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Abstract— Incremental clustering has been proposed to han-
dle large datasets which can not fit into memory entirely.
Single pass fuzzy c-means (SpFCM) and Online fuzzy c-means
(OFCM) are two representative incremental fuzzy clustering
methods. Both of them extend the scalability of fuzzy c-
means (FCM) by processing the dataset chunk by chunk.
However, due to the data sparsity and high-dimensionality,
SpFCM and OFCM fail to produce reasonable results for
document data. In this study, we work on clustering approaches
that take care of both the large-scale and high-dimensionality
issues. Specifically, we propose two methods for incrementally
clustering of document data. The first method is a modification
of the existing FCM-based incremental clustering with a step
to normalize the centroids in each iteration, while the other
method is incremental clustering, i.e., Single-Pass or Online,
with weighted fuzzy co-clustering. We use several benchmark
document datasets for experimental study. The experimental
results show that the proposed approaches achieved significant
improvements over existing SpFCM and OFCM in document
clustering.

I. INTRODUCTION

G IVEN a set of objects, clustering is a process that
automatically generates groups of objects called clus-

ters so that objects in the same cluster share more common
properties than those in different clusters. Clustering is an
important data analysis tool that has been studied for several
decades and it has become one of the most widely used
knowledge discover techniques in many data mining appli-
cations that emerged recently. Extensive studies have been
made to develop different clustering approaches typically
with emphasis on improving one or more specific aspects
of clustering including effectiveness, efficiency, robustness
and scalability. Effectiveness has been the main concern
in many studies, which aim to produce high qualities of
clusters while scalability has become another critical issue
more recently as the size of data becomes larger and larger.
For a particular clustering algorithm, its performance may
vary in one application from another depending on the nature
of the data to be processed. In this study, we focus on the task
of clustering of large document data for automatic document
categorization.
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Document categorization is an important component in
many Web mining and text mining tasks and clustering is
an intuitive technique for automatic document categorization.
The vector space model has been widely used to represent
documents. With this model, each document is represented
as a vector where each distinctive word is a feature. Since the
dictionary of words is large, e.g., over several thousands, and
each document only contains a small subset of words from
the whole dictionary, document data are sparse and high di-
mensional. This makes many clustering approaches no more
suitable for dealing with document data. Efforts have been
made by researchers to develop clustering approaches partic-
ularly for documents [1]-[4]. Since similarity measure is an
important component in formulating a clustering approach
as it directly decides the effectiveness of a clustering algo-
rithm, some studies focus on developing effective document
similarity measures. It has been shown that cosine similarity
is better than Euclidean norm for measuring the closeness or
distance of two document vectors although Euclidean norm
works well for many other types of data. Cosine distance
based k-means and fuzzy c-means have been proposed in
[1] and [5]. Other than using suitable distance or similarity
measure of documents in existing algorithms, co-clustering
becomes a more popular way for document clustering [2]-[4].
Unlike classic clustering, which treats document as object
and word as feature and only generates document clusters,
co-clustering treats document and word as two types of ob-
jects and generates both document clusters and word clusters.
A fuzzy co-clustering approach is proposed in [6] where
document membership and word membership are defined for
document clusters and word clusters, respectively. Although
these clustering approaches tailored for document data give
good performance in document categorization, most of them
assume that the dataset can be entirely loaded into memory.
Since reading from the disk makes the clustering process too
time consuming, existing document clustering approaches are
unsuitable for handling large document datasets that exceed
available memory limit.

With the development of computer and Internet tech-
niques, especially personal computing techniques, tremen-
dous amount of data have been generated in every second.
It becomes more easily for the dataset to exceed the limit of
main memory, e.g., ten dimensional data with more than 1012

objects are unable to be loaded into memory even for high
performance computers [7]. More attentions are given to the
scalability issue to develop clustering approaches of large
data [8]-[14].Some approaches tend to solve the clustering
problem of large dataset by sampling [8], [15], [16]. In these
approaches, clustering is performed on a reduced dataset
containing a subset of samples from the original dataset. The
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clustering result of the extracted samples is then extended to
label other objects that are not included in the sampled set.
For such kind of approaches, the main challenging is how to
produce a reduced dataset to contain sufficient information
of the original dataset while is small enough to perform
clustering efficiently. Another way for handling large datasets
is to treat the data as streaming data, which come one by
one or subset by subset [12], [13], [17]. In these approaches,
the clusters are successively improved based on previously
processed data or historical data and newly coming objects.
All objects are clustered by a single pass of the whole data.
In order to keep as much as possible the information of
passed data within the limited memory, data compression
or summarization techniques are used in these approaches
to get a compact representation of the historical data. In
Single pass fuzzy c-means (SpFCM), the dataset is processed
chunk by chunk, where a chunk of data is a small subset of
objects. For each chunk, only the centroids weighted by the
corresponding total fuzzy membership are kept as historical
information to be used together with the coming chunk for
next round of clustering. The same research group developed
another fuzzy c-means based incremental clustering called
Online fuzzy c-means (OFCM) [18]. Different from SpFCM,
in OFCM, each chunk of data are clustered individually and
the final centroids of the whole dataset are obtained by per-
forming clustering on the collection of centroids from all the
chunks. Although these incremental clustering approaches
have been shown to be effective for dealing with the large-
scale problem in many applications, they are not designed
with mechanisms to handle high dimensionality problem and
thus are low effective for clustering of large document data.

In this paper, we work on incremental fuzzy clustering
for large document data by taking care of scalability as
well as the ability for dealing with sparsity and high-
dimensionality. We first give some analysis to show that
when using fuzzy c-means to cluster a set of sparse and
high dimensional objects where the number of objects is
much smaller than the dimensionality, it may occur that
all the objects are assigned to a single cluster, of which
the centroid has the smallest norm. This problem causes
performance degradation when directly applying fuzzy c-
means based incremental methods to documents. Knowing
the reason of why existing SpFCM and OFCM fail to give
reasonable results for document dataset, we proposed two
new methods which are particularly designed for document
data. The first method is a direct modification of the fuzzy
c-means based incremental clustering by adding in a step
to normalize the centroids after they are updated in each
iteration. This modified version is shown to be equivalent to
incremental clustering with consine-distance based fuzzy c-
means. The second method is to use co-clustering to cluster
each chunk of data. Specifically, we propose Single-Pass
and Online incremental clustering with weighted fuzzy co-
clustering, where objects have different weights. This is
important in Single-Pass and Online methods as the weights
summarize how many previously processed objects that each

centroid represents. Experimental results on several bench-
mark document datasets show that our proposed approaches
perform much better than the fuzzy c-means based ones
especially with small chunk sizes. This demonstrates that
the proposed approaches are more favourable for clustering
of large document datasets.

In the next section, we review two fuzzy c-means based
incremental clustering approaches SpFCM and OFCM in
more details and analyse the problem of applying these two
approaches to document data in section III. After that we
propose our new incremental fuzzy clustering approaches
tailored for document data in section IV. Related work is
reviewed and discussed in section V. In section VI, we give
experimental results on several real-world document datasets.
Finally, we conclude this paper in section VII.

II. FCM-BASED INCREMENTAL FUZZY CLUSTERING

The weighted fuzzy c-means which is used in both SpFCM
and OFCM is first briefly reviewed and then both Single-Pass
and Online incremental clustering are discussed.

A. Weighted fuzzy c-means (WFCM)

The weighted fuzzy c-means (WFCM) extends the original
fuzzy c-means (FCM) to consider different weights for each
of the objects so that objects with large weights play more
important roles in clustering than those with small weights.
For a dataset X = [x1, . . . ,x𝑛] to be clustered into 𝑘 clusters,
the objective of WFCM is to minimize the following function

𝐽𝑊𝐹𝐶𝑀 =

𝑘∑

𝑐=1

𝑛∑

𝑖=1

𝑤𝑖𝑢
𝑚
𝑐𝑖𝑑𝐸(x𝑖, 𝜹𝑐) (1)

where 𝑢𝑐𝑖 is the fuzzy membership of object 𝑖 with respect
to cluster 𝑐, and

𝑑𝐸(x𝑖, 𝜹𝑐) = ∥x𝑖 − 𝜹𝑐∥2 (2)

is the Euclidean distance between x𝑖 and 𝜹𝑐, i.e., the centroid
of cluster 𝑐. The update equation of membership of WFCM
in (1) is the same as that of FCM

𝑢𝑐𝑖 =
𝑑𝐸(x𝑖, 𝜹𝑐)

−1/𝑚−1

∑
𝑓 𝑑𝐸(x𝑖, 𝜹𝑓 )

−1/𝑚−1
(3)

and the update equation of centroid is as below

𝜹𝑐 =

∑𝑛
𝑖=1 𝑤𝑖𝑢

𝑚
𝑐𝑖x𝑖∑𝑛

𝑖=1 𝑤𝑖𝑢
𝑚
𝑐𝑖

(4)

Next, we discuss how WFCM is used in two ways for
incrementally clustering large data.

B. Single-Pass incremental clustering

One way to handle a large dataset is to process the data in
small subsets called chunks sequentially and only one pass
of the dataset is needed to cluster all the objects. This is
called as Single-Pass method for incremental clustering. An
important characteristic of SpFCM, the fuzzy c-means based
Single Pass clustering is to use the centroids as compact
information to represent the data have been processed so
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Fig. 1: Single-Pass incremental clustering

far. The centroids of the previous chunk are combined with
the subsequent chunk to form the data for clustering. Each
centroid is weighted according to how many objects it
represents. As illustrated in Figure 1, Single-Pass incremental
clustering has three main concepts namely the clustering
algorithm used to produce clusters of each chunk of data,
the input data to the clustering algorithm, and the weights of
objects. Some details are further given below.

∙ Clustering. WFCM is used as the clustering method in
SpFCM. As reviewed early, WFCM takes (w,X) as
input, and produces the membership matrix U and the
𝑘 centroids Δ = [𝜹1, . . . , 𝜹𝑘]. Here X is a set of 𝑠
dimensional objects and w is the vector recording the
weights of each object.

∙ Data. The target dataset is split into small chunks, Y =
{X1∪X2 . . .∪Xℎ}. The clustering of the first chunk is
only performed on the objects of this chunk. For chunk
𝑡 > 1, the 𝑘 centroids obtained in the previous chunk is
combined with the coming chunk of data for clustering,
i.e., X𝑡′ ← [Δ𝑡−1,X𝑡].

∙ Weight. For the first chunk, w1 = w𝑑𝑎𝑡𝑎. For chunk
𝑡 > 1, w𝑡 = [w𝑡−1

𝑐𝑒𝑛𝑡𝑒𝑟,w𝑑𝑎𝑡𝑎]. The weights for all the 𝑛𝑡
objects in every loaded chunk of data are equal to 1, i.e.,
w𝑑𝑎𝑡𝑎 = [1, 1, . . . , 1]𝑇 . For each centroid, the weight is
calculated as a weighted sum of memberships related
to the corresponding cluster. Specifically, for 𝑡 = 1,
w𝑡
𝑐𝑒𝑛𝑡𝑒𝑟 = U𝑡w𝑑𝑎𝑡𝑎 and for 𝑡 > 1, it consists of the

weighted sum of memberships of the centroids of the
𝑡−1th chunk and the total membership of the objects of
the 𝑡− 1th chunk, i.e., w𝑡

𝑐𝑒𝑛𝑡𝑒𝑟 = U𝑡[w𝑡−1
𝑐𝑒𝑛𝑡𝑒𝑟,w𝑑𝑎𝑡𝑎].

C. Online incremental clustering

Different from Single-Pass, which sequentially processes
the data and make modification of the centroids gradually
with the new coming data, the Online incremental clus-
tering is a distribute-and-ensemble method. It individually
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Fig. 2: Online incremental clustering

processes each chunk and then ensembles the centroids of
each chunk to give the final centroids. The overall structure
of Online method is illustrated in Figure 2. Since clustering
is performed for each chunk individually, parallel computing
can be directly applied to the Online method. The centroid
ensemble process is also formulated as weighted clustering.
Specifically, in the ensemble phase, each centroid is treated as
a weighted object, and the 𝑘×ℎ centroids of all chunks form
the dataset to be clustered, i.e., X′ = [Δ1, . . . ,Δℎ], where
each Δ is an 𝑠× 𝑘 matrix representing the 𝑘 centroids of a
chunk. Similar to Single-Pass, the weight of each centroid is
calculated as the sum of memberships of the corresponding
cluster, i.e., 𝑤ℎ𝑐 =

∑
𝑖 𝑢

ℎ
𝑐𝑖, and the weight vector is formed as

w = [w1, . . . ,wℎ], with w𝑡 = [𝑤𝑡1, . . . , 𝑤
𝑡
𝑘]. It is worthy to

notice that the centroids have the same dimensionality as the
objects of the original dataset. In other words, if the original
dataset is high dimensional, the centroid ensemble task is
also a high dimensional data clustering problem.

III. PROBLEM OF USING SPFCM AND OFCM FOR

SPARSE AND HIGH DIMENSIONAL DATA

Although SpFCM and OFCM perform well for many large
scaled datasets, they may fail to produce reasonable results
when applied to document data with a small chunk size. Next
we give more details to discuss this problem.

According to (3), the cluster assignment of WFCM is
decided by the object-to-centroid distance 𝑑𝐸(x𝑖, 𝜹𝑐), which
is calculated as

𝑑𝐸(x𝑖, 𝜹𝑐) = ∥x𝑖 − 𝜹𝑐∥2 = ∥x𝑖∥2 + ∥𝜹𝑐∥2 − 2x𝑇𝑖 𝜹𝑐 (5)

As the first term of (5) is constant for a given x𝑖, only
the other two terms decide the assignment of an object.
For the convenience of discussion, let us consider hard
assignment with equal weights, i.e., each object is only
assigned to the cluster 𝑐 with the smallest distance, i.e.,
𝑐 = argmin𝑓 𝑑𝐸(x𝑖, 𝜹𝑓 ), and 𝒳𝑐 denotes the set of objects
assigned to cluster 𝑐. In such a case, 𝜹𝑐 is a linear combina-
tion of all objects that belong to this cluster, i.e.,

𝜹𝑐 =
1

∣𝒳𝑐∣
∑

𝑗∈𝒳𝑐

x𝑗 (6)
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With this we have

∥𝜹𝑐∥2 = 𝜹𝑇𝑐 (
1

∣𝒳𝑐∣
∑

𝑗∈𝒳𝑐

x𝑗) =
1

∣𝒳𝑐∣
∑

𝑗∈𝒳𝑐

𝜹𝑇𝑐 x𝑗 (7)

When the chunk size or the number of objects of each chunk
is small, the number of objects assigned to each cluster is
also small, i.e., ∣𝒳𝑐∣ is small. The extreme case is each cluster
only has one object x𝑗 , and thus

∥𝜹𝑐∥2 = x𝑇𝑗 x𝑗 , 2x𝑇𝑖 𝜹𝑐 = 2x𝑇𝑗 x𝑖 (8)

For sparse and high-dimensional document vector x𝑖, only
a very small portion of the elements are non-zero, the
number of common words between document x𝑖 and another
document is much smaller than the number of words of each
of them. Specifically, we have

x𝑇𝑗 x𝑗 ≫ x𝑇𝑗 x𝑖 (9)

which gives

∥𝜹𝑐∥2 ≫ 2x𝑇𝑖 𝜹𝑐

Therefore, for sparse and high-dimensional data, when the
chunk size is small, the distance 𝑑𝐸(x𝑖, 𝜹𝑐) is dominated
by ∥𝜹𝑐∥2, which is independent on x𝑖. This results in all
objects being assigned to one cluster, of which the norm of
the centroid is the smallest.

If the chunk size is large enough, the number of objects
assigned to each cluster ∣𝒳𝑐∣ is also large enough, then for
any 𝑗 and 𝑖,

𝜹𝑇𝑐 x𝑗 ≈ 𝜹𝑇𝑐 x𝑖 (10)

Based on (10) and (7), we get

∥𝜹𝑐∥2 ≈ 𝜹𝑇𝑐 x𝑖 (11)

which means the distance 𝑑𝐸(x𝑖, 𝜹𝑐) is decided by both
terms. In other words, the problem of assigning all objects
to one cluster is alleviated when the chunk size becomes
larger. The above discussion can be extended easily to fuzzy
assignments with weighted objects.

IV. INCREMENTAL FUZZY CLUSTERING OF DOCUMENTS

In the above section, we analysed the problem of using
WFCM for incrementally clustering of document data. In
this section, we propose two methods to handle this problem.
One is to modify the existing WFCM in SpFCM and OFCM
and the other is to use weighted fuzzy co-clustering in an
incremental way. Next, we give the details of each of them.

A. Weighted Hyperspherical fuzzy c-means

To avoid the problem we discussed in the previous section,
we normalize all the centroids to unit norm after each
iteration

𝜹′𝑐 =
𝜹𝑐
∥𝜹𝑐∥ (12)

Since all the centroids now have the same norm, the cluster
assignment is mainly decided by the third term in (5). For
weighted fuzzy c-means

∥𝜹𝑐∥ = ∥
∑
𝑖 𝑢

𝑚
𝑐𝑖𝑤𝑖x𝑖∑

𝑖 𝑢
𝑚
𝑐𝑖𝑤𝑖

∥

=

√
√
√
⎷
∑

𝑗

(

∑
𝑖 𝑢

𝑚
𝑐𝑖𝑤𝑖x𝑖∑

𝑖 𝑢
𝑚
𝑐𝑖𝑤𝑖

)2 =

√∑
𝑗(
∑
𝑖 𝑢

𝑚
𝑐𝑖𝑤𝑖x𝑖)

2

∑
𝑖 𝑢

𝑚
𝑐𝑖𝑤𝑖

(13)
so

𝜹′𝑐 =
∑
𝑖 𝑢

𝑚
𝑐𝑖𝑤𝑖x𝑖√∑

𝑗(
∑
𝑖 𝑢

𝑚
𝑐𝑖𝑤𝑖x𝑖)

2
(14)

Therefore, if we normalize the centroids after each iteration
in WFCM, it is actually calculate the normalized centroid 𝜹′𝑐
by (14). With ∥𝜹′𝑐∥ = 1, the Euclidean distance becomes

𝑑𝐸(x𝑖, 𝜹
′
𝑐) = ∥x𝑖∥2 + 1− 2x𝑇𝑖 𝜹

′
𝑐 (15)

Although ∥x𝑖∥ does not affect hard assignment, it may cause
the distances to all the centroids very close when ∥x𝑖∥2 ≫
x𝑇𝑖 𝜹

′
𝑐 and makes memberships to all the clusters very similar.

A simple way to constrain the value of ∥x𝑖∥ is to normalize
each object to unit norm, i.e., ∥x𝑖∥ = 1. So the Euclidean
distance becomes

𝑑𝐸(x𝑖, 𝜹
′
𝑐) = 2(1− x𝑇𝑖 𝜹

′
𝑐) = 2𝑑𝑐𝑜𝑠(x𝑖, 𝜹

′
𝑐)

where 𝑑𝑐𝑜𝑠(x𝑖, 𝜹
′
𝑐) is the cosine distance with ∥x𝑖∥ =

∥𝜹′𝑐∥ = 1. This means that if the document vectors are
normalized to unit length, and we normalize the centroids
after they are updated in each iteration, the weighted fuzzy
c-means becomes a weighted cosine-distance based fuzzy c-
means. The cosine distance based fuzzy c-means called Hy-
perspherical Fuzzy C-Means (HFCM) was first proposed in
[5]. So we call its weighted version Weighted Hyperspherical
Fuzzy C-Means (WHFCM).

B. Weighted fuzzy co-clustering

Other than using cosine distance in FCM, we also consider
to use fuzzy co-clustering to cluster each chunk of data.
Unlike classical clustering where only documents are the
target objects to be clustered, both documents and words
are clustered in co-clustering. Based on the formulation of
Fuzzy Co-clustering of Documents and Keywords(FCoDoK)
[6], here we propose the Weighted Fuzzy Co-clustering
of Documents and Keywords(WFCoDoK). The objective
of WFCoDoK is to maximize the value of the following
function
𝑘∑

𝑐=1

𝑛∑

𝑖=1

𝑠∑

𝑗=1

𝑤𝑖𝑢𝑐𝑖𝑣𝑐𝑗𝑥𝑖𝑗 − 𝜆𝑢
2

𝑘∑

𝑐=1

𝑛∑

𝑖=1

𝑢2𝑐𝑖 −
𝜆𝑣
2

𝑘∑

𝑐=1

𝑠∑

𝑗=1

𝑣2𝑐𝑗

(16)

subject to
𝑘∑

𝑐=1

𝑢𝑐𝑖 = 1 ∀𝑖 = 1, . . . 𝑛,

𝑠∑

𝑗=1

𝑣𝑐𝑗 = 1 ∀𝑐 = 1, . . . , 𝑘

(17)
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In (16), 𝑢𝑐𝑖 is the membership of the 𝑖th document in cluster
𝑐, 𝑣𝑐𝑗 is the membership of the 𝑗th word in cluster 𝑐, and 𝑤𝑖
is the weight of the 𝑖th document. The first term decides the
criterion for measuring the quality of clusters. Maximizing
this term requires documents and words that co-occurred
frequently to be assigned to the same cluster. The other two
terms are used for regularization, and 𝜆𝑢 and 𝜆𝑣 are the
regularization weights for 𝑢 and 𝑣, respectively.

Similar as in [6], the update rules for 𝑢 and 𝑣 are derived
as

𝑢𝑐𝑖 =
1

𝜆𝑢
𝐺𝑐𝑖 +

1

𝑘
(1− 1

𝜆𝑢

𝑐∑

𝑓=1

𝐺𝑓𝑖) (18)

𝑣𝑐𝑗 =
1

𝜆𝑣
𝐻𝑐𝑗 +

1

𝑚
(1− 1

𝜆𝑣

𝑠∑

ℎ=1

𝐻𝑐ℎ) (19)

with

𝐺𝑐𝑖 =
𝑠∑

𝑗=1

𝑤𝑖𝑥𝑖𝑗𝑣𝑐𝑗 ; 𝐻𝑐𝑗 =
𝑛∑

𝑖=1

𝑤𝑖𝑥𝑖𝑗𝑢𝑐𝑖 (20)

Like WFCM, iterative algorithm is used for WFCoDoK to
update 𝑢𝑐𝑖 and 𝑣𝑐𝑗 successively in an alternating manner.
During each iteration, negative values of 𝑢 and 𝑣 may appear.
A simple way to deal with such kind of situation is to set
negative values to 0 and re-normalize 𝑢 and 𝑣 to ensure the
summation constraints of each are still hold. This strategy is
used here as it is shown in [6] to work well in practice. A
more complex solution that guarantees non-negative values
of 𝑢 and 𝑣 can be derived with the Karush-Kuhn-Tucker
(KKT) conditions.

As given in (17), the summations of 𝑢 and 𝑣 are con-
strained in different ways. The document membership 𝑢 is
defined in the same way as the membership of fuzzy c-
means, which requires that for each document, the sum of
its memberships in all the clusters is 1. Differently, the word
membership is constrained in a way that for each cluster, the
sum of memberships of all the words is 1. We may say that
𝑢 is the assignment distribution of a document over the 𝑘
clusters, which reflects the relative degree of belonging of a
document in one cluster compared to other clusters; while 𝑣
is the representativeness distribution over all the words for
each cluster, which captures the relative importance of a word
compared to other words with respect to the same cluster. In
a heuristic fuzzy co-clustering algorithm proposed in [19],
𝑣 is constrained in the same way as 𝑢, and the updating
of 𝑢 and 𝑣 are derived to maximize two different objective
functions rather than one.

The main steps of WFCoDoK-based Single-Pass and
WFCoDoK-based Online incremental clustering are the same
as shown in Figure 1 and Figure 2 by using WFCoDoK as
the clustering algorithm.

V. RELATED WORK

Document clustering is a challenging task due to the high
dimensionality problem. Classic clustering approaches such
as k-means and fuzzy c-means are not able to give satisfied

performance on document data. In [1], Dhillon and Modha
proposed to cluster documents in a hypersphere where the
distance between two vectors is the angle between them.
The difference between this spherical clustering and the
classic k-means algorithm is that different metrics are used to
measure the distance between a document and the centroids.
K-means uses Euclidean norm while spherical clustering uses
inner product. Since in spherical clustering, all document
vectors and centroids are normalized to unit length, inner
product is equivalent to cosine similarity. A fuzzy c-means
approach with cosine distance is proposed in [5]. Other than
using suitable distance or similarity measure for document
in existing algorithms, clustering has been formulated in
many other new ways to handle the high dimensionality
problem. Co-clustering is one popular way for document
clustering [2], [3], [4]. Unlike classic clustering which only
generates document clusters by treating document as object
and word as feature, co-clustering simultaneously clusters
document and word. It generates both document clusters and
word clusters by treating document and word as two types
of objects. In the fuzzy co-clustering approach proposed in
[6], both document membership and word membership are
defined to represent document clusters and word clusters,
respectively. Promising results have been reported in these
studies which show the ability of co-clustering for handling
document data. However, most of these approaches assume
that the document data can be entirely loaded into memory
and this causes scalability and time efficiency issue when
loading in the target document dataset as a whole requires
more memory than available.

Clustering of large data has attracted a lot of attentions
as the scale of data increased tremendously these years
in many data mining applications. Some approaches use
various sampling techniques to generate a reduced dataset for
clustering and then extend the clustering result to label other
objects [8], [15], [16]. The CLARA algorithm proposed in [8]
is a random sampling based k-medoids approach. Although
random sampling is fast and easy to implement, it is not
sure whether the sampled set cover enough information for
clustering purpose. To ensure the sampled dataset capture
the overall nature of the original dataset, statistics-based
progressive sampling is used in [15], [16] for fuzzy clus-
tering of large data. Other than performing clustering on a
subset of samples, some other approaches process the dataset
sequentially and use compact ways such as representatives
to record the previously processed data. The key idea is to
keep sufficient statistics of previously processed data and
compared to store the original data, it requires much less
space to store the statistical information. BIRCH [10] and
CURE [11] are two hierarchical clustering where the data is
scanned to gradually update the hierarchical tree. A set of
heuristic rules and thresholds are used to decide whether the
new object should be discarded or added as a new cluster or
used for updating any existing clusters.

Single pass partitioning clustering are studied in [12], and
[13]. Both of them are based on k-means and only require
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single scan of the dataset. In [12], a two-step compression
strategy is used to selectively discard some objects and
compress the left ones using fine clusters. The approach of
[13] is a special case of [12], where all the processed points
are discarded and only the centroids weighted by the number
of objects assigned to them are kept as a compressed form of
the original data. Experimental results in [13] show that this
simple single pass approach gives comparable results with
the one using complex compression techniques and is more
efficient. The approach proposed in [14] is similar to [13]. In
[14], the data is assumed to come in chunks and each chunk
is clustered with a Local Search algorithm. After clustering,
each chunk of data is summarized by the weighted centroids
and the data are discarded to free memory. Single pass fuzzy
c-means (SpFCM) is proposed in [17], where the weight
of each centroid is calculated by the fuzzy memberships
rather than the number of objects as in [13], [14]. Other than
single pass approaches, an Online fuzzy c-means (OFCM)
is proposed in [18]. Different from single pass approaches,
in OFCM, each chunk of data is clustered individually and
the centroids of all the chunks are gathered for another
round of clustering to produce the final cluster centroids.
In a recent work [7], the authors studied fast kernel fuzzy c-
means by approximation and applied this kernelized version
in three types of incremental clustering, namely sampling-
based, single pass and online methods. However, kernelized
version requires more time to calculate the kernel matrix
and its performance is highly dependent on the kernel used.
Experimental study of [7] show that compared to the fuzzy
c-means based incremental methods, the kernelized version
with Gaussian kernel gave worse results.

VI. EXPERIMENTAL RESULTS

In this section, we give experimental study of incremen-
tal clustering approaches for document categorization. The
purpose is to show that the proposed approaches outperform
existing SpFCM and OFCM and thus are more favourable
for handling large document data.

A. Document datasets

Four benchmark document datasets extracted from differ-
ent sources are used in our experimental study of incremental
clustering. Some statistics of each dataset is summarized in
Table I. Multi5 is from the 20Newsgroups [20]. The total
collection of 20Newsgroups contains approximately 20,000
newsgroup articles collected from 20 different newsgroups.
Multi5 consists of around 100 documents from each of the
five topics. Dataset tr12 is derived from the TREC-5, TREC-
6 and TREC-7 collections 1. The la2 dataset is part of the
TREC-5 collection and contains news articles from the Los
Angeles Times. The dataset k1a was from the WebACE
project (WAP) [21], where each document corresponds to
a web page listed in the subject hierarchy of Yahoo!. Stop-
word removing and stemming are applied as preprocessing.
Each term of a document is weighted by tf-idf [22]. Each

1Text retrieval conference, http://trec.nist.gov

TABLE I: Summary of datasets

Dataset Source #documents #words #topics balance
Multi5 20Newsgroups 494 1,000 5 0.95

tr12 TREC 313 5,804 8 0.10
la2 LA Times (TREC) 3,075 12,432 6 0.27
k1a WebACE 2340 21,839 20 0.018

document is normalized to unit length, i.e., ∥x∥2 = 1.
Among the five dataset, Multi5 is relatively easy to cluster
as its topics are well separated with balanced size, and only
the top 1000 words with the largest mutual information are
selected as features. Other three datasets are more difficult
for the task of clustering as their dimensionality are very
high, the size of clusters are very different and the topics are
not well separated.

B. Evaluation

As in [7], we use Adjusted Rand Index (ARI) to evaluate
the performance of clustering algorithms. Rand Index is
a measure of agreement between two partitions and the
adjusted form is adjusted for chance. For a dataset with 𝑛
objects, assume 𝑛𝑖𝑗 is the number of objects in common
between the 𝑖th cluster produced by an algorithm and the
𝑗th ground-truth category, ARI is calculated as
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where

(
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)
= 𝑛!

𝑘!(𝑛−𝑘)! is the binomial coefficient and
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∑
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∑

𝑖
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C. Experiment setting

We evaluate the performance of the proposed SpHFCM,
SpFCoDoK, OHFCM, and OFCoDoK, where the first two
are Single pass incremental clustering with WHFCM and
WFCoDoK, respectively, and the last two are Online in-
cremental clustering with WHFCM and WFCoDoK, respec-
tively. Their results are compared with existing SpFCM and
OFCM. For each dataset, all the algorithms are run with
five different sample rates from 5% to 50%. For example, a
sample rate of 5% means the dataset is randomly split into
20 chunks with each has 5% documents of the total. For each
sample rate, we performed 50 times of random split and all
the algorithms are run on each to get 50 clustering results. We
report the mean and standard deviation of the 50 trials. The
results of each dataset with corresponding non-incremental
algorithms, i.e., 100% sample rate, are also reported for
comparison. We tried different values of parameters for each
algorithm and find Tu=0.001, Tv=0.01 for WFCoDoK and
m=1.01 for WHFCM and WFCM give good results.

D. Initialization and assignment

In Single-Pass, the clustering of the current chunk is
initialized with the centroids of the previous chunk. This
way of initialization may also be used in a Online method

1523



to increase convergence speed although each chunk may be
initialized randomly in a Online method. We compare the
results of each of the three Online incremental clustering
approaches with these two types of initialization.

After the final centroids are obtained, cluster assignment
of each object can be obtained sequentially with the update
equation of 𝑢 based on these centroids. This step is similar
to prediction of cluster label with the given model, i.e., the
final centroids. For each clustering approach, we use the
corresponding update equation of 𝑢 and then get the hard
clusters by labelling each object to the cluster with the largest
membership.

E. Results and discussions

The results of the three Single-Pass incremental fuzzy
clustering approaches and the three Online incremental fuzzy
clustering approaches are given in Table II and Table III,
respectively. The results of Online incremental clustering in
Table III are produced based on initialization with the result
of the previous chunk.

From these two tables, we have the following observa-
tions. First, for both Single-Pass and Online, it is seen that
WFCoDoK performs the best in almost all the cases, i.e.,
for all the datasets with all the sample rates. The consistent
good performance of using fuzzy co-clustering approach to
cluster each chunk clearly shows that the formulation of co-
clustering is more effective for handling document data than
traditional clustering. Second, we found that although the
non-incremental FCM gives comparable or slightly worse re-
sults with HFCM for three out four datasets, the performance
of incremental FCM namely SpFCM and OFCM degrades
largely especially when the sample rate is small, such as 5%,
10% and 25%. This confirms that WFCM fails to perform
well for sparse document data with a small chunk size as
being analysed in Section III. On the other hand, the success
of the two WHFCM-based incremental clustering approaches
to maintain their performance to a reasonable level with small
sample rates demonstrates the effectiveness of the proposed
modification. Third, comparing the Single-Pass and Online
incremental clustering with the same fuzzy clustering, it
shows that Online is generally better than Single-Pass for
WHFCM and WFCoDoK. The difference for WFCM is less
significant.

For Online incremental clustering where each chunk is
clustered independently, other than using the centroids of
the previous chunk for initialization of the current chunk, we
may also use random initialization for each chunk. Figure 3
shows the comparison of the three Online approaches with
these two ways of initialization. It is shown that the results
of WFCM at small sample rates especially with the rates that
are less than 10% are improved significantly when random
initialization is used. This is because the result of FCM
of the first chunk might be a bad one due to its problem
for handling small set of samples. Using the result of the
previous chunk for initialization of the next chunk may pass
on the negative impact while using random initialization
for each chunk is a simple way to alleviate the negative

TABLE II: ARI of Single-Pass incremental clustering

(a) Multi5

Sample size SpFCM SpHFCM SpFCoDoK
5% 0.15 ± 0.11 0.43 ± 0.09 0.65 ± 0.11

10% 0.30 ± 0.10 0.41 ± 0.09 0.73 ± 0.11
25% 0.52 ± 0.12 0.46 ± 0.13 0.80 ± 0.07
35% 0.53 ± 0.14 0.51 ± 0.13 0.80 ± 0.08
50% 0.59 ± 0.13 0.61 ± 0.13 0.82 ± 0.07
batch 0.74 ± 0.12 0.74 ± 0.12 0.85 ± 0.04

(b) tr12

Sample size SpFCM SpHFCM SpFCoDoK
5% 0.09 ± 0.08 0.37 ± 0.11 0.46 ± 0.10

10% 0.16 ± 0.11 0.35 ± 0.07 0.51 ± 0.09
25% 0.29 ± 0.10 0.36 ± 0.10 0.53 ± 0.05
35% 0.31 ± 0.10 0.35 ± 0.09 0.53 ± 0.05
50% 0.37 ± 0.13 0.39 ± 0.09 0.51 ± 0.05
batch 0.43 ± 0.10 0.45 ± 0.10 0.51 ± 0.02

(c) la2

Sample size SpFCM SpHFCM SpFCoDoK
5% 0.08 ± 0.06 0.35 ± 0.07 0.48 ± 0.07

10% 0.09 ± 0.05 0.36 ± 0.08 0.50 ± 0.08
25% 0.18 ± 0.05 0.43 ± 0.07 0.54 ± 0.03
35% 0.19 ± 0.05 0.46 ± 0.06 0.54 ± 0.02
50% 0.21 ± 0.04 0.48 ± 0.06 0.54 ± 0.02
batch 0.26 ± 0.03 0.50 ± 0.06 0.54 ± 0.02

(d) k1a

Sample size SpFCM SpHFCM SpFCoDoK
5% 0.05 ± 0.04 0.35 ± 0.09 0.37 ± 0.02

10% 0.15 ± 0.07 0.33 ± 0.06 0.44 ± 0.05
25% 0.21 ± 0.08 0.35 ± 0.08 0.39 ± 0.08
35% 0.24 ± 0.05 0.34 ± 0.06 0.38 ± 0.08
50% 0.27 ± 0.05 0.35 ± 0.05 0.40 ± 0.07
batch 0.30 ± 0.05 0.38 ± 0.09 0.41 ± 0.07

impact. However, random initialization does not bring benefit
for the other two approaches. In fact, random initialization
is worse for WHFCM. Since WHFCM is able to produce
reasonable results with a small sample rate, the result of
the previous chunk is better than a random one, and thus
produces improved results. The results of Online FCoDoK
with two ways of initialization are not different too much,
which indicates that this approach is not very sensitive to
initialization.

VII. CONCLUSION

In this paper, we study the problem of document cate-
gorization using Single-Pass and Online incremental fuzzy
clustering. We first analyse the problem of directly using
existing incremental fuzzy clustering approach to handle
document data, which is sparse and high dimensional. Based
on the analysis, we presented a way to modify the existing
fuzzy c-means based incremental clustering by normalizing
the centroids to unit length after they are updated in each
iteration. This modified algorithm is shown to be equivalent
to incremental clustering with cosine distance based fuzzy c-
means. We also presented weighted fuzzy co-clustering for
handling document datasets incrementally. Experimental re-
sults of real-world document datasets show the great potential
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Fig. 3: Comparison of the three Online approaches with different initializations. “-p” denotes initialization with centroids of
the previous chunk, and “-r” denotes random initialization.

TABLE III: ARI of Online incremental clustering

(a) Multi5

Sample size OFCM OHFCM OFCoDoK
5% 0.00 ± 0.00 0.50 ± 0.11 0.71 ± 0.05

10% 0.00 ± 0.00 0.65 ± 0.10 0.77 ± 0.03
25% 0.36 ± 0.13 0.63 ± 0.14 0.79 ± 0.05
35% 0.46 ± 0.17 0.64 ± 0.11 0.80 ± 0.05
50% 0.58 ± 0.13 0.68 ± 0.12 0.81 ± 0.08
batch 0.74 ± 0.12 0.74 ± 0.12 0.85 ± 0.04

(b) tr12

Sample size OFCM OHFCM OFCoDoK
5% 0.02 ± 0.03 0.35 ± 0.09 0.50 ± 0.05

10% 0.03 ± 0.04 0.39 ± 0.09 0.48 ± 0.05
25% 0.17 ± 0.11 0.42 ± 0.09 0.51 ± 0.05
35% 0.20 ± 0.10 0.39 ± 0.09 0.54 ± 0.06
50% 0.35 ± 0.14 0.42 ± 0.10 0.55 ± 0.06
batch 0.43 ± 0.10 0.45 ± 0.10 0.51 ± 0.02

(c) la2

Sample size OFCM OHFCM OFCoDoK
5% 0.04 ± 0.08 0.52 ± 0.07 0.54 ± 0.02

10% 0.14 ± 0.06 0.49 ± 0.06 0.55 ± 0.02
25% 0.18 ± 0.05 0.48 ± 0.06 0.54 ± 0.04
35% 0.19 ± 0.06 0.48 ± 0.06 0.52 ± 0.04
50% 0.20 ± 0.06 0.49 ± 0.05 0.52 ± 0.04
batch 0.26 ± 0.03 0.50 ± 0.06 0.54 ± 0.02

(d) k1a

Sample size OFCM OHFCM OFCoDoK
5% 0.04 ± 0.05 0.51 ± 0.05 0.40 ± 0.08

10% 0.14 ± 0.07 0.45 ± 0.07 0.41 ± 0.07
25% 0.27 ± 0.07 0.39 ± 0.08 0.41 ± 0.08
35% 0.27 ± 0.05 0.36 ± 0.06 0.44 ± 0.06
50% 0.26 ± 0.06 0.36 ± 0.04 0.43 ± 0.07
batch 0.30 ± 0.05 0.38 ± 0.09 0.41 ± 0.07

of the proposed incremental fuzzy clustering approaches for
handling large document data.
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