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Abstract–Accurate vehicle longitudinal velocity estima-
tion is important for wheel slip ratio control in antilock
braking systems. To overcome the problem of nonlinear tyre-
road friction characteristic when designing an observer for
velocity estimation, this paper presents a novel approach
by using the model-based fuzzy technique. The nonlinear
vehicle braking system is modelled by a Takagi-Sugeno fuzzy
model first. A fuzzy observer is then constructed by using
the available measurements of wheel angular velocity and
braking torque with the estimated premise variables. All the
possible disturbances and uncertainties are considered so that
the designed observer is robust under an H∞ performance
index from the disturbances to the estimation error. The
design of the observer is achieved by solving a set of linear
matrix inequalities. Numerical simulations on a quarter-
vehicle braking model are used to validate the effectiveness
of the proposed approach.
Keywords: T-S fuzzy model, velocity estimation, longitu-

dinal dynamics, antilock braking

I. INTRODUCTION

Vehicle antilock braking system (ABS) is one of the

critical safety control systems of vehicles. The main

purpose of ABS is to avoid the hard lock of wheels

during braking so that the phenomenon of vehicle skid on

the road surface can be avoided, and therefore, enhance

vehicle control ability. In general, the wheel slip ratio,

which is defined as the normalised difference between the

vehicle longitudinal speed and the wheel linear speed,

should be properly regulated such that the maximum

friction force between the wheel and the road surface can

be produced and thus maximally reduce the stopping

distance of vehicle during braking, even on a possibly

slippery road. Therefore, the wheel slip ratio control is

an important research objective for implementing ABS

[1], [2], [3].

To realise the wheel slip ratio control, the real time

information of vehicle longitudinal speed and the wheel

speed should be known so that the information about the

slip ratio can be updated. The wheel angular velocity

can be easily measured with available sensors such

as encoders. The vehicle longitudinal velocity can be

directly measured by using the sensors like GPS [4],

however, there is reliability problem with GPS signals,
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and GPS is relatively expensive to passenger vehicles.

To overcome this problem, many researchers proposed

different estimation methods to estimate the vehicle

speed through the use of observers [5], [6]. The main

difficulty for velocity estimation is due to the nonlinear

characteristic between tyre-road friction and slip ratio,

which further affects the tyre-road friction force, there-

fore modelling and considering the nonlinear character-

istic in the observer design procedure will effectively

improve the estimation performance. To this end, a

new approach that uses the model-based Takagi-Sugeno

(T-S) fuzzy technique [7], [8], which has been applied

to modelling and control of many nonlinear systems

such as vehicle suspensions [9] and permanent-magnet

synchronous motors [10], is proposed in this study to

estimate the vehicle longitudinal velocity during braking.

In this paper, the T-S fuzzy modelling of vehicle

longitudinal dynamics is discussed first. Then conditions

for designing a T-S fuzzy model-based observer with

estimated premise variables are derived and expressed as

linear matrix inequalities (LMIs), which can be efficiently

solved by using available software like Matlab LMI

Toolbox. At last, simulation results on a quarter-vehicle

braking model are used to validate the effectiveness of

the proposed approach. The main contribution of the

paper is to apply the model-based fuzzy technique to

design an observer for vehicle velocity estimation during

braking.

This paper is organised as follows. In section II,

the fuzzy modelling of the vehicle braking model is

introduced. The conditions for designing a model-based

fuzzy observer are derived in section III. In section

IV, the simulation results on a quarter-vehicle braking

model are discussed. Finally, conclusions are presented

in section V.

The notation used throughout the paper is fairly

standard. For a real symmetric matrix W, the notation

of W > 0 (W < 0) is used to denote its positive-

(negative-) definiteness. k·k refers to either the Euclidean
vector norm or the induced matrix 2-norm. I is used to

denote the identity matrix of appropriate dimensions. To

simplify notation, ∗ is used to represent a block matrix
which is readily inferred by symmetry.
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Fig. 1. Quarter-vehicle braking model.

II. FUZZY MODELLING OF VEHICLE

LONGITUDINAL DYNAMICS IN BRAKING

A. Vehicle Longitudinal Dynamics Model

To simplify the problem formulation, a simple but

effective quarter-vehicle braking model as shown in Fig.

1, which is widely used for the preliminary design and

testing of braking control strategies [11], [12], [2], is used

in this study. This model is obtained from a straight-line

braking event on a flat road, where the wind force, hill

climbing force, and rolling resistance are ignored.

During braking, the governing equations for the vehicle

motion and wheel motion are expressed as

Mv̇ = −Fx, (1)

Jω̇ = RFx − Tb, (2)

where R is the effective wheel radius, J is the total

moment of inertia of the wheel, v is the longitudinal

velocity of the vehicle, ω is the angular velocity of the

wheel, Tb is the braking torque, Fx is the longitudinal

tyre force, M is the total mass of the quarter-vehicle.

Note that the braking torque Tb can be simply related

to the pressure of the master cylinder with the formula

Tb = KbPb, where Kb is the braking system gain. As this

study is focusing on the estimation of vehicle longitudinal

velocity, the braking torque is simply assumed to be

measurable without discussing how to generate it.

B. Tyre Force Model

The longitudinal tyre force Fx is often modelled as

Fx = Fzμ(λ, ς), (3)

where Fz is the vertical load and μ(λ, ς) is the tyre
longitudinal friction coefficient, which is a function of

slip ratio λ and a set of parameters ς. The slip ratio is

defined as

λ =
v − ωR

v
. (4)

Note that several empirical formulae have been used

to describe the tyre friction model, like the Magic Tyre
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Fig. 2. Friction coefficient vs slip ratio for different surface.

Formula and the second order rational fractions model

[2]. In this paper, the Burckhardt tyre friction model

[13] will be applied. This tyre model gives the tyre-road

friction coefficient as a function of wheel slip ratio as

μ(λ, ς) = (ς1(1− e−λς2 )− λς
3
)e−ς4λv, (5)

where ς
1 , ς2 and ς3 are constants for characterising

different road conditions. ς1 is the maximum value of

the friction curve, ς2 gives the friction curve shape and

ς3 represents the difference between the maximum value

of the friction curve and the value when slip ratio is

one. ς4 is the wetness characteristic value and is in the

range 0.02−0.04 s/m. Fig. 2 shows a plot of the friction
coefficient according to this model for some often used

road surfaces.

C. Fuzzy Modelling

Substituting (3) into (1) and (2) yields

v̇ = − 1

M
Fzμ(λ, ς), (6)

ω̇ =
R

J
Fzμ(λ, ς)− 1

J
Tb. (7)

Equations (6) and (7) are further written into a state-

space model as

∙
v̇

ω̇

¸
=

∙ − 1
Mv
Fzμ(λ, ς) 0
0 R

JωFzμ(λ, ς)

¸ ∙
v

ω

¸
+

∙ − 1
M
Fz

R
J
Fz

¸
∆μ(λ, ς) +

∙
0
− 1
J

¸
Tb, (8)

where ∆μ(λ, ς) is introduced to describe the uncertainty
of μ(λ, ς). In fact, μ(λ, ς) is just an empirical model,
which cannot accurately represent the actual friction co-

efficient. Introducing a norm-bounded uncertainty term

∆μ(λ, ς) may cover the possible discrepancy between the
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empirical model and the actual value. This uncertainty

will be regarded as an external disturbance when design-

ing an observer in the next section such that the designed

observer is robust to all the possible uncertainties.

By defining fv = 1
v
μ(λ, ς) and fω = 1

ωμ(λ, ς), (8) is
further written as

ẋ = A(fv, fω)x+B1w +B2u, (9)

where

x =

∙
v

ω

¸
, A(fv, fω) =

∙ −Fz
M
fv 0

0 RFz
J
fω

¸
,

B1 =

∙ − 1
M
Fz

R
J
Fz

¸
, B2 =

∙
0
− 1
J

¸
,

w = ∆μ(λ, ς), u = Tb.

Since v, ω, and μ(λ, ς) are actually bounded during
braking, the nonlinear functions fv and fω are also

limited in operation. Suppose the nonlinear function fv is

bounded by its minimum value fvmin and its maximum

value fvmax, using the “sector nonlinearity” approach

[7], it is not difficult to represent the nonlinear function

fv by

fv =M1(ξ1)fvmax +M2(ξ1))fvmin, (10)

where ξ1 = fv is a premise variable, M1(ξ1) and M2(ξ1)
are membership functions, and

M1(ξ1) =
ξ1 − fvmin

fvmax − fvmin , M2(ξ1(t)) =
fvmax − ξ1
fvmax − fvmin .

(11)

Similarly, the nonlinear function fω is bounded by its

minimum value fωmin and its maximum value fωmax so

that it can be represented by

fω = N1(ξ2)fωmax +N2(ξ2)fωmin, (12)

where ξ2 = fω is also a premise variable, N1(ξ2) and
N2(ξ2) are membership functions which are defined as

N1(ξ2) =
ξ2 − fωmin

fωmax − fωmin , N2(ξ2) =
fωmax − ξ2

fωmax − fωmin .
(13)

By using the above defined four membership functions,

the vehicle longitudinal dynamics model (9) can be

represented by the following models:

Model Rule 1:

IF ξ1 is M1 and ξ2 is N1 ,

THEN ẋ = A1x+B1w +B2u.

Model Rule 2:

IF ξ1 is M1 and ξ2 is N2 ,

THEN ẋ = A2x+B1w +B2u.

Model Rule 3:

IF ξ1 is M2 and ξ2 is N1 ,

THEN ẋ = A3x+B1w +B2u,

Model Rule 4:

IF ξ1 is M2 and ξ2 is N2 ,

THEN ẋ = A4x+B1w +B2u,

where matrices Ai, i = 1,2,...,4, are obtained by replacing
fv and fω in matrix A(fv, fω) of equation (9) with

fvmin, fvmax, fωmin, and fωmax, respectively, according

to the above defined rules. Then, the T-S fuzzy model

that exactly represents the nonlinear vehicle longitudinal

dynamics model (9) under the assumption of bounded

v, ω, and μ(λ, ς) is obtained as:

ẋ =
4X
i=1

μi(ξ)(Aix+B1w +B2u),

y = Cx+ n, (14)

where y is the measurement output, C is a constant

matrix used to define the measurement output, n is the

measurement noise, and

μ1(ξ) = M1(ξ1)N1(ξ2), μ2(ξ) =M1(ξ1)N2(ξ2),

μ3(ξ) = M2(ξ1)N1(ξ2), μ4(ξ) =M2(ξ1)N2(ξ2),

μi(ξ) > 0, i = 1,2,...,4, and
4X
i=1

μi(ξ) = 1.

Note that this T-S fuzzy model can exactly represent

the vehicle longitudinal dynamics with the nonlinear

friction model (5). It is also possible to extend this

method to other nonlinear tyre models such as Pacejka

Magic Formula tyre model. Furthermore, considering

the possible normal load variation due to suspension

dynamics during a manoeuvre and the possible modelling

error between a simplified vehicle model and a real

vehicle model, the uncertainties will be introduced in

the model as

ẋ =
4X
i=1

μi(ξ)(Ai +∆Ai)x+ (B1 +∆B1)w +B2u,

y = Cx+ n, (15)

where the uncertain matrices ∆Ai and ∆B represent the
possible parameter and modelling uncertainties and are

assumed to be bounded.

III. OBSERVER DESIGN

Assume that the measurement output is the wheel

angular speed, which can be measured by available sensor

in practice, the C matrix is given as C =
£

0 1
¤
.

Based on this measurement, we need to construct an

observer based on the model (15) to estimate the vehicle

speed. Note that the premise vector ξ in (15) is actually

immeasurable. Instead, the observer will be constructed

by using the estimated premise vector ξ̂, which can be

obtained from the estimated state vector x̂. Therefore,

the proposed observer is defined as

.

x̂ =
4X
i=1

μi(ξ̂) [Aix̂+ Li(y − ŷ)] +B2(u+ ñ)

ŷ = Cx̂ (16)

where x̂ is the observer state vector, ŷ is the estimated

output, ñ is the measurement noise on the braking

torque, and Li is the observer gain matrix to be designed.
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Considering (15) and (16), the error dynamics model

is defined as

ė = ẋ−
.

x̂

=
4X
i=1

μi(ξ̂)(Ai − LiC)e+
4X
i=1

(μi(ξ)− μi(ξ̂))Aix

+B1w−
4X
i=1

μi(ξ̂)Lin+
4X
i=1

μi(ξ)∆Aix

+∆B1w +B2ñ, (17)

where e = x− x̂ is the estimation error.
To deal with some terms in (17) which are related to

the immeasurable premise variables [14] and uncertain

matrices, different approaches will be considered. A

norm-bounded approach can be used to describe the

uncertain matrix ∆B1 as ∆B1 = HFE, where H and E

are known matrices, F is unknown matrix with FTF ≤ I
. As the uncertain matrices ∆Ai are norm-bounded, we

can define w̄ =
4P
i=1

μi(ξ)∆Aix as an external disturbance.

In addition, we define d =
4P
i=1

(μi(ξ) − μi(ξ̂))Aix. By

referring to [15], [16], there exist some bounded function

vectors ΛTi in terms of the membership functions defined
in (11) and (13) such that μi(ξ) − μi(ξ̂) = ΛTi e can
be obtained. Therefore, the term d can be written as

d =

µ
4P
i=1

AixΛ
T
i

¶
e, which is bounded by

dTd ≤ eTUe,
for a nonsingular matrix U which is dependent on ΛTi
and x. Then, (17) is further written as

ė =
4X
i=1

μi(ξ̂) [(Ai − LiC)e− Lin]

+d+ (HFE +B1)w + w̄ +B2ñ

=
4X
i=1

μi(ξ̂)
£
Āie− Lin

¤
+d+ (HFE +B1)w + w̄ +B2ñ, (18)

where Āi = Ai − LiC.
Consider the Lyapunov function candidate as

V (e) = eTXe, (19)

where X = XT > 0, the time derivative of V (e) is

V̇ (e) =
4X
i=1

μi(ξ̂)⎡⎢⎢⎢⎢⎣
eT (ĀTi X +XĀi)e+ eTXδ + δTXe

+wTETFHTXe+ eTXHFEw
−nTLTi Xe− eTXLin+ w̄TXe
+eTXw̄ + wTBT1 Xe+ eTXB1w

+ñTBT2 Xe+ eTXB2ñ

⎤⎥⎥⎥⎥⎦
≤

4X
i=1

μi(ξ̂)

⎡⎢⎢⎢⎢⎣
eT (ĀTi X +XĀi + ε−11 XX + ε1U

+ε−12 XHH
TX)e+ ε2w

TETEw

−nTLTi Xe− eTXLin+ w̄TXe
+eTXw̄ + wTBT1 Xe+ eTXB1w

+ñTBT2 Xe+ eTXB2ñ

⎤⎥⎥⎥⎥⎦ ,(20)

where ε1 > 0, ε2 > 0, and the matrix inequalities eTXδ+
δTXe ≤ eT (ε−11 XX + ε1U)e and wTETFHTXe +
eTXHFEw ≤ ε−12 e

TXHHTXe + ε2w
TETEw are ap-

plied.

To eliminate the effects of disturbances, such as

measurement noise, uncertainties, and the term d, on

the estimation error, the observer will be designed to

achieve a minimum H∞-norm level on the estimation

error.

By defining an objective output as

z = x− x̂ = Cze, (21)

and adding zT z − γ2wTw − γ2nTn − γ2w̄T w̄ − γ2ñT ñ,

γ > 0, to the two sides of (20), we have

V̇ (e) + zT z − γ2wTw − γ2nTn− γ2w̄T w̄ − γ2ñT ñ

≤
4X
i=1

μi(ξ̂)

⎡⎢⎢⎢⎢⎣
eT (ĀTi X +XĀi + ε−11 XX
+ε1U + ε−12 XHHTX)e

+ε2w
TETEw − nTLTi Xe

−eTXLin+ w̄TXe+ eTXw̄
+wTBTXe+ eTXBw

⎤⎥⎥⎥⎥⎦
+eTCTCe− γ2wTw − γ2nTn− γ2w̄T w̄

=
4X
i=1

μi(ξ̂)

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎢⎣
e

w

n

w̄

ñ

⎤⎥⎥⎥⎥⎦
T

Ψi

⎡⎢⎢⎢⎢⎣
e

w

n

w̄

ñ

⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠ , (22)

where

Ψi =

⎡⎢⎢⎢⎢⎣
Φi XB1 −XLi X XB2
∗ −γ2I + ε2E

TE 0 0 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎦ ,
Φi = ĀTi X+XĀi+ε−11 XX+ε1U+ε−12 XHH

TX+CTC.
It can be seen from (22) that if the following inequality

is satisfied

⎡⎢⎢⎢⎢⎣
Φi XB1 −XLi X XB2
∗ −γ2I + ε2E

TE 0 0 0
∗ ∗ −γ2I 0 0
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −γ2I

⎤⎥⎥⎥⎥⎦ < 0,

(23)

the error dynamic system (17) is stable with an H∞
disturbance attenuation level less than γ. By the Schur
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complement equivalence, (23) is equivalent to⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

Θi XB1 −Yi X XB2 X XH

∗ Λ 0 0 0 0 0
∗ ∗ −γ2I 0 0 0 0
∗ ∗ ∗ −γ2I 0 0 0
∗ ∗ ∗ ∗ −γ2I 0 0
∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε2I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, i = 1,2,...,4, (24)

where Θi = ĀTi X + XĀi + ε1U + CTz Cz,Λ = −γ2I +
ε2E

TE, Yi = XLi.

In summary, for a given scalar γ > 0, the error
dynamic system (17) is stable with an H∞ disturbance

attenuation level less than γ if there exist matrices

X > 0, Yi, i = 1,2,...,4, scalars ε1 > 0, ε2 > 0, satisfying
LMIs (24) and the observer gains can be obtained as

Li = YiX
−1. Moreover, to make the estimation error as

small as possible, the following optimisation problem is

carried out:

min γ s.t. LMIs (24). (25)

This is a convex optimisation problem which can be

solved efficiently by means of available software.

IV. NUMERICAL SIMULATIONS

In this section, numerical simulations are used to

validate the effectiveness of the proposed approach. To

show the improvement on the estimation performance,

another two existing methods are also used for compari-

son purpose. One method estimates the velocity by using

the equation of [11]

.

v̂=
J

R2M
(v̇m −Rω̇),

where v̇m = −R
J
Tb. For description brevity, this method

is called Linear Observer thereafter.

Another method estimates the velocity by using the

equation of [5]

.

v̂= a+K(Rω − v̂)
where a is the measured longitudinal acceleration, K

is the observer gain that depends on the longitudinal

acceleration measurement. For description brevity, this

method is called Nonlinear Observer thereafter.

First, the vehicle is running on a dry asphalt road

surface with an initial speed of 33.33 m/s during braking.

The brake torque is applied according to the desired slip

ratio, 0.2, with a bang-bang control strategy together

with a first-order actuator model. In the simulations,

both the wheel angular velocity and the braking torque

are measured with measurement noises. The parameter

values for the quarter-vehicle braking model are given in

Table I [1].

The actual vehicle speed and wheel linear speed are

shown in Fig. 3. Fig. 4 shows the braking torque.

Parameter Value

M 275 kg

J 12.891 kg·m2
R 0.25 m

TABLE I

Parameter values of the quarter-vehicle braking model
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Fig. 5. Comparison of estimated longitudinal velocity when
braking on a dry asphalt road surface.

Fig. 5 shows the estimated velocity using difference

methods, and Fig. 6 shows the estimation error by using

different methods, where the proposed method is denoted

as Fuzzy Observer. From Fig. 6 it can be seen the

proposed method shows the best estimation performance

compared to other two methods. It is noted that Linear

Observer is actually a direct integration method without

using feedback. It is based on the assumption of no

slip. When there is measurement noise with sensor bias

and when slip ratio is not zero, big estimation error

will happen. The accumulated estimation error due to

bias and none zero slip can be clearly observed from

Fig. 6. Nonlinear Observer is an integration method

with a feedback of the difference between the measured

wheel speed and the estimation. The performance of this

method depends on the adaptive tuning of the observer

gain, which however, is a non-trivial task. The estimated

velocity is more closing to the wheel linear speed.

To further validate the effectiveness of the proposed

method, the braking is applied when the vehicle is

running on a cobble wet road surface. Fig. 7 shows

the actual vehicle speed and wheel linear speed, Fig.

8 shows the braking torque, Fig. 9 shows the estimated

velocity using difference methods, and Fig. 10 shows the

estimation error by using different methods. Similarly,

from Fig. 10, it can be seen the proposed method

shows the best estimation performance compared to

other two methods. This further confirms the improved
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Fig. 6. Comparison of estimation error of longitudinal velocity
when braking on a dry asphalt road surface.

performance of the proposed method.
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Fig. 7. Vehicle speed and wheel linear speed when

braking on a cobble wet road surface.
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Fig. 8. Braking torque on a cobble wet road surface.
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Fig. 9. Comparison of estimated longitudinal velocity

when braking on a cobble wet road surface.
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Fig. 10. Comparison of estimation error of longitudinal

velocity when braking on a cobble wet road surface.

V. CONCLUSIONS

In this paper, a T-S fuzzy modelling approach is

adopted to represent a quarter-vehicle braking model.

Based on this T-S fuzzy model, an observer is de-

signed to estimate the longitudinal velocity with the

available measurements of wheel angular velocity and

braking torque. The H∞ performance is applied when

designing the observer with estimated premise variables.

The conditions are expressed in terms of LMIs which

can be solved easily with available software. Numerical

simulations are used to demonstrate the effectiveness of

the proposed approach. Further study on the estimation

based slip ratio control will be investigated.
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