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Abstract—In this paper, we propose a four-way procedure to 
estimate missing preference values when dealing with acceptable 
incomplete fuzzy preference relations (IFPRs). The proposed 
revised procedure can estimate more missing elements in the first 
iteration and also has more advantages than the existing 
methods. An illustrative example and comparative analyses are 
offered to  demonstrate the advantages of the proposed method. 

Keywords—Incomplete fuzzy preference relations; estimate 
missing values; revised procedure. 

I. INTRODUCTION  
     Fuzzy preference relations (FPRs) are commonly used to 
represent decision makers (DMs)’ preferences over a set of 
possible alternative solutions X={x1,x2,…,xn} (n≥2) [7, 10-12, 
16]. In many cases, since each expert has his/her own 
experience concerning the problem being studied they could 
have some difficulties in giving all their preferences. This may 
be due to an expert not possessing a precise or sufficient level 
of knowledge of the problem, time pressure, or because that 
expert is unable to discriminate the degree to which some 
options are better than others. In such situations, experts are 
only able to provide IFPRs with some of their values missing 
or unknown. Over the past decades, IFPRs [3, 8, 9, 18-21, 23, 
24]have received more attention. Xu [23] defined the concepts 
of IFPRs, additive consistent IFPRs and multiplicative consis- 
tent IFPRs, then proposed two goal programming models for 
obtaining the priority vector of an IFPR. Alonso, et al. [2] 
presented a procedure to find out the missing values of an 
IFPR using the known values based on additive consistency 
property. Herrera-Viedma, et al. [8] developed a feedback 
mechanism to generate advice on how experts should change 
or complete their preferences in order to reach a solution with 
high consensus and consistency degrees when dealing with 
IFPRs. Herrera-Viedma, et al. [9] proposed an iterative 
procedure based on additive consistency to estimate the 
missing information in an expert’s IFPR. Herrera-Viedma, et 
al. [8] presented a consensus model for GDM problems with 
IFPRs. Alonso, et al. [3] presented a procedure to estimate 
missing preference values which can be applied to incomplete 
fuzzy, multiplicative, interval-valued and linguistic preference 
relations. Liu, et al. [13] developed the least square comple- 
tion and inconsistency repair methods to deal with IFPRs. Xu, 

et al. [20] gave a reasonable definition of multiplicative 
consistent for IFPR and presented a logarithmic least squares 
method (LLSM) to priority for group decision making (GDM) 
with IFPRs. Xu and Wang [21] extended the eigenvector 
method (EM) to priority for an IFPRs. 
      However, in all the above researches, the missing elements 
in IFPRs after completed may be not always mutually 
complementary. So in this paper, we will present a revised 
estimation procedure to estimate missing information for 
IFPRs which is slightly different from the existing methods. 
And the estimated values will be complementary by this 
revised estimation procedure.  

To do this, the rest of this paper is set out as follows. 
Section 2 presents some basic concepts necessary throughout 
the paper, that is, the definition of IFPRs and additive 
consistency property. In Section 3, we present an additive 
consistency based revised procedure to estimate the missing 
preference values in an IFPR. Section 4 illustrates an example, 
comparison results are shown to demonstrate its advantages. 
Section 5 concludes the paper. 

II. PRELIMINARIES 
    Let X={x1,x2,…,xn} be a set of alternatives. In multiple 
attribute decision making problems, DMs need to rank the 
alternatives x1,x2,…,xn from the best to the worst according to 
his or her preferences. A brief description of the FPR is given 
below. 

Definition 1 [12, 14]: An FPR P  on a set of alternatives 
X  is a fuzzy set on the product set X X× , i.e. it is charac- 

terized by a membership function : [0,1]P X Xμ × → . 
When cardinality of X  is small, the FPR may be convenie- 

ntly represented by the n n×  matrix ( )ik n nP p ×= , being ikp =  
( , )P i kx xμ ( , {1,..., })i k n∀ ∈  interpreted as the preference 

degree or intensity of the alternative ix  over kx : 0.5ikp =  
indicates indifference between ix  and kx (xi~xk), 1ikp =  
indicates that ix  is absolutely preferred to kx , and 0 ikp≤  

0.5<  indicates that kx  is strictly preferred to ix  ( )i kx x≺ .  
In the models of solving GDM problems, we also assume 

that DMs are always able to provide all the preferences 
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required. However, this situation is not always possible to 
achieve. And there will be missing information appeared. It 
may be due to experts’ lack of knowledge about part of the 
problems, or simply because they may not be able to quantify 
the degree preference of one alternative over another. It must 
be clear then that when an expert he  is not able to express the 
particular value ikp , because he/she does not have a clear idea 
of how better alternative ix  is over alternative kx , this does 
not mean that he/she prefers both options with the same 
intensity.  

In order to model these situations, in the following we 
introduce the definitions of the IFPRs. 

Definition 2 [9]: A function :f X Y→  is partial when not 
every element in the set X  necessarily maps onto an element 
in the set Y . When every element from the set X  maps to 
one element in the set Y  then we have a total function. 

Definition 3 [9]: An IFPR P  on a set of alternatives X  is 
a fuzzy set on the product set X X× that is characterized by a 
partial membership function. 

The necessary condition of acceptable IFPR hP  is that 
there exists at least one known element in each row or column 
of hP  except for the diagonal elements ( , 1,2,..., )iip i n= , i.e., 
there needs at least ( 1)n −  judgments.  

Now given an IFPR hP , the following sets are defined: 

{ }( , ) , {1,..., }A i j i j n= ∈
 

{ }( , )h h
ijMV i j A p is unknown= ∈   

 

{ }\ ( , )h h h
ijKV A MV i j A p is known= = ∈   

 

{ }( , ) ( , ) ( )h h
iKV a b a b KV a i b i= ∈ ∧ = ∨ =

 

, h
ii h KV φ∃ ≠

 

where hMV  is the set pairs of alternatives for which the 
preference degrees are unknown or missing, hKV  is the set 
pairs of alternatives for which preference degrees are given by 
the expert he , and h

iKV  is the set of pairs of alternatives 
involving alternative ix  for which expert he  provides a 
preference value.  

Consistency is usually characterized by transitivity. There 
are several possible characterizations for the transitivity 
property [6, 10]. In this paper, we adopt the additive 
transitivity property, which for FPRs can be seen as the 
parallel concept of Saaty’s consistency property for 
multiplicative preference relations. The mathematical 
formulation of the additive transitivity was given by Tanino 
[16]. 

( 0.5) ( 0.5)ij jkp p− + −  
             ( 0.5)ikp= − , , , {1,..., }i j k n∀ ∈                            (1) 

or equivalently,  

           0.5 , , {1,..., }ik ij jkp p p i j k n= + − ∀ ∈，                       (2) 

In this paper, additive consistency is the only considered 
property for FPR, and also 0.5iip = . Herrera-Viedma, et al. 
[9] assumed that iip  is always equal to 0.5 and denoted as “-”, 

iip  is not considered as a known value in their estimation 
procedure. This difference is depicted in Example 1. 

 

III. A REVISED ESTIMATION PROCEDURE TO ESTIMATE 
MISSING VALUES FOR IFPRS 

      Because experts are not always able to provide preference 
degrees between each pair of possible alternatives, missing 
information will appear. Therefore, it is necessary to estimate 
the missing values before the application of a selection model. 
In this section we use an iterative procedure to estimate the 
missing values in an IFPR, which is based on the additive 
consistency property. 

A.  Estimating Missing Values Based on The Additive 
Consistency  

Equation (2) could be used to estimate missing values ikp . 
However, three other possible ways to estimate missing values 
can be derived from (2) in fact, the preference value ikp  
( )i k≠  can be estimated using an intermediate alternative jx  
in four different ways: 

1) Since 0.5ik ij jkp p p= + − , we can estimate ikp  by 

1( ) 0.5j
ik ij jkcp p p= + −                               (3) 

2) Since 0.5jk ji ikp p p= + − , we can estimate ikp  by 

2( ) 0.5j
ik jk jicp p p= − +                               (4) 

3) Since 0.5ij ik kjp p p= + − , we can estimate ikp  by 

3( ) 0.5j
ik ij kjcp p p= − +                                   (5) 

4) Since ( 0.5) 0.5 0.5ik kj ji iip p p p+ − + − = = , we have 

1.5ik kj jip p p+ = −                                   (6) 

Hence we can estimate ikp  by 

4( ) 1.5j
ik ji kjcp p p= − −                                   (7) 

The overall estimated value ikcp  of ikp  is obtained by all 
possible 1( ) j

ikcp , 2( ) j
ikcp , 3( ) j

ikcp  and 4( ) j
ikcp  values. 

280



B. A Revised Procedure to Estimate Missing Values  
Based on (3)-(5), Herrera-Viedma et al. [9] proposed a 

procedure to estimate missing preference values for IFPRs. In 
the following, we present a revised procedure to estimate 
missing for IFPRs based on (3)-(5) and (7), it is showed that 
the revised procedure has some advantages compared with  
Herrera-Viedma et al. [9]’s.    

1. Estimate the missing values in each iteration of the 
procedure 

Given an IFPR hP , we define the sets 1h
ikH , 2h

ikH , 3h
ikH  and 

4h
ikH , respectively, which are used to estimate the missing 

preference value ikp . Then the subset of missing values hMV  
that can be estimated in step t  of our procedure is denoted by 

h
tEMV  (estimated missing values) and defined as follows: 

1
1 2

0

{( , ) \ {( ) ( )
t

h h h t h t
t l ik ik

l

EMV i k MV EMV i k j H H
−

=

= ∈ ≠ ∧ ∃ ∈ ∪∪                 

3 4( ) ( ) }}h t h t
ik ikH H∪ ∪                                  (8) 

With 

           
1

1

0

( ) ( , ), ( , ) KV
h

h t
ik l

l

H j i j j k EMV
−

=

⎧ ⎫⎧ ⎫⎪ ⎪= ∈⎨ ⎨ ⎬⎬
⎩ ⎭⎪ ⎪⎩ ⎭
∪                (9) 

          
1

2

0

( ) ( , ), ( , ) KV
h

h t
ik l

l

H j j i j k EMV
−

=

⎧ ⎫⎧ ⎫⎪ ⎪= ∈⎨ ⎨ ⎬⎬
⎩ ⎭⎪ ⎪⎩ ⎭
∪                (10) 

          
1

3

0

( ) ( , ), ( , ) KV
h

h t
ik l

l

H j i j k j EMV
−

=

⎧ ⎫⎧ ⎫⎪ ⎪= ∈⎨ ⎨ ⎬⎬
⎩ ⎭⎪ ⎪⎩ ⎭
∪               (11) 

         
1

4

0

( ) ( , ), ( , ) KV
h

h t
ik l

l

H j j i k j EMV
−

=

⎧ ⎫⎧ ⎫⎪ ⎪= ∈⎨ ⎨ ⎬⎬
⎩ ⎭⎪ ⎪⎩ ⎭
∪                (12) 

and 0
hEMV φ=  (by definition);  1( )h t

ikH  ,  2( )h t
ikH  ,  3( )h t

ikH , 
4( )h t

ikH  are the sets of intermediate alternatives jx  that can be 

used to estimate the preference value h
ikp  ( )i k≠ . When 

h
maxIterEMV φ=  with 0maxIter > , the procedure will stop as 

there will not be any more missing values to be estimated. 
Furthermore, if 0

maxIter h h
l= lEMV MV=∪ , then all missing values 

are estimated, and consequently, the procedure is said to be 
successful in the completion of the IFPR. 

2. Estimate a particular value h
ikp  in the step t 

In iteration t , to estimate a particular value h
ikp  with 

( , ) h
ti k EMV∈ , the following function estimate ( , , , )p h i k t  is 

established: 
 

( )

( )

1

2

3

1 1 1
1 ( )

2 2 2
2 ( )

3
3 (

function estimate_p(h,i,k,t)
1. 0

( ) / #( ) , if #( ) 0
2.

0 otherwise

( ) / #( ) , if #( ) 0
3.

0 otherwise

( )
4.

h t
ik

h t
ik

h
ik

h j h t h t
ik ik ikh j H

ik

h j h t h t
ik ik ikh j H

ik

h j
ikh j H

ik

cp H H
cp

cp H H
cp

cp
cp

κ

κ

κ

∈

∈

∈

=

⎧ + + ≠⎪= ⎨
⎪⎩
⎧ + + ≠⎪= ⎨
⎪⎩

=

∑

∑

( )

( )

( )

4

3 3
)

4 4 4
4 ( )

1 2 3 4

/ #( ) , if #( ) 0

0 otherwise

( ) / #( ) , if #( ) 0
5.

0 otherwise

1 ( ) ( ) ( ) ( ) , 0
6. Calculate

, 0
end function

t

h t
ik

h t h t
ik ik

h j h t h t
ik ik ikh j H

ik

h h h h
ik ik ik ik

ik

H H

cp H H
cp

cp cp cp cp
cp

x

κ

κ

κ
κ

κ

∈

⎧ + + ≠⎪
⎨
⎪⎩
⎧ + + ≠⎪= ⎨
⎪⎩

⎧ + + + ≠⎪= ⎨
⎪ =⎩

∑

∑

 

 
When we use this function to compute the final estimated 

value of missing value h
ikp , we should point out that some 

estimated values might lie outside the interval [0,1] , i.e., for 
some ( , )i k  we may have 0h

ikcp < or 1h
ikcp > . In order to 

normalize the expression domains in the decision model, we 
set the following function: 

0 if 0
( ) 1 if 1

otherwise

y
f y y

y

 <⎧
⎪=  >⎨
⎪
⎩

 

Then, the complete iterative estimation procedure pseudo 
code is as follows: 

 
 

 

 

         

 

 

 

 

In step t, we can estimate the missing preference value ikp  
by expression 

00.
1. 1
2. ( ){

3. ( , ) {
4. _ ( , , , )
5. }
6.
7. }

h

h
t

h
t

EMV
t
while EMV

for every i k EMV
estimate p h i k t

t

φ

φ

=
=

≠

∈

+ +
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( )( )( ) ( ) ( )( )( ) ( )

( )( )( ) ( ) ( )( )( ) ( )
1 2

3 4

1 21 2

3 43 4

/ # / #
1

/ # / #

h h
ik ik

h h
ik ik

j jh h h h
ik ik ik ikj H j H

ik j jh h h h
ik ik ik ikj H j H

cp H cp H
cp

cp H cp Hκ
∈ ∈

∈ ∈

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎜ ⎟= Δ ⎜ ⎟
⎜ ⎟⎜ ⎟+ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑
 

                             (13) 

    Remark1. In [1, 8, 9], the authors only used (3)-(5) to 
estimate the missing values in an IFPR. Actually, in (3), if 

1ij jip p= − , we have (4), if 1kj jkp p= − , we have (5), if ijp  
1 jip= −  and 1kj jkp p= −  simultaneously, we have (7). There- 

fore, (7) is also a way which can be used to estimate the 
missing values. Furthermore, we have the following result. 
    Theorem 1. If an IFPR can be completed by (3) -(5) and (7), 
then the completed missing elements verify 1ik kip p+ = . 
      Proof. If there exist j  that satisfies (3), then it also 
satisfies (7), and we can get 1 4( ) ( ) 1j j

ik kicp cp+ = . Similarly, 
for each j  which satisfies (4) and (5), there will be 2( ) j

ikcp  
2( ) 1j

kicp+ = , 3 3( ) ( ) 1j j
ik kicp cp+ = , 4 1( ) ( ) 1j j

ik kicp cp+ = . 
( ) ( )ik kip p+  is the average value of all the estimated value 
using (3)-(5) and (7), thus, 1ik kip p+ =  holds. 

Remark 2. Theorem 1 shows that if (7) is added to estimate 
the missing values, the reciprocity holds for the missing 
values, while Herrera-Viedma et al. [9]’s method could not, 
which also can be seen from their examples. In the following, 
we illustrate the following example and present an algorithm 
to show the property of the revised estimate procedure. 

 

IV.  ILLUSTRATIVE EXAMPLE 
    Let 1 2 3 4{ , , , }X x x x x=  be a set of four alternatives, we 
should find the optimal alternative from a DM’s preference 
values. Suppose the following IFPR provided by an expert: 

0.5
0.5 0.4 0.6

0.6 0.5
0.3 0.5

x x x
x

P
x x

x x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Case 1: We use (3)-(5) to estimate the missing elements which 
is proposed by Herrera-Viedma et al. [9]’s where i j k≠ ≠ . 
The estimation procedure is as follows:  

Iteration 1. The set of elements that can be estimated is:  

               1 3# {(2,1),EMV =  (3,4), (4,3)}  

·To estimate 21p , the procedure is as follows: 

1 1 31 1 1
21 21 21 23 31{3} 0.5H cp cp p p= ⇒ = = + −   

                                 0.4 0.6 0.5 0.5= + − =  
    2 3 2 3

21 21 21 21 0H H cp cpφ= = ⇒ = =  

     
1 2 3
21 21 21

21
0.5 0 01 0.5

1 1
cp cp cp

cpκ + + + += ⇒ = = =  

·To estimate 34p , the procedure is as follows: 

2 2 22 2 2
34 34 34 24 23{2} 0.5H cp cp p p= ⇒ = = − +   

                                 0.6 0.4 0.5 0.7= − + =  
    1 3 1 3

34 34 34 34 0H H cp cpφ= = ⇒ = =  

    
1 2 3
34 34 34

34
0 0.7 01 0.7

1 1
cp cp cp

cpκ + + + += ⇒ = = =  

·To estimate 43p , the procedure is as follows: 

1 1 21 1 1
43 43 43 42 23{2} 0.5H cp cp p p= ⇒ = = + −   

                                  0.3 0.4 0.5 0.2= + − =  
   2 2 22 2 2

43 43 43 23 24{2} 0.5H cp cp p p= ⇒ = = − +  

                       0.4 0.6 0.5 0.3= − + =  
    3 3

43 43 0H cpφ= ⇒ =  

    
1 2 3
43 43 43

43
02 0.3 02 0.25

2 2
cp cp cp

cpκ + + + += ⇒ = = =  

After these elements have been estimated, we have 

3

0.4 0.6
#

0.6
0.3

x x x

P
x

x

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

0.5
0.7

0.25

 

    In order to show the differences of the estimate procedure 
proposed by Herrera-Viedma et al. [9]’s and this paper, we 
only give the first iteration estimation result. 

Case 2: We use (3)-(5) and (7) to estimate the missing 
elements proposed in this paper where i j k≠ ≠ . The 
estimation procedure is as follows: 

Iteration 1. The set of elements that can be estimated is:   

            1 4# {(1,2), (2,1), (3,4), (4,3)}EMV =   

·To estimate 12p , the procedure is as follows: 

1 2 3 1 2 3
12 12 12 12 12 12 0H H H cp cp cpφ= = = ⇒ = = =   
4 4 34

12 12 12 31 23{3} 1.5H cp cp p p= ⇒ = = − −  
                                =1.5 0.6 0.4 0.5− − =  

·To estimate 21p , the procedure is as follows: 

1 2 3 4
12 12 12 12

121
1

cp cp cp cp
cpκ + + +

= ⇒ =      

                     0 0 0 0.5 0.5
1

+ + += =        

1 1 31 1 1
21 21 21 23 31{3} 0.5H cp cp p p= ⇒ = = + −  

                             0.4 0.6 0.5 0.5= + − =    
2 3 4 2 3 4
21 21 21 21 21 21 0H H H cp cp cpφ= = = ⇒ = = =  
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1 2 3 4
21 21 21 21

21
)

1
1

cp cp cp cp
cpκ + + +

= ⇒ =    

                     0.5 0 0 0 0.5
1

+ + += =  

  ·To estimate 34p , the procedure is as follows: 

  2 2 22 2 2
34 34 34 24 23{2} 0.5H cp cp p p= ⇒ = = − +      

                                0.6 0.4 0.5 0.7= − + =         
  1 3 1 3

34 34 34 34 0H H cp cpφ= = ⇒ = =  
  4 4 24

34 12 12 23 42{2} 1.5H cp cp p p= ⇒ = = − −  

                               1.5 0.4 0.3 0.8= − − =  

    
1 2 3 4
34 34 34 34

342
2

cp cp cp cp
cpκ + + +

= ⇒ =  

                         0 0.7 0 0.8 0.75
2

+ + += =  

·To estimate 43p , the procedure is as follows: 

1 1 21 1 1
43 43 43 42 23{2} 0.5H cp cp p p= ⇒ = = + −  

                                      0.3 0.4 0.5 0.2= + − =  
2 2 22 2 2
43 43 43 23 24{2} 0.5H cp cp p p= ⇒ = = − +       

                                         0.4 0.6 0.5 0.3= − + =        
3 4 3 4
43 43 43 43 0( ,0)H H cp cp sφ= = ⇒ = =  

1 2 3 4
43 43 43 43

432
2

cp cp cp cp
cpκ + + +

= ⇒ =  

                          0.2 0.3 0 0 0.25
2

+ + += =  

After these values have been estimated, we obtain 

4

0.4 0.6
#

0.6
0.3

x x

P
x

x

−⎛ ⎞
⎜ ⎟−⎜ ⎟=
⎜ ⎟−
⎜ ⎟

−⎝ ⎠

0.5
0.5

0.75
0.25

 

Compared with the above results, it is showed that the 
estimated value 34p  in the first iteration by Herrera-Viedma et 
al.’s method and our method is different. Our estimated 
missing values could preserve the reciprocity property of the 
IFPR (i.e., 34 43 1p p+ = ), which meets Theorem 1. Further- 
more, in the first iteration, we could estimate the value 12p  by 
(7), while Herrera-Viedma et al.’s method could not. Herrera-
Viedma et al.’s method would estimate the value 12p  in the 
second iteration, which would be lack of accuracy, because 
the value 12p  would be estimated by the estimated value in the 
first iteration, while our method could estimate 12p  by the 
known value which is directly provided by the expert.  

 

Case 3. In the above, both procedures require the condition 
i j k≠ ≠ , actually, if any two of , ,i j k  could be equal (i.e., 
i j= , i k=  or j k= ), and we use (3)-(5) and (7), the 
estimation procedure is as follows: 

Iteration 1. The set of elements that can be estimated is:  

        '1 4
# {(1, 2), (1,3), (2,1), (3, 2), (3,4), (4,3)}EMV =    

·To estimate the value 13p , the procedure is as follows: 

1 2 3 1 2 3
13 13 13 13 13 13 0H H H cp cp cpφ= = = ⇒ = = =   
4 4 34

13 13 13 31 33{3} 1.5H cp cp p p= ⇒ = = − −  
                     1.5 0.6 0.5 0.4= − − =   

1 2 3 4
13 13 13 13

131
1

cp cp cp cp
cpκ + + +

= ⇒ =  

                        0 0 0 0.4 0.4
1

+ + += =   

·To estimate the value 32p , the procedure is as follows: 

  1 2 3 1 2 3
32 32 32 32 32 32 0H H H cp cp cpφ= = = ⇒ = = =  

  4 4 24
32 13 13 23 22{2} 1.5H cp cp p p= ⇒ = = − −  

                      1.5 0.4 0.5 0.6= − − =   

  
1 2 3 4
32 32 32 32

321
1

cp cp cp cp
cpκ + + +

= ⇒ =  

                          0 0 0 0.6 0.6
1

+ + += =  

After these values are estimated, we obtain 

'4

0.5
0.5 0.4 0.6

#
0.6 0.5

0.3 0.5

x

P

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

0.5 0.4
0.5

0.6 0.75
0.25

 

Obviously, if any two of , ,i j k  could be equal, we could 
estimate more values in the first estimation.  
    As we know, if the missing values are estimated directly by 
the known values, they are more accurately than they are 
estimated in the second or later iterations, because in the 
second or later iterations the missing elements are estimated 
by the estimated values. The third procedure is our revised 
procedure, which allow any two of , ,i j k  could be equal in (3) 
-(5) and (7). And it can estimate the missing elements more 
quickly than the second procedure and its estimated missing 
values could preserve the reciprocity property of the FPR. 

 

V. CONCLUSION 
In this paper, We present a revised procedure to estimate 

missing values based on additive consistency to deal with 
IFPRs. The revised procedure is a four-way estimation method 
while Herrera-Viedma et al.’s is a three-way method. From the 
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illustrative example, we know that the revised procedure can 
estimate more missing values in the first iteration in some 
cases, and thus need less iterations. It also can preserve the 
reciprocity property for the estimated missing values.  

In the future, we will investigate this procedure to deal with 
consensus problems with IFPRs [8], incomplete linguistic 
preference relations [1, 4, 5, 17, 22], or dynamic GDM 
problems [15]. 
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