the same search range.

Layer two: Each node in this layer represents a fuzzy set

kjA and functions as a membership function, so the node output

is a membership value. This paper uses the Gaussian
membership function described as follows:

()2

2() exp
()

ki
iki

i ki

x m
M x

σ

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎭⎩

 (2)

where kim and kiσ denote the center and width of the fuzzy
set. In this layer, the number of nodes connected to each input
variable is equal to the number of rule nodes in layer three and
is optimized through the MO-RACACO.

Layer three: The number of nodes in this layer is equal to the
number of rules r and determines the network size. A node
represents a fuzzy rule and computes the firing strength of a
rule by using the following algebraic product operation:

Fig. 2 The evolutionary FNN control configuration using the MO-RACACO.

 () ()

1

n
k ki

i
i

x M xμ
=

= ∏
K (3)

where []1,..., nx x x=
K

.
Layer four: Each node in this layer functions as a defuzzifier

by using a weighted average operation. The consequent
parameter kw functions as a link weight. The defuzzified
output is given as follows:

1 1

() /
r r

k k k

k k

u w μ μ
= =

= ∑ ∑ . (4)

Construction of the FNN consists of structure and parameter
determination. This paper applies the MO-RACACO to
optimize the FNN structure and parameter. The optimization
objectives include minimization of the network size (i.e., the
number of rule nodes) and training error. Because of the
trade-off between the two objectives, the MO-RACACO is
used to find Pareto optimal solutions of the optimization
problem.

B. MO-RACACO-based FNN Control and Prediction
MO-RACACO-based FNN control the output of a nonlinear

plant to track a desired trajectory is investigated for a
comparison with the Pareto-optimal solutions obtained with
various MOPO algorithms and to demonstrate the superiority
of the MO-RACACO. Fig. 2 shows the configuration of the
evolutionary FNN control, where the approach can be applied
to the plant with unknown mathematical model. Because the
precise controller input-output training data is either costly to
obtain or unavailable, the MO-RACACO algorithm is adopted
for controller design. In this configuration, no data are collected
in advance; all data are generated online when control begins.
Each individual in the MO-RACACO represents an FNN. The
inputs of an FNN are the desired control output (1)dy t + and
current states(s) of the controlled plant. At each time step t , an
FNN is applied to control the plant to generate a new controlled
output (1)y t + . The error between (1)y t + and the desired

output (1)dy t + is computed for control performance
evaluation.

For the sequence prediction problem, the input-output
sequence is collected off-line in advance for FNN optimization.
The inputs of an FNN are the past values and the output is the
predicted value. The errors between the predicted and the actual
outputs are used to evaluate the prediction performance.

In the FNN-based control and prediction problems, two

929

1
jsK i

jsK
jS
K

1R iR

0 1 1 01i
jm 1i

jσ in
jm in

jσ i
jw"

tag tag tagtag

"

Fig. 3. Rule-coded individual (solution) in the MO-RACACO, where the
shaded region represents a null solution.

objective functions, minimization of the number of rule nodes
(function 1f) and minimization of the tracking/prediction error

(function 2f), are defined to evaluate the performance of an
FNN. Advantage of using the MO-RACACO in the FNN
optimization problem is verified through performance
comparisons with various MOPO algorithms in three examples
with detailed performance analyses.

III. MO-RACACO ALGORITHM
The MO-RACACO was proposed for fuzzy control of a

mobile robot in [15]. This paper applies the MO-RACACO to
different FNN-based control and prediction problems. Fig. 3
shows the coding of an individual representing an FNN. Each
rule iR is assigned with a tag taking the value of “1” or “0”
representing an active or a null rule. The maximum number of
possible rules is M� . Each solution vector jS

K
 is described as

1 2 (2 1)[, , ,]M n M
j j j jS s s s += ∈� �K K K K… \ . (5)

If the rule iR is active, then i
jsK is described as

1 2

1 1

[, , ,]

 [, , , , ,] , 2 1

i i i iD
j j j j

i i in in i D
j j j j j

s s s s

m m w D nσ σ

=

= ∈ = +

K …

… \
; (6)

otherwise, i D
js ∈K \ is a null vector. The MO-RACACO works

with a fixed colony size of N solutions (FNNs). The solutions
are sorted form the best to the worst according the
non-dominated sorting approach and the crowding distance in
the NSGA-II. At each iteration cI , N new solutions are
generated using the three-phase approach described below.
Among the N original and the N new solutions, only the
top-half best performing solutions are reserved. The algorithm
ends when a pre-defined maximum number of iterations

max I is reached.
 Fig. 4 shows the three-phase operation in generating a new

solution. A pheromone level, iτ , is deposited on a path
segment with 1 2 Nτ τ τ> > >" . A path segment with a
stronger pheromone level is selected with a higher probability.

In phase one, a temporary solution 1[, ,]M
j j jS s s= �K K K� � �… is

generated from an ant path selected from an elite or a
tournament selection. At each iteration cI , the elite tournament
selection generates max/ cL N I I= ⋅ solutions and the
tournament selection generates the others. In phase two, a
rule-based mutation

1τ

2τ

Nτ

#

#

1τ
2τ

jτ

Nτ

#

#

1τ
2τ

jτ

Nτ

#

#

1τ
2τ
jτ

Nτ

#

#

Pareto
Front

Crowding
distance
highest

lowest

highest

lowest

Rule 1 Rule 2 Rule i Rule M�

1F

lF

jτ

2
Ms �K

ˆ
kS
K

i
jsK

1
1s
K

1
jsK

1
NsK

2
2s
K

2
jsK

2
NsK

1
isK

i
NsK

1
Ms �K

1
ks
K� i

ks
K�

1
ks
K� i

ks
K�

rule-based mutation operation
kS
K�

NS
K

1S
K

2S
K

jS
K
#

#

2
j

s ∗

K

ˆ
kS
K

Gaussian sampling operation

1τ

2τ

Nτ

#

#

1τ
2τ

jτ

Nτ

#

#

1τ
2τ

jτ

Nτ

#

#

1τ
2τ
jτ

Nτ

#

#

Pareto
Front
Pareto
Front

Crowding
distance
Crowding
distance
highest

lowest

highest

lowest

Rule 1 Rule 2 Rule i Rule M�

1F

lF

jτ

2
Ms �K

ˆ
kS
K

i
jsK

1
1s
K

1
jsK

1
NsK

2
2s
K

2
jsK

2
NsK

1
isK

i
NsK

1
Ms �K

1
ks
K� i

ks
K�

1
ks
K� i

ks
K�

rule-based mutation operation
kS
K�

NS
K

1S
K

2S
K

jS
K
#

#

2
j

s ∗

K

ˆ
kS
K

Gaussian sampling operation

Fig. 4. Graphic representation of the three-phase new solution generation
process in the MO-RACACO, where a dark node represents a null rule.

operation is introduced to activate the null rules in the
temporary solution vectors with a mutation probability of 0.5.
The objective is to avoid premature convergence to FNNs with
smaller network sizes and spread the non-dominated solutions
over different network sizes. An activated (mutated) rule i

jsK is

replaced with the highest ranked active solution vector *
i
jsK in

the same column node. In phase three, a Gaussian sampling
operation is applied to the active solution component ih

js� in i
jsK�

to generate a new value (())ih
jS g s� . The component ih

js� serves
as the mean of the Gaussian probability density function

()ih
jg s� . The standard deviation (STD) b of ()ih

jg s�
dynamically changes with the iteration number and is described
by

min max min maxmax{ , 1 } [,]c

Max

I
b b b b b

I
⎛ ⎞

= × − ∈⎜ ⎟
⎝ ⎠

. (7)

where maxb =0.1 and minb =0.01. The application of the
Gaussian sampling PDF operation to the active rule solution i

jsK�

generates a new rule solution ˆ i
jsK described by

1ˆ (()) [(()), , (())]i i i iD
j j j js S g s S g s S g s= =K K� � �… , 1, , j N= … . (8)

IV. SIMULATIONS
This section shows the performance of the

MO-RACACO-designed FNN via comparisons with various
MOPO algorithms, including a multi-objective elite genetic
algorithm (MO-EGA) using the elite GA [16] for new solution
generation, the NSGAII [12], and a multi-objective ant colony
optimization in real space (MO-ACO\) using the ACO\ [17]
for new solution generation with two selection coefficients
(0.01q = and 10q =), These algorithms use the same rule
coding and solution sorting and replacement strategy as in the
MO-RACACO. All algorithms used the same population size
(N =50) and the same number of performance evaluations. The
performance indicators employed were the coverage metric C

930

2 4 6 8 10 12 14 16 18 20
0.01

0.02

0.03

0.04

0.05

0.06

f1 (Rule node)

f 2
 (

R
M

S
E

)

MO-EGA
NSGAII
MO-ACOR(0.01)

MO-ACOR(10)

MO-RCACO

Fig. 5. The average non-dominated solutions from the MO-RACACO and
various MOPO algorithms in Example 1.

0

1

1 2 3 4
0

1

1 2 3 4
(a) (b)

Fig. 6. Box plots based on the coverage metric C values in Example 1, (a)
C(MO-RACACO, B) and (b) C(B , MO-RACACO), where the algorithm

used to obtain B is 1: MO-EGA, 2: NSGAII, 3: RMO-ACO (0.01)q = , 4:

RMO-ACO (10q =).

and the diversity metric D [18]. The solution space of the
number of rule nodes was the set of integers between 3 and 20,
i.e., M� =20. The total number of iterations was set to 410 , and
so the total number of performance evaluations was

4 510 5 10N× = × in a run. For the statistical evaluation of the
learning performance, 30 runs were conducted for each MOPO
algorithm.

Example 1 (nonlinear plant control). The nonlinear plant
is described by

3

2

()
(1) ()

1 ()

y t
y t u t

y t
+ = +

+
, (9)

where () [2, 2]y t ∈ − with (0) 0y = , and () [1,1]u t ∈ − is the
control input. The objective is to control the output ()y t to
track the following desired trajectory using an
MO-RACACO–designed FNN:

() sin(50) cos(30), 1 250dy t t t tπ π= ≤ ≤ . (10)

The inputs of the FNN were (1)dy t + and ()y t , and the
output was ()u t . The control root-mean-squared error (RMSE)
over the 250 time steps was used as the second objective
function 2f . Fig. 5 shows the distribution of the average
non-dominated solutions obtained from the various MOPO
algorithms over 30 runs. Fig. 6 shows box plots of the coverage
metric C when the

Table I. The Average Coverage Metric C of The Solution Set A Obtained by
the MO-RACACO And The Solution Set B Obtained by Various Algorithms
in Example 1.

Algorithm B MO-EGA NSGAII RMO-ACO

(0.01)q =
RMO-ACO

(10)q =

MO-ACACO(,)C B 0.9716 0.7372 0.7328 0.6272

MO-ACACO(,)C B 0.0088 0.1624 0.0300 0.0204

Table II. The Average Diversity Metric D of Various Algorithms In Example 1.

method MO-EGA NSGAII RMO-ACO

(0.01)q =
RMO-ACO

(10)q =
MO-RACACO

Average D 14.8447 9.8568 5.8962 4.5348 11.5922

0 50 100 150 200 250

-1

-0.5

0

0.5

1

time step

ou
tp

ut

desired output
actual output

Fig. 7. The control result of the MO-RACACO in Example 1.

solutions obtained from the MO-RACACO were compared
against the solutions (denoted as B) obtained from each of the
MOPO algorithms used for comparison. Table I shows the
average coverage metric C , which indicates that C
(MO-RACACO, B) was greater than C (B , MO-RACACO)
for each pair in the comparison. Table I and Figs. 5 and 6 show
that the non-dominated solutions of the proposed
MO-RACACO cover most of the solutions found by the
algorithms used for comparison. Table II shows the diversity
metric D for the various optimization algorithms. The results
show that the MO-RACACO produces more diverse solutions
than the algorithms used for comparison, with the sole
exception of the MO-EGA. The MO-EGA produces a better
spread mainly because of the much greater tracking error (2f),

especially when the rule node number (1f) is small. The
solutions of the MO-EGA algorithm are almost completely
dominated by those of the MO-RACACO, as shown in Fig. 5.

Among the non-dominated solutions in the 30 runs of the
MO-RACACO, the minimum RMSE achieved was

2 0.0178f = and the corresponding rule number was 1 17f = .
For the solution that achieved the minimum rule number
(1 3f =), the corresponding minimum RMSE was

2 0.0282f = . Fig. 5 shows that the average RMSE of the
MO-RACACO was much smaller than those of the algorithms
used for comparison when the rule number was three. This
result also shows the superior optimization capability of the
MO-RACACO. Fig. 7

931

2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

f1 (Rule node)

f 2 (
S

A
E

)

MO-EGA
NSGAII
MO-ACOR(0.01)

MO-ACOR(10)

MO-RACACO

Fig. 8. The average non-dominated solutions of the MO-RACACO and various
multi-objective population-based optimization algorithms in Example 2.

Table III. The Coverage Metric C Of The Solution Set A Obtained By The
MO-RACACO And The Solution Set B Obtained By Various Algorithms.

Algorithm B MO-EGA NSGAII RMO-ACO

(0.01)q =
RMO-ACO

(10)q =

MO-ACACO(,)C B 0.9992 0.8628 0.8552 0.7704

MO-ACACO(,)C B 0 0.0616 0.0356 0.0768

Table IV. The Average Diversity Metric D Of Various MOPO Algorithms In
Example 2.
Algorithms MO-EGA NSGAII

RMO-ACO

(0.01q =)
RMO-ACO

(10q =)

MO-RAC
ACO

Average
D

30.330
9

16.527
2

18.6518 12.2848 12.3506

shows the desired and the actual control outputs using the
MO-RACACO-designed FC with only three control rules. The
result shows that the control outputs were close to the desired
outputs.

Example 2 (nonlinear dynamic plant control). In this
example, the dynamic plant is described by

2 2

() (1) (() 2.5)
(1) (), 1.2 () 1.2

1 () (1)

y t y t y t
y t u t y t

y t y t

× − × +
+ = + − ≤ ≤

+ + −
 (11)

where the ()u t is the control input and 1.2 () 1.2u t− ≤ ≤ . The
output (1)y t + was controlled to track the following desired
trajectory given by

[](1) 0.2 0.6 () 0.2 (1) () , 0 250d d dy t y t y t r t t+ = × + − + ≤ ≤ ,
(12)

where

() 0.2 sin(2 / 25) 0.4 sin(/ 32)r t t tπ π= + . (13)

The inputs of the FNN were ()dy t , (1)y t − , and ()y t , and

the output was ()u t . The tracking error in 2f was described
by the following sum of absolute error (SAE),

250

2
1

() ()d
t

f y t y t
=

= −∑ . (14)

0 50 100 150 200 250
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

time step

ou
tp

ut

desired output
actual output

Fig. 9. The control results of the MO-RACACO using different non-dominated
solutions in Example 2.

Fig. 8 shows the average of the non-dominated solutions
obtained from various MOPO algorithms. Tables III and IV
show that the average coverage metric C and diversity metric
D, respectively, of various algorithms. Table III and Fig. 8
indicate that the non-dominated solutions of proposed
MO-RACACO cover most solutions of the algorithms used for
comparison. Table IV shows that the MO-EGA, NSGAII, and

RMO-ACO (0.01q =) achieve more diverse solutions than the
MO-RACACO. As shown in Fig. 8 and Table III, the reason is
that most solutions of the MO-RACACO are closer to the
actual Pareto front than these algorithms. Fig. 9 shows the
desired and actual outputs of the solution with the minimum
rule number (1 3f =), where the corresponding SAE is

2 1.001f = .

 Example 3 (chaotic series prediction). The prediction
problem uses the Mackey-Glass chaotic time series, which is
generated from the following differential equation with time
delay

10

() 0.2 ()
0.1 ()

1 ()

dx t x t
x t

dt x t

τ
τ

−
= −

+ −
 (15)

where 17τ > . The parameter τ was set to be 30 and
(0) 1.2x = . Four past values were used to predict ()x t using

an MO-RACACO-designed FNN. The inputs of the FNN were
(24)x t − , (18)x t − , (12)x t − , and (6)x t − . The output was

the predicted value of ()x t . One thousand patterns were
generated from t =124 to t = 1123, with the first 500 patterns
being used for training and the last 500 for testing. Fig. 10
shows the average of the non-dominated solutions obtained
from various MOPO algorithms. Tables V and VI show the
average coverage metric C and diversity metric D, respectively,
of different optimization algorithms. Table V and Fig. 10
indicate that the non-dominated solutions of proposed
MO-RACACO cover most of the solutions from the algorithms
used for comparison. Table VI shows the MO-RACACO
achieves more diverse solutions than the algorithms used for
comparison with the sole exception of the MO-EGA. As in
Examples 1 and 2, the reason is that most solutions of the
MO-RACACO are closer to the Pareto front than these
algorithms, as shown in Fig. 10. To see the prediction result,
Fig. 11 shows the actual and predicted outputs of the
non-dominated solution with the minimum rule node number
(1 3f =), where

932

2 4 6 8 10 12 14 16 18 20
0

0.02

0.04

0.06

0.08

f1 (Rule node)

f 2 (
R

M
S

E
)

EGA
NSGAII
ACOR(0.01)

ACOR(10)

ACACO

Fig. 10. The average non-dominated solutions of the MO-RACACO and
various multi-objective population-based optimization algorithms in Example
3.

Fig. 11. The prediction results of the MO-RACACO using different
non-dominated solutions for the test patterns in Example 3.

Table V. The Coverage Metric C Of The Solution Set A Obtained By The
MO-RACACO And The Solution Set B Obtained By Various Algorithms.

Algorithm B MO-EGA NSGAII RMO-ACO

(0.01)q =
RMO-ACO

(10)q =

MO-ACACO(,)C B 0.9944 0.8560 0.9060 0.7780

MO-ACACO(,)C B 0.0024 0.0784 0.0528 0.1276

Table VI. The Average Diversity Metric D Of Various Algorithms In Example
3.

Algorithms MO-EGA NSGAII
RMO-ACO

(0.01q =)
RMO-ACO

(10q =)

MO-
RACACO

Average D 16.3488 13.2925 11.4220 8.0207 13.5897

the corresponding RMSE is 2 0.0130f = , and the solution with

the minimum RMSE 2 0.0094f = , where the correspond rule

number is 1 14f = using the MO-RACACO.

V. CONCLUSIONS
This paper applies the MO-RACACO to design FNNs for

control and sequence prediction problems. The tradeoff
between the network size and training error motivates the use
of the MO-RACACO to find the Pareto optimal solutions.
Three examples were conducted to verify the optimization
ability of the MO-RACACO in the two application areas.
Comparisons with various MOPO algorithms using different
new solution generation approaches were conducted. Analyses
on the distributions of the found Pareto-optimal solution on the

objective functions, the coverage metric, and the diversity
metric of different MOPO algorithms were made to verify the
optimization ability of the MO-RACACO. The results show the
superiority of the MO-RACACO in the FNN optimization
problems.

REFERENCES
[1] C. F. Juang and C. T. Lin, “An on-line self-constructing neural fuzzy

inference network and its applications,” IEEE Trans. Fuzzy Systems, vol.
6, no. 1, pp. 12-32, Feb. 1998.

[2] P. Angelov and D. Filev, “An approach to online identification of
Takagi-Sugeno fuzzy models,” IEEE Trans. Syst., Man, Cybern. B, vol.
34, no. 1, pp. 484–498, Feb. 2004.

[3] C. F. Juang and C. M. Chang, “Human body posture classification by a
neural fuzzy network and home care system application,” IEEE Trans.
Syst., Man, and Cyber., Part A: Systems and Humans, vol. 37, no. 6, pp.
984-994, Nov. 2007.

[4] J. D. Rubio, “SOFMLS: Online self-organizing fuzzy modified
least-squares network,” IEEE Trans. Fuzzy Systems, vol. 17, no. 6, pp.
1296-1309, Dec. 2009.

[5] C. F. Juang, T. C. Chen, and W. Y. Cheng, “Speedup of implementing
fuzzy neural networks with high-dimensional inputs through parallel
processing on graphic processing units,” IEEE Trans. Fuzzy Systems, vol.
19, no. 4, pp. 717-728, Aug. 2011.

[6] W. Zhao, K. Li, and G. W. Irwin, “A new gradient descent approach for
local learning of fuzzy neural models,” IEEE Trans. Fuzzy Systems, vol.
21, no. 1, pp. 30-44, Feb. 2013.

[7] C. F. Juang and Y. W. Tsao, “A self-evolving interval type-2 fuzzy neural
network with on-line structure and parameter learning,” IEEE Trans.
Fuzzy Systems, vol. 16, no. 6, pp. 1411-1424, Dec. 2008.

[8] C. F. Juang, “Temporal problems solved by dynamic fuzzy network based
on genetic algorithm with variable-length chromosomes,” Fuzzy Sets and
Systems, Vol. 142, No. 2, pp. 199-219, March 2004.

[9] C. F. Juang, C. M. Hsiao, and C. H. Hsu, “Hierarchical cluster-based
multi-species particle swarm optimization for fuzzy system
optimization,” IEEE Trans. Fuzzy Systems, vol. 18, no. 1, pp. 14-26, Feb.
2010.

[10] C. F. Juang and P. H. Chang, “Designing fuzzy rule-based systems using
continuous ant colony optimization,” IEEE Trans. Fuzzy Systems, vol.
18, no. 1, pp. 138-149, Feb. 2010.

[11] E. Zitzler, M. Laumnns, and L. Thiele, “SPEA2: improving the strength
pareto evolutionary algorithm,” Computer. Eng. and Network Lab, Swiss
Federal Inst. Technol., Zurich, Tech. Rep. 103, 2001.

[12] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGAII,” IEEE Trans. Evolutionary
Computation, vol. 6, no. 2, pp. 182-197, April 2002.

[13] P. Pulkkinen and H. Koivisto, “A dynamically constrained multiobjective
genetic fuzzy system for regression problems,” IEEE Trans. Fuzzy
Systems, vol. 18, no. 1, pp. 161-177, Feb. 2010.

[14] R. Alcala, M. J. Gacto, and F. Herrera, “A fast and scalable
multiobjective genetic fuzzy system for linguistic fuzzy modeling in
high-dimensional regression problems,” IEEE Trans. Fuzzy Syst., vol.
19, no. 4, pp. 666-681, Aug. 2011.

[15] C. H. Hsu and C. F. Juang, “Multi-objective continuous-
ant-colony-optimized FC for robot wall-following control,” IEEE
Computational Intelligence Magazine, vol. 8, no. 3, pp. 28-40, Aug.
2013.

[16] C. F. Juang, " A TSK-type recurrent fuzzy network for dynamic systems
processing by neural network and genetic algorithms," IEEE Trans.
Fuzzy Syst., vol. 10, no. 2, pp. 155-170, April 2002.

[17] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domain,” European Journal of Operational Research, vol. 185, pp.
1155-1173, 2008.

[18] H. Li, Q. Zhang, E. Tsang, and J. A. Ford, “Hybrid estimation of
distrbution algorithm for multi-objective knapsack problem,” in Proc.
EvoCOP (LNCS 3004), 2004, pp. 145-154.

933

