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Abstract— Variable Structure Regression (VSR) is a new kind 
of non-linear regression model, which simultaneously determines 
the exact mathematical structure of non-linear regressors and 
how many regressors there are, thereby freeing the end user 
from trial and error time-consuming studies to determine these. 
The results are based on an iterative procedure for optimizing 
parameters and automatically identifying the structure of the 
VSR model. A novel feature of this new model is it not only uses a 
linguistic term for a variable but it also uses the complement of 
that term. It also provides the end user with a physical 
understanding of the regressors. A Monte Carlo study shows the 
practical accuracy of VSR model on the classical Gas Furnace 
time-series prediction problem. VSR ranked #1 compared to five 
other methods.  

Keywords— fuzzy rule-based systems; fuzzy sets; linguistic 
terms; non-linear regression; quantum particle swarm optimization 

I. INTRODUCTION 
Regression models are very widely used in just about all 

science, engineering and non-engineering real-world 
applications (e.g., behavioral science [8], biostatistics [42], 
business [14], econometrics [18], financial engineering [32], 
insurance [15], medicine [41], petroleum engineering [27], etc. 
[11], [20]). A typical linear regression model has the following 
structure [26]: 

                        1 2 0 1
( , ,..., ) p

p v vv
y x x x xβ β

=
= +∑  

              (1) 

where β0 , vβ  are the regression coefficients, and bias 0β  is a 
constant that does not depend on any of the variables 
(including such a term is a standard practice in regression 
models).  

Assuming that an output has a linear dependence on its 
variables is often too simplistic for many real-world 
applications; hence, the following nonlinear regression model 
is often used: 

         1 2 0 1 21
( , ,..., ) ( , ,..., )SR

p v v pv
y x x x x x xβ β ϕ

=
= +∑          (2) 

in which the regressors 1 2( , , ..., )v px x xϕ  are nonlinear 
functions of 1 2, ,..., px x x . These nonlinear functions are often 
also called basis functions, so in this paper we use the terms 
“regressors” and “basis functions” interchangeably. Many 
choices have been made in the past for the basis functions, 
e.g., polynomials (orthogonal and non-orthogonal), 
trigonometric, Gaussian, radial, fuzzy, etc. 

There are many methods for non-linear regression, e.g., 
logistic regression [31] kernel-based regression [34], neural 

networks [16], rule-based fuzzy logic systems [22], etc.; 
however, there are four major challenges to implementing (2): 
1) Choosing the variables; 2) Choosing the nonlinear 
structures of the regressors; 3) Choosing how many terms to 
include in (2), namely SR ; and, 4) Optimizing the parameters 
that complete the description of the model. 

For Challenge 1, how to choose the variables is crucial to 
the success of any regression model. In this paper we assume 
that the user has already established the variables that affect 
the outcome, using methods already available for doing this 
(e.g., [28]). Our focus in this paper is on Challenges 2-4. 

For Challenge 2, in real-world applications the nonlinear 
structures of the regressors are usually not known ahead of 
time, and are therefore chosen either as products of the 
variables (e.g., two at a time, three at a time, etc.), or in other 
more complicated ways (e.g., trigonometric-, exponential-, 
logarithmic-functions, etc.). Sometimes a deep knowledge 
about the application provides justifications for the choices 
made for the nonlinear terms; however, often one does not 
have such deep knowledge, and a lot of time is spent, using 
trial and error, trying to establish the nonlinear dependencies. 
We shall demonstrate below that Variable Structure 
Regression (VSR) establishes the exact nonlinear structure for 
each of the SR  regressors in (2) automatically.  

For Challenge 3, how to choose SR is also usually done by 
trial and error, and this can be very tedious to do. We shall 
also demonstrate below that VSR establishes SR  
automatically.  

For Challenge 4, in addition to the regression coefficients 
that appear in (2), each regressor in VSR will be a parametric 
function of variables, and numerical values must be specified 
for all such parameters. Usually, one does not know how to 
specify such numerical values ahead of time. Instead, as we 
will explain below, VSR follows the now common practice of 
determining numerical values for all such parameters, as well 
as for the regression coefficients in (2) by using some given 
data and one or more optimization methods that make the 
regression model optimally fit that data.  

As a result of our solutions to Challenges 2-4, the 
nonlinear regression model in (2) will have a variable 
structure, which is why we have called this kind of regression 
VSR. Exactly what we mean by a “variable structure” is 
deferred until Sections V, because the variability of the 
structure in (2) occurs in two different ways in VSR. 
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The rest of this paper is organized as follows: Section II 
deals with measured data and explains how the data are 
preprocessed; Section III explains how the antecedents of rules 
as well as the number of rules are determined simultaneously 
from the data; Section IV explains how rules are established 
and how the formula for the VSR model in (2) derives from 
them; Section V explains how all of the parameters in the VSR 
model as well as its structure are optimized; Section VI 
presents the experimental results; and Section VII provides 
conclusions, the strengths of VSR and future works. 

II. PREPROCESSING 
The variables and output that are used in the VSR model 

must be chosen by the end-user; this is done before the start of 
the VSR procedure. Assume a data pair is ( ( ), ( ))t y tx  where 

( )y t  is the output for that ( )tx . Each data pair is treated as a 
“case” and index t denotes a data case. In a time-series 
forecasting application the data cases have a natural temporal 
ordering. We assume that N data pairs are available, and refer 
to the collection of these data pairs as CasesS , where: 

                             { } 1
( ( ), ( )) N

Cases t
S t y t

=
= x                         (3)  

Assume that N data pairs are divided into three data sets 
one of which is used for training, one is used for validation 
and the last one is used for testing. More specifically: 
— trnN  of the N  data cases form the training set, trn

CasesS , 
where   
                    { } 1

( ) : ( ) trnNtrn
Cases trn trn t

S t y t
=

= x           (4) 
— valN  from the N  input-output data pairs form the 

validation set, val
CasesS , where 

               { } 1
( ) : ( ) valNval

Cases val val t
S t y t

=
= x           (5) 

— testN  from the N  input-output data pairs form the 
testing set, test

CasesS , where 

               { } 1
( ) : ( ) testNtest

Cases test test t
S t y t

=
= x           (6) 

We randomly select 10% of data for testing. The 
remaining 90% of data are divided into training and validation 
folds. VSR uses a 5-fold cross-validation [10] in which the 
learning data are randomly partitioned into five data sets, each 
containing 20% of the remaining data, after which four of the 
five folds are used for training and one fold is used for 
validation (this is repeated five times). The training set is used 
to optimize the parameters of (2), the validation set is used to 
stop the training, and the testing set is used to evaluate the 
overall performance of the optimized model; this is fully 
explained in Section V. 

For preprocessing, linguistic terms are assigned to each 
variable  ( 1,..., )ix i p= , ix R+∈ . We begin with just two 
linguistic terms (Low xi  and High xi) for each variable in order 
to keep the number of term-parameters in (2) as small as 
possible, because all of these parameters are optimized and if 
not enough data pairs are available, then optimizing too large 
a number of term-parameters is problematic. Each linguistic 
term is modeled as a type-1 fuzzy set (T1 FS), and so a 
membership function (MF) has to be found for each term.  

III. ESTABLISH ANTECEDENTS OF RULES AND THE NUMBER 
OF RULES 

VSR simultaneously establishes the if-part (the 
antecedent) of a rule, as well as the number of rules, sR . Each 
rule will later correspond to one basis function in (2). The 
antecedent of each rule contains one linguistic term or its 
complement for each of the p variables, and each of these 
linguistic terms is combined with the others by using the word 
“and” (e.g., 1 2and  and ... and pA A A ). This interconnection is 
called a causal combination.  

Note that in a traditional if-then rule the antecedents only 
use the terms and not their complements. In VSR, protection 
about being wrong for postulating a term is achieved by 
considering each term and its complement. This is different 
from Ruspini partition of fuzzy sets [33] where summation of 
MFs are equal to 1. These methods are similar only if one 
term is assigned to each variable; for more than one term per 
variable, each term is treated independently in VSR method. 
So antecedents of the rules contain all of the terms related to a 
variable.  

To begin, 2 p  candidate causal combinations (the 2 is due 
to both the term and its complement) are conceptually 
postulated. One does not know ahead of time which of the 2 p  
candidate causal combinations should actually be used as a 
compound antecedent in a rule. VSR prunes this large 
collection by using the MFs that were determined in Section 
II, as well as the MF (using fuzzy set mathematics) for 
“ 1 2and  and ... and pA A A ,” and a simple test. The results of 
doing this are sR  surviving causal combinations.    

Let FS  be the finite space of 2 p  candidate causal 
combinations, jF  ( 1,..., 2  and 1,..., )pj i p= = : 

                         
1 2

1 2

{ ,..., } 

... ...

 or 

pF

j j j j
j i p

j
i i i

F F

F A A A A

A C c

=⎧
⎪

= ∧ ∧ ∧ ∧ ∧⎨
⎪

=⎩

S

 (7) 

where ∧  denotes conjunction (the “and” operator) and is 
modeled using minimum and ic  denotes the complement of 

iC . Mendel and Korjani [25] have proven the somewhat 
surprising result that for each case only one of the 2 p  
candidate causal combinations has a MF value that is > 0.5. 
More importantly, they have provided a simple formula for 
establishing exactly which candidate causal combination that 
is. Their result is provided in the following: 

Min-Max Theorem: Given p terms, 1C , 2C , …, pC   and 
their respective complements, 1c , 2c , …, pc . Consider the 
2 p  candidate causal combinations ( 1,..., 2 )pj =  

1 ... ...j j j
j i pF A A A= ∧ ∧ ∧ ∧  where j

i iA C=  or ic  and 
1,..., .i p=  Let  

   1
( ) min{ ( ),..., ( ),..., ( )}j j jj pi

F AA A
t t t tμ μ μ μ= , 1,2,..., trnt N=   (8)  

where 
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( ) ( ) or ( ) 1 ( ),   1,...,j

i i ii
C c CA

t t t t i pμ μ μ μ= = − =           (9) 

Then for each t (case) there is only one j, j*(t), for which 
*( )

( ) 0.5
j tF tμ >  and 

*( )
( )

j tF tμ  can be computed as: 

    
( )( ) ( )( ){ }*( ) 1 1

( ) min max , ( ) ,...,max , ( )
j t p pF C c C ct t t t tμ μ μ μ μ=

   
(10) 

*( ) ( )j tF t  is determined from the right-hand side of (9), as:

     

 

( )( ) ( )( )1 1

* *

*

( ) ( )
1

( ) max , ( ) .... max , ( )

...

p pj C c C c

j t j t
p

F t arg t t arg t t

A A

μ μ μ μ= ∧ ∧

= ∧ ∧
 

(11) 

In (11), ( ) ( )( )max ,
i iC carg t tμ μ

 
denotes the winner of 

( )( )max , ( )
i iC ct tμ μ , namely iC  or ic . Q 

Not all of the trnN  winning causal combinations will be 
different, i.e. the same winner may frequently occurs for more 
than one case. Consequently, after the winning causal 
combination is found for each of the trnN  cases, the J uniquely 
different * ( )jF t  are found; and, they are relabeled jF ′  
( 1,..., )j J′ = .  

We are now ready to state how the SR  surviving causal 
combinations are actually computed: 
    1. Compute * ( )jF t  using (11). 
    2. Find the J uniquely different * ( )jF t  and re-label them 

jF ′ ( 1,..., )j J′ = .  
    3. Compute 

jFt ′
, where ( 1,..., )trnt N=  

                      

tF ′j
(t) =

1 if F ′j = Fj*(t ) (t)

0 otherwise

⎧
⎨
⎪

⎩⎪                      

 (12) 

     4. Compute 
jFN
′
, where 

                                  
1

= ( )trn

j j

N
F Ft

N t t
′ ′=∑                                (13) 

     5. Establish the SR  surviving causal combinations S
vF  

( 1,..., )Sv R= , as: 

                      

  

Fv
S =

F ′j ( ′j → v) if  N F ′j
≥  f  

0 if N F ′j
< f

⎧

⎨
⎪

⎩⎪
             (14) 

where ( )jF j v′ ′ →  means jF ′  is added to the set of 
surviving causal combinations as S

vF , and v is the index of 
the surviving set.  

In order to implement (14) threshold f has to be chosen. In 
our works, we chose 1f = . This choice is arbitrary and 
depends on an application and how many cases are available. 
Discussions on how to choose f are given in [23, Section 3.6], 
[30, Ch. 5, p. 107], [29, p. 197], and [13, p. 197]. 

IV. ESTABLSIH RULES AND VSR EQUATIONS 
The SR  surviving causal combinations lead to the 

following TSK rules [36], [38], [22, Ch. 13] ( 1,..., Sv R= ): 

  1 1: IF  is  ... and  is ,  THEN ( ) =v v
v p p v vS x A x A y βx       (15) 

where the constants vβ  have yet to be determined [they will 
be the regression coefficients that appear in (2)]. 

 Note, again, that these rules are different from the usual 
kinds of rules that appear in a fuzzy logic rule-based system 
because in (15) a term may be the complement of a fuzzy set 
rather than just the fuzzy set. 

The MF of the antecedents of each rule in (15) is ( )S
vF

μ x , 
where: 

              
 
         (16) 

Note that ( )S
vF

μ x  is a highly nonlinear-function of the input 
variables because of the nonlinear dependence of each MF on 
its input variable [e.g.,

1
1( )vA

xμ ]. The other source of non-
linearity comes from (16) where the MFs connected by the t-
norms. The t-norm  in (16) is chosen as the product.  

The formula for the VSR model begins with (15) and (16) 
and assumes that fired rules are aggregated using Center of 
Sets (COS) defuzzification, and is (see [22, Ch. 13, Section 
13.2.1]): 

                          1

1

( )
( )

( )

S
S

v

S
S

v

R
v Fv

R

Fv

β μ
γ

μ
=

=

=
∑
∑

x
x

x
  

           (17) 

which can also be written, as: 

                          
1

1

( )
( )

( )

S
S v

S
S

v

R F
v Rv

Fv

μ
γ β

μ=

=

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

∑
∑

x
x

x
                  (18) 

When a bias is added to (18), as is done in a regression model, 
then  

            0 0 1

1

( )
( ) ( )

( )

S
S v

S
S

v

R F
v Rv

Fv

y
μ

β γ β β
μ=

=

⎡ ⎤
⎢ ⎥= + = +
⎢ ⎥
⎣ ⎦

∑
∑

x
x x

x
 

    (19) 

(19) is now in the form of a basis function expansion [44], [22, 
Ch. 5] in which the basis functions1, denoted ( )vϕ x , are:  

                                

 1

( )
( )

( )

S
v

S
S

v

F
v R

Fv

μ
ϕ

μ
=

≡
∑

x
x

x
                          (20) 

Consequently, (19) can also be expressed as: 

                             0 1
( ) ( )SR

v vv
y β β ϕ

=
= +∑x x

                       
(21) 

(21) is our VSR model, as stated in (2), except that now we 
have an explicit formula for the basis functions that is given by 
(20) along with (16). 

V. OPTIMIZING PARAMETERS AND STRUCTURE OF  VSR 
MODEL  

Evolutionary algorithms constitute a class of search 
methods that can be used to optimize fuzzy rules, e.g., [1], [9], 
and [39]. Fazzolari et al. recently [12] review all evolutionary 
fuzzy systems. The objective of these methods is to find an 

                                                           
1 These basis functions have also been called fuzzy basis functions (FBFs), 

and (19) has also been called a FBF expansion. 
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optimal set of rules as well as MFs by encoding both MFs and 
the rules in a chromosome and the optimizing an objective 
function using an evolutionary algorithm. The drawback of 
these methods is the dimension of the search space increases 
significantly when both rules and MFs are encoded, which 
makes it very complicated to find solutions. A solution to this 
is to use a conventional linguistic rule based system in order to 
reduce the search space [2]; however, these methods suffer 
from exponential rule explosion [49]. The VSR method only 
optimizes MFs and automatically identifies an associated set 
of rules to reduce the search space; and the search space is 
only related to MF parameters. Mendel and Korjani [24] show 
that the number of rules generated using the min-max theorem 
is very small; so rule explosion is not encountered.  

In order to completely specify the VSR model in (21) we 
need to specify its structure as well as the numerical values for 
all of its parameters. The structure of (21) is established once 
we know sR  and the surviving causal combinations. The 
parameters in (21) are of two kinds, MF parameters that appear 
in the basis functions and the regression coefficients; both 
kinds of parameters need to be determined before (21) is 
completely specified. Recall, however, that both sR  and the 
surviving causal combinations depend on the MFs for each of 
the p variables; so, when the MF parameters change this may 
cause the structure of (21) to also change. Consequently, we 
will optimize both the structure of the VSR model as well as its 
parameters. This is summarized in the high-level flow chart in 
Fig. 1. Observe that the outer loop is devoted to structure 
identification and the inner loop is devoted to parameter 
optimization. 

A. Parameter Optimization 
There are different approaches for optimizing the 

parameters in the VSR model (e.g., see [22, Ch. 13, Section 
13.2.4]). We determine MF parameters and regression 
coefficients iteratively by iterating between a linear 
optimization for the regression coefficient parameters and a 
nonlinear optimization for the MF parameters.  

A.1 Optimizing the Regression Coefficients: The least 
squares (LS) method (e.g., [21 Lesson 3]) is used to find the 
regression coefficients, 0β  and vβ  ( 1,..., Sv R= ) by using the 
training data. The training data are also used to compute the 
training error. In addition, the validation data are used to 
compute a validation error that is needed later to help find the 
overall optimized VSR model, as is explained below in 
Section C.  

Using the notations in (4) and (5), for the elements in our 
training and validation sets, (21) can be expressed for each of 
those data sets, as: 

       0 1
( ) ( ( )) 1,...,SR

trn v v trn trnv
y t t t Nβ β ϕ

=
= + =∑ x         (22) 

           0 1
( ) ( ( )) 1,...,SR

val v v val valv
y t t t Nβ β ϕ

=
= + =∑ x

      
(23) 

 Collecting the trnN  and valN  equations in (22) and (23), they 
can be expressed more compactly in vector-matrix format, as:   
                                        trn trn= Φy β                                   (24) 
                                        val val= Φy β                                   (25) 
where 

 
Figure 1. High-level flow-chart for the VSR model. 

                            [ (1),..., ( )]T
trn trn trn trny y N=y                      (26) 

                            [ (1),..., ( )]T
val val val valy y N=y                     (27) 

                               0 1 2[ , , ,..., ]
S

T
Rβ β β β=β                         (28) 

       (29) 

 

Note that valΦ is constructed similar to (29) using valx . 
The least-squares optimized regression coefficients, LSβ , 

obtained by minimizing
 

2( ) trn trnJ = − Φyβ β , can be 
expressed, as [21, Lesson 3]: 

                            
1( )T T

LS trn trn trn trn
−= Φ Φ Φ yβ                    (30)  

We do not actually compute LSβ  using (30), because to do so 
is well known to be fraught with numerical difficulties; 
instead, the Singular Value Decomposition (SVD) method is 
used (e.g., [21, Lesson 4]) because of its excellent numerical 
properties.  

After LSβ  is computed, the training and validation RMSEs 
are computed, as: 

                     
 

( )0.52
trn trn trn LS trnJ N= − Φy β                  (31) 

                      ( )0.52
val val val LS valJ N= − Φy β                 (32) 

A.2 Optimizing MF Parameters: In this step, the MF 
parameters are optimized; however, as we have mentioned 
above, when the MF parameters change, the basis functions in 
(20) must also be changed, after which the LS optimized 
regression coefficients must also be changed. Consequently, 
there is a natural iteration (G times) between optimizing the 
regression coefficients and optimizing the MF parameters. 
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In this step one uses the same surviving SR  causal 
combinations (i.e., the same structure of the VSR model) that 
were found in Section IV; however, because the MFs are 
changed in the present step from those that were used in 
Section IV, the structure of the rules must be modified for the 
optimized MFs. 

In order to optimize the MF parameters one must first 
choose a parametric model for each MF. We use piecewise 
linear MF models and Quantum Particle Swarm Optimization 
(QPSO) (e.g., [46]-[51]) as our MF parameter optimization 
method. Any other swarm optimization procedure can be used 
instead of QPSO. 

In this paper, we only use one term per variable (e.g., right 
MFs, ( )H ixμ ) to reduce MF parameters. Note that if more 
than one term is used for each variable then each term is 
treated independently; so the antecedent of VSR rules contains 
all terms (or their complement) assigned to variables.   

For a right-shoulder MF (Fig. 2), the MF model is 
( 1,..., )i p= :  

                  

0

( )

1

i i

i i
H i i i i

i i

i i

x a
x a

x a x b
b a

x b

μ

⎧ ≤
⎪ −⎪= < <⎨ −⎪
⎪ ≥⎩

                     (33) 

This MF is described by two parameters, ia  and ib .  

( )H ixμ

ix
ibia

1

0
 

Figure 2. Piecewise-linear right-shoulder MF.  

QPSO (with M particles, we chose M = 1000 )  is used to 
optimize the MF parameters by minimizing the objective 
function 2( ) ( )trn m trn trn m LSJ = − Φyθ θ β . The MF parameters 
that have been collected into vector mθ  are in the matrix 

( )trn mΦ θ  and are initialized randomly. A description of our 
QPSO algorithm is given in [46]-[51].  

After G generations of QPSO the one model that has the 
smallest validation error is found and saved, i.e.:  

                   
               (34) 

           
       (35) 

The value *
mθ  establishes the parameters [ ( )*|v mϕ x θ and 

*( )LS mβ θ ] for the winning model, and that model is expressed 
as: 
       

 
( ) ( ) ( )* * * *

,0 ,1
( | ) |SR

m LS m LS v m v mv
y ϕ

=
= +∑x xθ β θ β θ θ       (36) 

B.  Structure Identification  
After G generations of parameter optimization have been 

completed, one passes from the Fig. 1 inner loop to the outer-
loop structure-optimization stopping rule. Until that stopping 
rule is satisfied, the antecedents of the rules as well as their 
number are re-established by using the five-step procedure 
that is described in Section III. Now, however, the MFs that 
are used in that procedure use the MF parameters that are in 

*
mθ .  

Structure identification is performed a pre-specified ( maxr ) 
number of times (we chose max 100r =  iterations; see Fig. 1) or 
until the same set of rules appears in any one of the maxr  
structure identification iterations2.  

The maxr  iterations of the structure identification outer loop 
lead to maxr  models 

max( )
1{ ( )}rr

ry =x , each obtained as explained 
for (34)-(36) and described by 

       
        (37) 

One reason for referring to (22) as a “variable-structure” 
model is because of the structure identification that occurs 
during the complete design of the VSR model during whose 
iterations the structure of the model changes. 

C.  Establishing the Final Model 
Our final model is the model in (38) that has the smallest 

validation error, namely:  

      
  (38) 

                          
( )( )

max

( ) *

1,...,
* min ( *)r

val mr r
r arg J g r

=
= θ                (39) 

D. Test on Testing Data 
MF values for the testing data are computed from (33)-

(34). Then the FBFs of the testing data are obtained similar to 
(29) using  testx . The testing error is  

     ( ) ( ) ( )( )= − Φ
0.52

* * *
test m test test m LS m testJ Nyθ θ β θ     (40) 

VI. EXPERIMENTAL RESULTS 
We have applied VSR to the Gas Furnace time-series 

prediction problem for which the gas furnace data was 
recorded from a combustion process of a methane–air mixture. 
The gas flowing into the furnace, u(t), and the CO2 
concentration in outlet gas, o(t), were measured and the data 
were sampled every 9 secs. to generate 296 pairs of input-
output measurements. Box and Jenkins [4] used a time-series 

                                                           
2 When a set of rules re-appears, QPSO will converge to the same set of 

results if the number of particles and iterations of QPSO are large enough. In 
our applications of VSR we chose 1000 particles and 200 iterations of QPSO 
and have observed the re-appearance of a set of rules many times.  
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based approach to develop a model based on this data set, 
which has been referred to as the linear model.  Many other 
authors have used this data set as a benchmark problem, e.g., 
[7], [35], [37], [40], [43] and have approached this forecasting 
and identification problem in many ways. Unfortunately 
authors do not present their results in a consistent and fully-
explained manner, which makes it impossible to compare new 
results with all past results. We used the same approach that is 
explained in [7] and compared our results with methods 
presented in [7], i.e., [5], [6] and [17]. 

We used ( ), ( 1), ( 2), ( ), ( 1),u t u t u t o t o t+ + + and ( 2)o t +  to 
predict ( 3)o t +  for which there were 293 cases CasesS  
  (t = 1,...,293) : 

                              { }293

1
( ), ( )Cases t

S t y t
=

= x                          (41) 

  x(t) = u(t),u(t +1),u(t + 2),o(t),o(t +1),o(t + 2)⎡⎣ ⎤⎦       (42) 
                                    ( ) ( 3)y t o t= +                           (43) 

We randomly selected 28 cases for testing. To obtain the 
five data sets that were used in five-fold cross-validation [10], 
we randomly sampled the remaining 265 cases into five 
subsets (folds). In each of the five folds we used four of the 
data subsets (212 cases) for training and the remaining data 
subset (53 cases) for validation. In the sequel we illustrate the 
entire VSR procedure only for the first fold. 

To begin, we applied LM-FCM for two clusters to all 212 
cases from the first fold and obtained two shoulder MFs that 
are complements of one another. Because our causal 
conditions are time-advanced versions of u(t) and o(t), we 
used the same MFs for the time-advanced versions of u(t) and 
o(t) as their initial MFs. Fig. 3 shows the initial MFs of u(t) 
and o(t) extracted by means of  LM-FCM.  

Let 1( ) ,u t x≡  2( 1) ,u t x+ ≡  u(t + 2) ≡ x3,  4( ) ,o t x≡  

5( 1)o t x+ ≡  and 6( 2)o t x+ ≡ . For six causal conditions there 
are 62 64=  causal combinations, and their MFs have to be 
evaluated for 212 cases. The min-max formulas in (9) and (10) 
were used to find the winning causal combination for each of 
the 212 cases. Only 22 causal combinations survived; they are 
given in Table I as well as the number of cases associated with 
each of them. These 22 surviving causal combinations were 
substituted into (21), (20) and (16) in order to establish the 
VSR equation, whose 23 regression coefficients were then 
computed via SVD, the results being: 0 45.7350β =  and 

1 22,...,β β  whose values are given in the last column of Table 
I. 

The QPSO-optimized MFs (which are complement of each 
other, for each term) are depicted in Fig. 4. Observe that these 
MFs are quite different from the LM-FCM MFs in Fig. 3. 

After finding the optimized MFs and regression 
coefficients, the following training and validation objective 
function values were computed for the first complete iteration 
( 1r = ) of the first fold, using (31) and (32): (1) 0.4236trnJ =  
and (1) 0.4528valJ = . 

This entire procedure was then repeated for 2r = . The 
optimized MFs from 1r =  were used to establish the structure 
of a new set of rules for 2r = , etc. When 6r =  the rules 
became the same as those from 5r = , so it was not necessary 
to go through all of the max 100r =  iterations in the outer loop. 
Fig. 5 shows surviving rules3 for each iteration. Observe that 
the sets of rules change for the outer-loop iterations, which is 
why we call this method “Variable Structure” regression, and 
the original 22 rules have been reduced to 12. 

Our final model was established by using (39) and (40). 
The final model with the smallest validation error occurs for 

5r∗ = ; its rules are given in Table II, 0 23.5242β =  and its 
regression coefficients 1 12,...,β β  are given in the last column 
of that table. The final optimized MFs are depicted in Fig. 6; 
they are quite different looking from the LM-FCM MFs in 
Fig. 3 and fold 1 optimized MFs in Fig. 4. The final training, 
validation, and testing RMSEs are 0.3423trnJ ∗ = , 

0.3393valJ ∗ = , and 0.3985testJ ∗ = . 

  
           (a)                                             (b) 

       Figure 3. LM-FCM MFs (a) u(t) and (b) o(t). 

 
Figure 4.  Fold 1 optimized MFs for outer-loop iteration #1. 

 
Figure 5.  Decimal equivalent number of surviving rules. 

 
Figure 6.  Fold 1 final optimized MFs. 

                                                           
3 The antecedent of each rule contains a causal condition or its complement; 
hence, each rule can be represented as a binary number. Its corresponding 
decimal number is used to show the surviving rules in each outer-loop 
iteration.   
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Table I 
Fold 1 First Iteration Surviving Causal Combinations and Regression 

Coefficients for the Gas Furnace Time-Series Prediction Problema 
Rule 
No. H1 H2 H3 H4 H5 H6 

No. of 
cases Coef. 

1 1 1 1 0 0 0 60 6.2752
2 0 0 0 1 0 1 30 -5.3301
3 0 0 0 0 0 0 24 -4.3126
4 0 0 0 1 1 1 15 17.776
5 0 0 0 0 0 1 15 0.7950
6 0 1 1 1 0 1 14 -1.3865
7 1 1 1 1 0 1 8 -33.458
8 0 1 1 0 0 0 6 -3.8284
9 0 1 1 1 1 1 5 9.2796

10 1 1 0 0 0 0 5 -0.8878
11 0 0 1 0 0 1 5 4.1604
12 1 1 1 1 0 0 5 16.507
13 0 1 1 0 0 1 4 0.3909
14 0 0 1 1 0 1 4 0.2358
15 1 1 1 0 0 1 3 -108.09
16 1 0 0 0 0 0 2 2.1477
17 0 0 0 1 0 0 2 1.3447
18 0 0 1 0 0 0 1 -8.7195
19 0 0 1 1 1 1 1 105.72
20 1 1 1 1 1 1 1 12.389
21 0 1 0 1 1 1 1 -9.7826
22 1 1 0 1 0 1 1 4.9738

a 1 represents the causal condition and 0 represents its complement. 

Table II 
Fold 1 Final Rules and Regression Coefficients For the Gas Furnace Time 

Series Prediction Problema 
Rule 
No. H1 H2 H3 H4 H5 H6 

No. of 
cases Coef. 

1 1 0 0 0 0 0 97 -2.3573
2 0 0 0 0 0 1 27 8.5824
3 1 0 0 0 0 1 25 11.6158
4 1 0 0 1 0 1 22 -1.1925
5 0 0 0 1 0 1 16 -20.323
6 0 0 0 1 1 1 10 5.0235
7 0 0 0 0 0 0 6 13.1022
8 1 0 0 1 1 1 3 13.5792
9 1 1 1 0 0 0 2 -0.2999

10 1 1 0 0 0 0 2 -2.0210
11 1 0 0 1 0 0 1 21.3691
12 1 0 1 0 0 0 1 6.9904

a 1 represents the causal condition and 0 represents complement of the 
causal condition. 

We performed a double Monte-Carlo simulation where for 
each of 15 randomly chosen test sets a 5-fold cross-validation 
was performed 30 times. The average number of rules of the 
VSR method for the Gas Furnace prediction problem is 15.23.  
The number of generated fuzzy rules in the fuzzy rule base 
based on the Wang and Mendel method [45] is 72 when four 
isosceles triangular fuzzy sets were assigned to each variable. 
Note that the number of rules from the VSR method is 
considerably smaller than the number of rules from the Wang 
and Mendel method.  

The average RMSE after the 15 30× double Monte-Carlo 
simulations of the five-fold cross-validation method 
(15 30 5 2250× × =  RMSEs) obtained by the VSR method is 
0.3310 ± 0.0753 whereas the average FRI RMSE is 0.7787 ±  
0.0031. The standard deviation (STD) is larger for VSR than 
for FRI; however, because the average RMSE for VSR is 
much smaller than of FRI this is not very important.  

Table III summarizes the standard deviation and average 
RMSE for all 2250 data sets. Table IV shows that the VSR 
method obtained the smallest average RMSE than the other 
methods reported on in [5], [6], [7] and [17].  

 

Table III 
Average RMSE and STD for Different Subsets of Data 

 Training  Validation Testing All 
Mean 0.3136 0.3277 0.4066 0.3310 
STD 0.0605 0.0925 0.2205 0.0753 

Table IV 
A Comparison of the Average RMSE for Different Methodsa 

          
 

HS 
[17]  

CCL 
[5] 

T1 CK 
[6]  

FRI 
[7]  

IT2 
FRI [7] VSR 

Gas 
Furnace  1.2640 2.0914 1.2688 0.8573 0.7787 0.3310 

a The numbers for the first five methods were taken from Table VI in [6].  

VII. CONCLUSIONS 
VSR automatically finds the number of terms ( 1)SR +  and 

establishes the mathematical structures of each of the terms in 
the nonlinear regression model (2), thereby freeing the end-
user from time-consuming trial and error studies to determine 
this. Each term in the VSR model has a linguistic 
interpretation, because each term in the final optimized VSR 
model is associated with one linguistic if-then rule, thereby 
providing the end user with a physical understanding for each 
term. The importance of each rule can be determined 
automatically, by examining the number of cases that support 
each rule, thereby helping the end user to better understand the 
model. 

 
The VSR model, just as all prior rule based models, acts 

like a multitude of models, because the number of its 
regressors that are actually activated by a set of measured 
variables changes automatically, i.e. different groups of 
regressors in the VSR model (2) are activated depending upon 
what the numerical values are for the variables. Therefore, a 
variable-structure model is very different from a traditional 
regression model in which all of the terms in (2) are always 
activated and contribute to the final answer regardless of the 
numerical values of the input variables.  

Although the application of the VSR model to the Gas 
Furnace time-series prediction problem has demonstrated that 
it provides the best results as compared to five other methods 
still more research is needed on different aspects of the VSR 
method. Many extensions are possible: 
1. From T1 to Interval Type-2 (IT2) to General Type-2 (GT2)  
2. More than one term per variable (refer to [32] for theoretical 

results that demonstrates the impossibility of certain causal 
combinations to even exist) 

3. Same kind of preprocessing can be used for a VS Classifier 
(VSC); the nonlinear discriminant functions could have the 
same structure as (21); but now all parameters are optimized 
to minimize classification errors. 
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