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Abstract—In the traditional fuzzy logic, the experts’ degrees
of confidence in their statements is described by numbers from
the interval [0, 1]. These degree have a clear intuitive meaning.
Somewhat surprisingly, in some applications, it turns out to be
useful to also consider different numerical degrees – e.g., complex-
valued degrees. While these complex-valued degrees are helpful
in solving practical problems, their intuitive meaning is not clear.
In this paper, we provide a possible explanation for the success of
complex-valued degrees which makes their use more intuitively
understandable – namely, we show that these degrees naturally
appear due to the approximate nature of the traditional fuzzy
methodology.

I. FORMULATION OF THE PROBLEM

Fact: complex-valued fuzzy degrees are sometimes useful
in practice. One of the main motivations for fuzzy logic was
to take into account that experts are often not 100% sure
about their statements, especially about statements which use
imprecise (“fuzzy”) words from a natural language, such as
“John is young”.

Traditionally, in fuzzy logic, to describe the expert’s degree
of certainty in a statement, we use numbers from the interval
[0, 1]; see, e.g., [4], [7], [8]. These numerical degrees have
a clear intuitive sense. For example, we can ask the expert
to mark, on a scale from 0 to 10, to what extend he or she
believes that 29 years old is young. If the expert marks 8 on
a scale of 0 to 10, we take 8/10 = 0.8 as the desired degree.
In general, if an expert marks m on a scale from 0 to n, we
take m/n as the desired degree.

Empirically, it is sometimes helpful to use numerical de-
grees which are not from the interval [0, 1] – e.g., complex-
valued degrees; see, e.g., [1], [2], [3], [5], [6].

Challenge: why complex-valued fuzzy degrees? From the
pragmatic viewpoint, this is good, since the use of complex
numbers helps in solving practical problems. However, from
the intuitive viewpoint, the meaning of such degrees is not
clear.

One of the advantages of fuzzy logic (as opposed to, e.g.,
neural networks) is the intuitively clear nature of its operations
and results. It is therefore desirable to come up with an intuitive
explanation for complex-valued fuzzy degrees.

What we do in this paper. In this paper, we deal with the
above challenge by proposing a possible explanation for the
use of complex-valued degrees.

The structure of this paper. To provide this explanation, we
first recall the motivation behind “and” and “or” operations (t-
norms and t-conorms) and remind readers that these operations
provide only an approximate description of the expert’s con-
fidence in the corresponding composite statements. We then
show that this approximate character naturally leads to the use
of complex-valued degrees.

II. FUZZY DEGREES AND “AND” AND
“OR”-OPERATIONS: A BRIEF REMINDER

Need for degrees. Nowadays, many of our activities depend
on computers: computers regulate temperature in our homes,
computers – via automatic transmissions – provide control
over our cars, computers help us select best routes, etc. In
view of this ubiquity of computers, it is desirable to teach the
computers everything we know. A large part of our knowledge
is, however, formulated in terms of imprecise (“fuzzy”) words
from natural language, such as “slow”, “fast”, “close”, etc.

Precise properties like “speed is larger than 50 km/h” are
easier to describe in computer terms, since for each possible
value of the corresponding quantity, each such property is
either true or false – and in the computer, “true” is usually
represented as 1, and “false” as 0. In contrast, for imprecise
properties, we are often not 100% sure whether a given values
satisfies this property. A 20-year old is most probably young,
a 40-year old is probably not, but how about 30? 29? 28? At
some point, most people become unsure.

To describe this uncertainty, L. A. Zadeh proposed to use
numbers between 0 (“false”) and 1 (“true”): 0 corresponds
to false, 1 corresponds to “true”, and intermediate values
correspond to intermediate degrees of certainty. Such a number
can be obtained, e.g., if we ask an expert to mark his or her
degree of certainty in a given statement on a scale from 0
to some integer n. If the expert marks his or her degree of
certainty by a mark m on a scale from 0 to n, we take d = m/n
as the degree of expert’s confidence in this particular statement.

Need for “and” and “or” operations. One of the main
reasons for storing the corresponding knowledge is that this
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stored knowledge can enable computers to use expert rules
which use such properties. For example, when we design an
automatic transmission, we may want to incorporate experts
rules such as “if the car is going fast and the road becomes
somewhat slippery, change to a different transmission level”.
Similarly to this example, in general, the condition of each
such rule does not simply consist of a single natural-language
property, this condition is usually a propositional combination
of several such properties.

To be able to property apply the corresponding rules,
it is therefore important not only to describe our degrees
of belief in the original statements S1, . . . , Sn, it is also
necessary to describe our degree of belief in their propositional
combinations such as Si &Sj , Si ∨ Sj , Si &(Sj ∨ ¬Sk), etc.

In the ideal world, we should be able to ask the expert to es-
timate his/her degree of confidence in each such combination.
However, in practice, this is not possible. Indeed, for each of n
statements S1, . . . , Sn, we can consider either this statement
S+
i

def
= Si or its negation S−

i
def
= ¬Si. By combining state-

ments and their negations, we get 2n possible propositional
combinations Sε1

1 & . . . &Sεn
n , where εi ∈ {−,+}. Even for

reasonable number of statements n ≈ 300, the number 2n is
astronomically large: it is larger than the number of particles
in the Universe, so there is no way we can ask an expert that
many questions.

Since we cannot directly ask the expert about his/her degree
of belief in all possible propositional combinations, we need to
estimate these degrees based on whatever information we have.
In particular, we need to be able, given the expert’s degrees of
confidence d(A) and d(B) in statements A and B, to generate
a degree of belief in the composite statement A&B. In other
words, we need an algorithm that, given the values d(A) and
d(B), computes the estimate for d(A&B). Let us denote the
function computed by this algorithm by f&; then the resulting
estimate takes the form f&(d(A), d(B)).

We know that A&B is equivalent to B&A. It is therefore
reasonable to require that the estimates f&(d(A), d(B)) and
f&(d(B), d(A)) corresponding to these two equivalent expres-
sions coincide. This should be true for all possible values
a = d(A) and b = d(B). Thus, in mathematical terms, the
operation f&(a, b) should be commutative, i.e., satisfy the
condition f&(a, b) = f&(b, a).

Similarly, we know that A&(B&C) = (A&B)&C.

• If we use the first expression to estimate the expert’s
degree of confidence in this composite statement, we
first estimate d(B&C) as f&(d(B), d(C)) and then
estimate the desired degree as

f&(d(A), d(B&C)) = f&(d(A), f&(d(B), d(C))).

• Similarly, the second expression leads to the estimate

f&(f&(d(A), d(B)), d(C)).

It is reasonable to require that these estimates coincide, i.e.,
that

f&(a, f&(b, c)) = f&(f&(a, b), c)

for all a, b, and c. In mathematical terms, this means that the
operation f&(a, b) should be associative.

After adding natural requirements of monotonicity, conti-
nuity, etc., we get the usual definition of an “and”-operation
(also known as a t-norm).

From the purely mathematical viewpoint, there are many
possible t-norms. In applications, we try to use a t-norm which
provide the best approximation to the actual expert reasoning,
i.e., for which, in general, the estimate f&(d(A), d(B)) is the
closest to the actual expert’s degree d(A&B). We can do it by
presenting several pairs of statements (Ak, Bk) to the expert
and asking the expert, for each k, to estimate his/her degree
of confidence in Ak, Bk, and Ak &Bk. Once we get these
estimates d(Ak), d(Bk), and d(Ak &Bk), we find a t-norm
f&(a, b) for which

d(Ak &Bk) ≈ f&(d(Ak), d(Bk))

for all k. For example, we can use the Least Squares method
and find a t-norm f&(a, b) for which the sum∑

k

(d(Ak &Bk)− f&(d(Ak), d(Bk)))
2

is the smallest possible.

A similar analysis of the need to estimate the expert’s de-
gree of belief in a statement A∨B leads to the need to consider
a commutative, associative, monotonic, and continuous “or”-
operation (t-conorm) f∨(a, b).

Reminder: “and”- and “or”-operations provide only an
approximate description of the expert’s degree of con-
fidence. For our analysis, it is important to keep in mind
that “and”- and “or”-operations provide only an approximate
description of the actual expert’s confidence. Indeed, when
we use, e.g., an “and”-operation to find the estimates for the
expert’s degree of certainty in A&B, we only use the expert’s
degrees of certainty d(A) and d(B). In reality, the expert’s
degree of certainty in A&B depends not only on d(A) and
d(B), but also on some additional information that the expert
may have about the relation between A and B. For example,
if d(A) = d(B), then we may have two different situations:

• it may be that B coincides with A; in this case, A&B
is equivalent to A, and so,

d(A&B) = d(A);

• it may be that B is independent from A; in this case,
it is reasonable to expect that the expert’s degree of
belief that both A and B are true should be smaller
than the expert’s degree of belief that only A is true,
i.e., that

d(A&B) < d(A).

In these two cases, the values d(A) and d(B) are the same, but
the values d(A&B) are different. Therefore, no matter what
value we choose as the estimate f&(d(A), d(B)), at least in
one of these two cases, the actual expert’s degree of belief
d(A&B) will be different from this estimate.

III. NEED FOR COMPLEX-VALUED DEGREES

Ideal case: reminder. In the above text, we described an ideal
case when we know the expert’s degrees of belief d1, . . . , dn
in the basic statements S1, . . . , Sn, and we use “and”- and
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“or”-operations to estimate the expert’s degree of confidence
in different propositional combinations of the basic statements.

In practice, the situation may be somewhat more com-
plicated. Sometimes, instead of knowing the expert’s degree
of belief in the basic statements, we only know the expert’s
degree of belief in some propositional combinations of the
basic statements. In this case:

• first, we need to recover the degrees d1, . . . , dn from
the available information;

• then, we use the recovered values d1, . . . , dn to es-
timate the expert’s degree of belief in other proposi-
tional combinations.

If “and”- and “or”-operations were exact, this procedure
would always succeed. In the ideal case, when the expert’s
degree of belief in A&B is exactly equal to f&(d(A), d(B))
and the expert’s degree of belief in A ∨B is exactly equal to
f∨(d(A), d(B)), we can indeed recover the desired degrees by
solving the corresponding system of equations.

Example. Suppose that we use the algebraic product
f&(a, b) = a · b as an “and”-operation and

f∨(a, b) = a+ b− a · b
as an “or”-operation. Suppose that instead of the actual values
d1 = d(S1) and d2 = d(S2) we only know the degrees

d(S1 &S2) = f&(d1, d2) = d1 · d2
and

d(S1 ∨ S2) = f∨(d1, d2) = d1 + d2 − d1 · d2.

In particular, if we actual (unknown) values of d1 and d2
are d1 = 0.4 and d2 = 0.6, then

d(S1 &S2) = 0.4 · 0.6 = 0.24

and
d(S1 ∨ S2) = 0.6 + 0.4− 0.6 · 0.4 = 0.76.

These two numbers d(S1 &S2) = 0.24 and d(S1 ∨ S2) =
0.76 are the only information that we have about the expert’s
degrees d1 and d2. Based on these numbers, we want to recover
the values d1 and d2.

Since we assumed that the t-norm a · b and the t-conorm
a+b−a·b describe the expert’s belief in composite statements,
we form two equations for the two unknowns d1 and d2: d1 ·
d2 = 0.24 and d1+d2−d1 ·d2 = 0.76. After adding these two
equations, we get d1+d2 = 1, hence d2 = 1−d1. Substituting
d2 = 1− d1 into the first equation, we get

d1 · (1− d1) = 0.24.

After opening parentheses and moving all the terms to the
right-hand side, we get the equation

d21 − d1 + 0.24 = 0.

By using the known formula for solving quadratic equations,
we get

d1 =
1

2
±

√(
1

2

)2

− 0.24 =

0.5±
√
0.25− 0.24 = 0.5±

√
0.01 = 0.5± 0.1.

Thus, d1 = 0.4 or d1 = 0.6, i.e., (almost) exactly the expert’s
original estimates.

In this case, due to symmetry, we cannot distinguish
between d1 and d2, but we can make this distinction if we
have additional information.

What happens in practical cases, when the “and”- and
“or”-operations are only approximate? Let us now analyze
what will happen if we take into account that in reality, “and”-
and “or”-operations provide only an approximate description
of the expert’s degrees of belief. As an example, let us assume
that in general, the expert’s reasoning is best described by
the same “and”- and “or”-operations f&(a, b) = a · b and
f∨(a, b) = a + b − a · b. The fact that these operations are
the best “on average” does not necessarily mean that these
operations always exactly describe the expert’s degree of belief
in composite statements.

For example, as we have mentioned earlier, if the state-
ments S1 and S2 coincide, then

d(S1 &S2) = d(S1 ∨ S2) = d(S1).

For such two statements with d(S1) = d(S2) = 0.5, we will
get d(S1 &S2) = 0.5 and d(S1 ∨ S2) = 0.5.

Let us see what happens if we try to apply, to these two
values d(A&B) = 0.5 and d(A ∨ B) = 0.5, the above
procedure of reconstructing d1 and d2. Specifically, we form
two equations: d1 · d2 = 0.5 and

d1 + d2 − d1 · d2 = 0.5,

and we try to find d1 and d2 by solving this system of two
equations. After adding the two equations, we get d1+d2 = 1
and thus, d2 = 1− d1. Substituting d2 = 1− d1 into the first
equation, we get

d1 · (1− d1) = 0.5.

After opening parentheses and moving all the terms to the
right-hand side, we get the equation

d21 − d1 + 0.5 = 0.

The determinant of this equation is negative

(−1)2 − 4 · 1 · 0.5 = 1− 2 = −1 < 0

and thus, this equation does not have any real solution – and
hence, no solutions with d1 ∈ [0, 1].

Natural idea leads to complex-valued degrees. Since we
cannot get the degrees from the interval [0, 1], a natural idea
is to extend real numbers so that the corresponding equation
(or system of equations) has a solution. In principle, we could
get any solutions, so it is desirable to make sure that all (or at
least almost all) equations (and systems of equations) have a
solution. The need to consider quadratic equations immediately
leads to the appearance of the imaginary unit i =

√
−1, which

is a solution of the equation x2+1 = 0, and to the appearance
of general complex numbers as solutions of generic quadratic
equations.
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Good news is that nothing else needs to be added to take
care of cubic and higher order equations: a so-called main
theorem of algebra states that every polynomial equation has
a complex-valued solution (unless this equation has the form
c = 0 with a constant c which is different from 0).

Thus, we arrive at the need to use complex-valued degrees.

Complex-valued degree may be a solution form the view-
point of abstract mathematics, but how good are they
in practice? Our goal is to describe expert knowledge, so it
is reasonable to check how well the corresponding complex-
valued degrees describe the expert knowledge.

Example 1. Let us check which complex numbers appear in
the above example. By using the known formula for solving
quadratic equations, we get

d1 =
1

2
±

√(
1

2

)2

− 0.5 =

0.5±
√
0.25− 0.5 = 0.5±

√
−0.25 = 0.5± 0.5 · i.

Of course, it is difficult to interpret complex-valued degrees
(or, for that purpose, any degrees outside the interval [0, 1]).
So, it is natural, for each such complex-valued degree, to take
the closest value from the interval [0, 1].

For complex numbers, the natural distance is Euclidean
distance

d(a1 + a2 · i, b1 + b2 · i) =
√
(a1 − b1)2 + (a2 − b2)2.

It is easy to see that for a complex number a1 + a2 · i, the
closest point on the real line is its real part a1, and the closest
point on [0, 1] is:

• the same value a1 is a1 ∈ [0, 1];

• the value 0 is a1 < 0, and

• the value 1 if a1 > 1.

Thus, for the complex numbers 0.5 + 0.5 · i and 0.5− 0.5 · i,
the closest numbers from the interval [0, 1] are 0.5 and 0.5 –
exactly the values that the expert assigned!

Example 2. Let us consider a slightly more general example,
with the same “and”- and “or”-operations and with S1 = S2,
but this time, with an arbitrary value d ∈ [0, 1] for which

d(S1) = d(S2) = d.

In this case, we get

d(S1 &S2) = d

and
d(S1 ∨ S2) = d.

These two values
d(S1 &S2) = d

and
d(S1 ∨ S2) = d

are all we get from the expert. Based on these two values, we
want to reconstruct d1 and d2.

In this example, we get a system of equations d1 · d2 = d
and d1+d2−d1 ·d2 = d. After adding these two equations, we
get d1+d2 = 2d, hence d2 = 2d−d1. Substituting d2 = 2d−d1
into the first equation, we get

d1 · (2d− d1) = d.

After opening parentheses and moving all the terms to the
right-hand side, we get the equation

d21 − 2d · d1 + d = 0.

By using the known formula for solving quadratic equations,
we get

d1 = d±
√
d2 − d.

Here,
d2 − d = (d− 1) · d ≤ 0,

so
d1 = d±

√
d− d2 · i.

For both complex values d+
√
d− d2 · i and d−

√
d− d2 · i,

the closest number from the interval [0, 1] is the value d – also
exactly what the experts assigned.

Example 3: complex numbers are not a panacea. To avoid
a false impression that complex numbers also lead to perfect
results, let us consider another example in which general
“and”- and “or”-operations may not be applicable: an example
when S2 implies S1. In this case, S1 &S2 is simply equivalent
to S2, and S1 ∨ S2 is equivalent to S1. So, for example, for
d1 = 0.6 and d2 = 0.4, we get

d(S1 &S2) = 0.4

and
d(S1 ∨ S2) = 0.6.

These two values

d(S1 &S2) = 0.4

and
d(S1 ∨ S2) = 0.6

are all we get from the expert. Based on these two values, we
want to reconstruct d1 and d2.

In this example, we get a system of equations d1 ·d2 = 0.4
and d1+ d2− d1 · d2 = 0.6. After adding these two equations,
we get d1+d2 = 1, hence d2 = 1−d1. Substituting d2 = 1−d1
into the first equation, we get

d1 · (1− d1) = 0.4.

After opening parentheses and moving all the terms to the
right-hand side, we get the equation

d21 − d1 + 0.4 = 0.

By using the known formula for solving quadratic equations,
we get

d1 = 0.5±
√
0.25− 0.4 = 0.5±

√
−0.15 =

0.5±
√
0.15 · i.

For both complex values 0.5+
√
0.15 · i and 0.5−

√
0.15 · i, the

closest number from the interval [0, 1] is the value 0.5, which
is somewhat different from the original expert values 0.4 and
0.6 (but still rather close to these values).

1478



IV. CONCLUSION

Traditionally, fuzzy logic uses degree from the interval
[0, 1]. These degrees have a clear intuitive sense. Recently,
it turned out that in some practical situations, it is beneficial
to use complex-valued degrees. While complex-valued degrees
are practically useful, their intuitive meaning is not clear. In
this paper, we show that an approximate character of “and”-
operations f&(a, b) and “or”-operations f∨(a, b) (also known
as t-norms and t-conorms) naturally leads to complex-valued
degrees.

Specifically, in some situations, we know the expert’s
degree of belief d(S1 &S2) and d(S1 ∨ S2) in composite
statements like S1 &S2 and S1 ∨ S2, and we want to use
these degrees to estimate the expert’s degrees of belief d(S1)
and d(S2) in the original statements S1 and S2. For this
reconstruction, we form a system of equations d(S1 &S2) =
f&(d(S1), d(S2)) and d(S1 ∨ S2) = f∨(d(S1), d(S2)). In the
ideal case, when the expert’s degrees of belief in S1 &S2 and
S1∨S2 are exactly equal to the results of applying “and”- and
“or”-operations to d(S1) and d(S2), these equations indeed
allows us to reconstruct the desired degrees d(S1) and d(S2).
However, in reality, the expert’s degrees of belief in S1 &S2

and S1 ∨ S2 are somewhat different from the estimates

obtained by using “and”- and “or”-operations. As a result,
the corresponding system of equations sometimes does not
have solutions from the interval [0, 1] – only complex-valued
solutions.

On several examples, we show that these complex-valued
degree make sense, in the sense that for each of these estimated
degrees d̃(Si), the closest real number from the interval [0, 1]
is indeed close to (or even equal to) the original expert’s degree
d(Si).
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