
 
 

 

  

Abstract—Design of a fuzzy neural network (FNN) consists of 
optimization of network structure and parameters. The objectives 
are to minimize the network model size with minimum training 
error at the same time, causing a conflict between the two 
objectives in the design problem. To address this problem, the 
multi-objective, rule-coded, advanced, continuous-ant-colony 
optimization (MO-RACACO) is applied to design FNNs in this 
paper.  The MO-RACACO-designed FNNs are applied to time 
sequence prediction and nonlinear control problems to verify its 
performance. Performance of this approach is verified through 
three simulation examples with comparisons with various 
multi-objective population-based optimization algorithms and 
detailed discussions of the results. The results show that the 
MO-RACACO-based FNN design approach outperforms the 
multi-objective population-based algorithms used for 
comparisons in the control and prediction examples.  

I. INTRODUCTION 
UZZY neural networks (FNNs) have been successfully 
applied to different areas such as control, prediction, and 
pattern recognition [1]-[6]. FNNs are generally built via 

learning from data and the design consists of structure and 
parameter learning. Structure learning includes the 
determination of rules and the number of fuzzy sets in each 
input variable. Parameter learning determines the optimal 
antecedent and consequent parameters in fuzzy rules. One 
popular approach for structure learning is clustering  in the 
input or input-output space. Based on this approach, different 
learning algorithms have been proposed. In [1][5], the firing 
strength of a rule is used as the criterion for the generation of a 
new rule. For a given datum, if the maximum firing strength is 
smaller than a threshold, then a new rule is generated to cover it. 
This structure learning algorithm ensures that all input data are 
properly covered by the rules. This approach has been extended  
to structure learning in a self-evolving interval type-2 fuzzy 
neural network in which the average of upper and lower rule 
firing strengths is used as the criterion for the generation of an 
interval type-2 fuzzy rule [7].  An online version of subtractive 
clustering was proposed for structure learning in [2]. In this 
approach, the potential of a data was compared against the 
potential of existing rules to determine whether or not a new 
rule should be added. For these clustering-based structure 
learning approaches, only one structure is determined at a time. 
As to the parameter optimization, a gradient descent algorithm 
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has been widely used; however, this algorithm suffers from the 
local solution problem. Several evolutionary fuzzy systems that 
optimize fuzzy systems using genetic algorithms [8], particle 
swarm optimization [9], or continuous ant colony optimization 
[10] have been proposed aiming to avoid the local-solution 
problem. However, these studies focus on the optimization the 
fuzzy systems with a fixed structure. In general, an FNN with a 
larger number of rules (i.e., a larger network size) tends to show 
a smaller training error after optimization. Therefore, there is a 
trade-off between network size and training error. This design 
problem can be regarded a multi-objective optimization 
problem, and a list of Pareto optimal solutions would be helpful 
to the users for selection according to their preferences. To 
address the above problems, multi-objective population–based 
optimization (MOPO) algorithms may be employed.  

Several MOPO algorithms have been proposed in literature, 
among which the strength Pareto-evolutionary algorithm 2 
(SPEA2) [11] and the non-dominated sorting genetic algorithm 
II (NSGA-II) [12] have been applied to the optimization of 
fuzzy systems for regression problems [13][14]. These 
approaches select significant fuzzy rules from all the possible 
rules generated from a grid-type partition, which faces the curse 
of dimensionality in candidate rule base for high-dimensional 
inputs. A multi-objective, rule-coded, advanced, 
continuous-ant-colony optimization (MO-RACACO) was 
proposed to address the problem of fuzzy control of a mobile 
robot for wall-following control [15], where the input space in a 
fuzzy system is flexibly partitioned. This paper applies the 
MO-RACACO to FNN-based control and sequence prediction 
problems and studies its performance in the application. Both 
the control/prediction error and the network size are used to 
evaluate the performance of an individual (FNN). Distributions 
of the Pareto-optimal solutions in the two-objective function 
space provide clear observation of the results and analysis of 
the performance among different optimization algorithms. 
Performance of the MO-RACACO is compared with various 
MOPO algorithms to show its advantage in the design of FNNs 
for control and prediction applications.  

This paper is organized as follows. Section II describes the 
structure and node functions in an FNN and the configuration 
of the MO-RACACO-based FNN control and prediction 
problems. Section III describes the MO-RACACO algorithm 
for FNN optimization.  Section IV presents simulation results 
of the MO-RACACO in three control and prediction examples 
and  
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Fig. 1 Structure of the FNN. 

 

performance comparisons with various MOPO algorithms. 
Finally, Section V presents conclusions.  

II. EVOLUTIONARY FNN FOR CONTROL AND PREDICTION 

A. FNN Structure and Functions 
The FNN to be optimized consists of zero-order 

Takagi-Sugeno (TS)-type fuzzy rules, each of which is of the 
following form: 

1
1Rule : If  is  And, ... , And  is ,

                               Then  is  ,  1,...,

k kn
n

k

k x A x A

u w k r=
         (1) 

where  ix  is an input variable, kiA  is a fuzzy set, u  is a output 

variable, kw  is a real consequent value, and r  is the total 
number of rules. Fig. 1 shows the structure of the FNN with the 
followings detail the function in each layer.  

Layer one: Each node in this layer represents one input 
variable  ix . The node transmits the input variable to the next 
layer after a proper scaling operation so that each scaled input 
variable falls in the same search range.  

Layer two: Each node in this layer represents a fuzzy set 

kjA and functions as a membership function, so the node output 

is a membership value. This paper uses the Gaussian 
membership function described as follows:  

( )2

2( ) exp
( )

ki
iki

i ki

x m
M x

σ

⎧ ⎫⎛ ⎞−⎪ ⎪⎜ ⎟= −⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎭⎩

               (2) 

where kim  and kiσ  denote the center and width of the fuzzy 
set. In this layer, the number of nodes connected to each input 
variable is equal to the number of rule nodes in layer three and 
is optimized through the MO-RACACO.  

Layer three: The number of nodes in this layer is equal to the 
number of rules r  and determines the network size. A node 
represents a fuzzy rule and computes the firing strength of a 
rule by using the following algebraic product operation:  

 

 
Fig. 2 The evolutionary FNN control configuration using the MO-RACACO. 
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where [ ]1,..., nx x x=
K

.  
Layer four: Each node in this layer functions as a defuzzifier 

by using a weighted average operation. The consequent 
parameter kw  functions as a link weight. The defuzzified 
output is given as follows: 

          
1 1

( ) /
r r

k k k

k k

u w μ μ
= =

= ∑ ∑ .                         (4) 

Construction of the FNN consists of structure and parameter 
determination. This paper applies the MO-RACACO to 
optimize the FNN structure and parameter. The optimization 
objectives include minimization of the network size (i.e., the 
number of rule nodes) and training error. Because of the 
trade-off between the two objectives, the MO-RACACO is 
used to find Pareto optimal solutions of the optimization 
problem. 

B. MO-RACACO-based FNN Control and Prediction 
MO-RACACO-based FNN control the output of a nonlinear 

plant to track a desired trajectory is investigated for a 
comparison with the Pareto-optimal solutions obtained with 
various MOPO algorithms and to demonstrate the superiority 
of the MO-RACACO. Fig. 2 shows the configuration of the 
evolutionary FNN control, where the approach can be applied 
to the plant with unknown mathematical model. Because the 
precise controller input-output training data is either costly to 
obtain or unavailable, the MO-RACACO algorithm is adopted 
for controller design. In this configuration, no data are collected 
in advance; all data are generated online when control begins. 
Each individual in the MO-RACACO represents an FNN. The 
inputs of an FNN are the desired control output ( 1)dy t +  and 
current states(s) of the controlled plant. At each time step t , an 
FNN is applied to control the plant to generate a new controlled 
output ( 1)y t + . The error between ( 1)y t +  and the desired 

output ( 1)dy t +  is computed for control performance 
evaluation.  

For the sequence prediction problem, the input-output 
sequence is collected off-line in advance for FNN optimization. 
The inputs of an FNN are the past values and the output is the 
predicted value. The errors between the predicted and the actual 
outputs are used to evaluate the prediction performance.  

In the FNN-based control and prediction problems, two  
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Fig. 3. Rule-coded individual (solution) in the MO-RACACO, where the 
shaded region represents a null solution. 

 
objective functions, minimization of the number of rule nodes 
(function 1f ) and minimization of the tracking/prediction error 

(function 2f ), are defined to evaluate the performance of an 
FNN. Advantage of using the MO-RACACO in the FNN 
optimization problem is verified through performance 
comparisons with various MOPO algorithms in three examples 
with detailed performance analyses.  

III. MO-RACACO ALGORITHM 
The MO-RACACO was proposed for fuzzy control of a 

mobile robot in [15].  This paper applies the MO-RACACO to 
different FNN-based control and prediction problems. Fig. 3 
shows the coding of an individual representing an FNN. Each 
rule iR is assigned with a tag taking the value of “1” or “0” 
representing an active or a null rule. The maximum number of 
possible rules is M� .  Each solution vector jS

K
 is described as 

1 2 (2 1)[ , , , ]M n M
j j j jS s s s += ∈� �K K K K… \ .                             (5) 

If the rule iR  is active, then i
jsK  is described as 

1 2

1 1

[ , , , ]

   [ , , , , , ] ,  2 1

i i i iD
j j j j

i i in in i D
j j j j j

s s s s

m m w D nσ σ

=

= ∈ = +

K …

… \
;   (6) 

otherwise, i D
js ∈K \  is a null vector. The MO-RACACO works 

with a fixed colony size of N  solutions (FNNs).  The solutions 
are sorted form the best to the worst according the 
non-dominated sorting approach and the crowding distance in 
the NSGA-II. At each iteration cI , N  new solutions are 
generated using the three-phase approach described below. 
Among the N original and the N  new solutions, only the 
top-half best performing solutions are reserved. The algorithm 
ends when a pre-defined maximum number of iterations 

max  I is reached.  
 Fig. 4 shows the three-phase operation in generating a new 

solution. A pheromone level, iτ , is deposited on a path 
segment with 1 2 Nτ τ τ> > >" . A path segment with a 
stronger pheromone level is selected with a higher probability.  

In phase one, a temporary solution 1[ , , ]M
j j jS s s= �K K K� � �…  is 

generated from an ant path selected from an elite or a 
tournament selection. At each iteration cI , the elite tournament 
selection generates max/  cL N I I= ⋅  solutions and the 
tournament selection generates the others. In phase two, a 
rule-based mutation  
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Fig. 4. Graphic representation of the three-phase new solution generation 
process in the MO-RACACO, where a dark node represents a null rule.  

 
operation is introduced to activate the null rules in the 
temporary solution vectors with a mutation probability of 0.5. 
The objective is to avoid premature convergence to FNNs with 
smaller network sizes and spread the non-dominated solutions 
over different network sizes. An activated (mutated) rule i

jsK is 

replaced with the highest ranked active solution vector *
i
jsK  in 

the same column node. In phase three, a Gaussian sampling 
operation is applied to the active solution component ih

js�  in i
jsK�  

to generate a new value ( ( ))ih
jS g s� . The component ih

js�  serves 
as the mean of the Gaussian probability density function 

( )ih
jg s� . The standard deviation (STD) b  of ( )ih

jg s�  
dynamically changes with the iteration number and is described 
by 

min max min maxmax{ , 1 } [ ,  ]c

Max

I
b b b b b

I
⎛ ⎞

= × − ∈⎜ ⎟
⎝ ⎠

.           (7) 

where  maxb  =0.1 and minb =0.01.  The application of the 
Gaussian sampling PDF operation to the active rule solution i

jsK�  

generates a new rule solution ˆ i
jsK  described by 

1ˆ ( ( )) [ ( ( )), , ( ( ))]i i i iD
j j j js S g s S g s S g s= =K K� � �… , 1,  ,  j N= … .  (8) 

IV. SIMULATIONS 
This section shows the performance of the 

MO-RACACO-designed FNN via comparisons with various 
MOPO algorithms, including a  multi-objective elite genetic 
algorithm (MO-EGA) using the elite GA [16] for new solution 
generation, the NSGAII [12], and a multi-objective ant colony 
optimization in real space ( MO-ACO\ ) using the ACO\  [17] 
for new solution generation with two selection coefficients 
( 0.01q =  and 10q = ), These algorithms use the same rule 
coding and solution sorting and replacement strategy as in the 
MO-RACACO. All algorithms used the same population size 
(N =50) and the same number of performance evaluations. The 
performance indicators employed were the coverage metric C   
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Fig. 5. The average non-dominated solutions from the MO-RACACO and 
various MOPO algorithms in Example 1. 
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Fig. 6. Box plots based on the coverage metric C values in Example 1, (a) 
C(MO-RACACO, B ) and (b) C( B , MO-RACACO), where the algorithm 

used to obtain B  is 1: MO-EGA, 2: NSGAII, 3: RMO-ACO ( 0.01)q = , 4: 

RMO-ACO  ( 10q = ). 
 
and the diversity metric D  [18]. The solution space of the 
number of rule nodes was the set of integers between 3 and 20, 
i.e., M� =20. The total number of iterations was set to 410 , and 
so the total number of performance evaluations was 

4 510 5 10N× = ×  in a run. For the statistical evaluation of the 
learning performance, 30 runs were conducted for each MOPO 
algorithm.  

Example 1 (nonlinear plant control). The nonlinear plant 
is described by 

3

2

( )
( 1) ( )

1 ( )

y t
y t u t

y t
+ = +

+
,                             (9) 

where ( ) [ 2, 2]y t ∈ −  with (0) 0y = , and ( ) [ 1,1]u t ∈ −  is the 
control input. The objective is to control the output ( )y t  to 
track the following desired trajectory using an 
MO-RACACO–designed FNN:  

( ) sin( 50) cos( 30),  1 250dy t t t tπ π= ≤ ≤ .          (10) 

The inputs of the FNN were ( 1)dy t +  and ( )y t , and the 
output was ( )u t . The control root-mean-squared error (RMSE) 
over the 250 time steps was used as the second objective 
function 2f . Fig. 5 shows the distribution of the average 
non-dominated solutions obtained from the various MOPO 
algorithms over 30 runs. Fig. 6 shows box plots of the coverage 
metric C  when the  

Table I. The Average Coverage Metric C of The Solution Set A  Obtained by 
the MO-RACACO And The Solution Set B  Obtained by Various Algorithms 
in Example 1. 

Algorithm B MO-EGA NSGAII RMO-ACO  

( 0.01)q =  
RMO-ACO  

( 10)q =  

MO-ACACO( , )C B  0.9716 0.7372 0.7328 0.6272 

MO-ACACO( , )C B  0.0088 0.1624 0.0300 0.0204 

 
Table II. The Average Diversity Metric D of Various Algorithms In Example 1. 

method MO-EGA NSGAII RMO-ACO  

( 0.01)q =  
RMO-ACO  

( 10)q =  
MO-RACACO

Average D 14.8447 9.8568 5.8962 4.5348 11.5922 
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Fig. 7. The control result of the MO-RACACO in Example 1. 

 

solutions obtained from the MO-RACACO were compared 
against the solutions (denoted as B ) obtained from each of the 
MOPO algorithms used for comparison. Table I shows the 
average coverage metric C , which indicates that C  
(MO-RACACO, B ) was greater than C  ( B , MO-RACACO) 
for each pair in the comparison. Table I and Figs. 5 and 6 show 
that the non-dominated solutions of the proposed 
MO-RACACO cover most of the solutions found by the 
algorithms used for comparison. Table II shows the diversity 
metric D  for the various optimization algorithms. The results 
show that the MO-RACACO produces more diverse solutions 
than the algorithms used for comparison, with the sole 
exception of the MO-EGA. The MO-EGA produces a better 
spread mainly because of the much greater tracking error ( 2f ), 

especially when the rule node number ( 1f ) is small. The 
solutions of the MO-EGA algorithm are almost completely 
dominated by those of the MO-RACACO, as shown in Fig. 5.  

Among the non-dominated solutions in the 30 runs of the 
MO-RACACO, the minimum RMSE achieved was 

2 0.0178f =  and the corresponding rule number was 1 17f = . 
For the solution that achieved the minimum rule number 
( 1 3f = ), the corresponding minimum RMSE was 

2 0.0282f = . Fig. 5 shows that the average RMSE of the 
MO-RACACO was much smaller than those of the algorithms 
used for comparison when the rule number was three. This 
result also shows the superior optimization capability of the 
MO-RACACO. Fig. 7  
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Fig. 8. The average non-dominated solutions of the MO-RACACO and various 
multi-objective population-based optimization algorithms in Example 2. 

 
Table III. The Coverage Metric C Of The Solution Set A Obtained By The 
MO-RACACO And The Solution Set B Obtained By Various Algorithms.  

Algorithm B MO-EGA NSGAII RMO-ACO  

( 0.01)q =  
RMO-ACO  

( 10)q =  

MO-ACACO( , )C B  0.9992 0.8628 0.8552 0.7704 

MO-ACACO( , )C B  0 0.0616 0.0356 0.0768 

 
Table IV. The Average Diversity Metric D Of Various MOPO Algorithms In 
Example 2. 
Algorithms MO-EGA NSGAII 

RMO-ACO  

( 0.01q = ) 
RMO-ACO

( 10q = ) 

MO-RAC
ACO 

Average 
D 

30.330
9 

16.527
2 

18.6518 12.2848 12.3506 

 
shows the desired and the actual control outputs using the 
MO-RACACO-designed FC with only three control rules. The 
result shows that the control outputs were close to the desired 
outputs.  

Example 2 (nonlinear dynamic plant control). In this 
example, the dynamic plant is described by  

2 2

( ) ( 1) ( ( ) 2.5)
( 1) ( ), 1.2 ( ) 1.2

1 ( ) ( 1)

y t y t y t
y t u t y t

y t y t

× − × +
+ = + − ≤ ≤

+ + −
      (11) 

where the ( )u t  is the control input and 1.2 ( ) 1.2u t− ≤ ≤ . The 
output ( 1)y t +  was controlled to track the following desired 
trajectory given by 

[ ]( 1) 0.2 0.6 ( ) 0.2 ( 1) ( ) ,  0 250d d dy t y t y t r t t+ = × + − + ≤ ≤ ,       
(12) 

where 

( ) 0.2 sin(2 / 25) 0.4 sin( / 32)r t t tπ π= + .                (13) 

The inputs of the FNN were ( )dy t , ( 1)y t − , and ( )y t , and 

the output was ( )u t . The tracking error in 2f  was described 
by the following sum of absolute error (SAE),  

250

2
1

( ) ( )d
t

f y t y t
=

= −∑ .                        (14) 
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Fig. 9. The control results of the MO-RACACO using different non-dominated 
solutions in Example 2. 

Fig. 8 shows the average of the non-dominated solutions 
obtained from various MOPO algorithms. Tables III and IV 
show that the average coverage metric C and diversity metric 
D, respectively, of various algorithms. Table III and Fig. 8 
indicate that the non-dominated solutions of proposed 
MO-RACACO cover most solutions of the algorithms used for 
comparison. Table IV shows that the MO-EGA, NSGAII, and 

RMO-ACO ( 0.01q = ) achieve more diverse solutions than the 
MO-RACACO. As shown in Fig. 8 and Table III, the reason is 
that most solutions of the MO-RACACO are closer to the 
actual Pareto front than these algorithms. Fig. 9 shows the 
desired and actual outputs of the solution with the minimum 
rule number ( 1 3f = ), where the corresponding SAE is 

2 1.001f = . 

    Example 3 (chaotic series prediction). The prediction 
problem uses the Mackey-Glass chaotic time series, which is 
generated from the following differential equation with time 
delay 

10

( ) 0.2 ( )
0.1 ( )

1 ( )

dx t x t
x t

dt x t

τ
τ

−
= −

+ −
                     (15) 

where 17τ > . The parameter τ  was set to be 30 and 
(0) 1.2x = . Four past values were used to predict ( )x t  using 

an MO-RACACO-designed FNN. The inputs of the FNN were 
( 24)x t − , ( 18)x t − , ( 12)x t − , and ( 6)x t − . The output was 

the predicted value of ( )x t . One thousand patterns were 
generated from t =124 to t = 1123, with the first 500 patterns 
being used for training and the last 500 for testing. Fig. 10 
shows the average of the non-dominated solutions obtained 
from various MOPO algorithms. Tables V and VI show the 
average coverage metric C and diversity metric D, respectively, 
of different optimization algorithms. Table V and Fig. 10 
indicate that the non-dominated solutions of proposed 
MO-RACACO cover most of the solutions from the algorithms 
used for comparison. Table VI shows the MO-RACACO 
achieves more diverse solutions than the algorithms used for 
comparison with the sole exception of the MO-EGA. As in 
Examples 1 and 2, the reason is that most solutions of the 
MO-RACACO are closer to the Pareto front than these 
algorithms, as shown in Fig. 10. To see the prediction result, 
Fig. 11 shows the actual and predicted outputs of the 
non-dominated solution with the minimum rule node number 
( 1 3f = ), where 
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Fig. 10. The average non-dominated solutions of the MO-RACACO and 
various multi-objective population-based optimization algorithms in Example 
3.  
 

 
Fig. 11. The prediction results of the MO-RACACO using different 
non-dominated solutions for the test patterns in Example 3. 
 
Table V. The Coverage Metric C Of The Solution Set A Obtained By The 
MO-RACACO And The Solution Set B Obtained By Various Algorithms.  

Algorithm B MO-EGA NSGAII RMO-ACO  

( 0.01)q =  
RMO-ACO  

( 10)q =  

MO-ACACO( , )C B  0.9944 0.8560 0.9060 0.7780 

MO-ACACO( , )C B  0.0024 0.0784 0.0528 0.1276 

 
Table VI. The Average Diversity Metric D Of Various Algorithms In Example 
3. 

Algorithms MO-EGA NSGAII 
RMO-ACO  

( 0.01q = ) 
RMO-ACO

( 10q = ) 

MO- 
RACACO 

Average D 16.3488 13.2925 11.4220 8.0207 13.5897 

 

the corresponding RMSE is 2 0.0130f = , and the solution with 

the minimum RMSE 2 0.0094f = , where the correspond rule 

number is 1 14f =  using the MO-RACACO.  

V. CONCLUSIONS 
This paper applies the MO-RACACO to design FNNs for 

control and sequence prediction problems. The tradeoff 
between the network size and training error motivates the use 
of the MO-RACACO to find the Pareto optimal solutions. 
Three examples were conducted to verify the optimization 
ability of the MO-RACACO in the two application areas. 
Comparisons with various MOPO algorithms using different 
new solution generation approaches were conducted. Analyses 
on the distributions of the found Pareto-optimal solution on the 

objective functions, the coverage metric, and the diversity 
metric of different MOPO algorithms were made to verify the 
optimization ability of the MO-RACACO. The results show the 
superiority of the MO-RACACO in the FNN optimization 
problems.  
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