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Abstract—The Semantic Web is an extension of the current 
World Wide Web, and aims to help computers to understand and 
process web information automatically. In recent years, the 
integration ontologies and rules has become a central topic in the 
Semantic Web. Therefore, significant research efforts have 
focused on integration description logic programs. However, 
description logic programs cannot well model a great deal of real-
world problems because of the restriction of represented 
formalism. To address this problem, we further extend 
description logic programs such that they can deal with imprecise 
information, uncertain information and non monotonic reasoning 
at the same time. In this paper, we propose tightly coupled fuzzy 
rough description logic programs (or simply fuzzy rough dl-
program) under the answer set semantics, which are tightly 
integrates fuzzy rough disjunctive programs under the answer set 
semantics with fuzzy rough description logics. To our knowledge, 
this is the first such approach. First of all, we define the syntax 
and semantics of fuzzy rough disjunctive logic programs, which is 
the rough extension of fuzzy disjunctive logic programs based on 
rough set theory. Then, we define the syntax and semantics of 
fuzzy rough dl-program. Finally, we show some semantic 
properties of fuzzy rough dl-program under the answer set 
semantics. 

Keywords—Semantic web; Description logics; Description logic 
programs; Answer set semantics  

I.  INTRODUCTION  
The Semantic Web is an extension of the current World 

Wide Web by standards and technologies that help machines to 
understand the information on the Web in order to help 
computers to process Web information automatically and better 
enable computer and human beings to work in cooperation 
[1,2]. The main ideas behind it are to add a machine-readable 
meaning to Web pages, to use ontologies for a precise 
definition of share terms in Web resources, to use Knowledge 
Representation technology for automated reasoning from Web 
resources [3]. 

At present, the highest layer of the semantic web, which has 

reached a sufficient maturity, is the ontology layer in form of 
the OWL Web Ontology Language [4]. The next and ongoing 
step aims at sophisticated representation and reasoning 
capabilities of the Rules, Logic, and Proof layers of the 
Semantic Web [5,6]. 

As we have seen, the integration ontologies and rules has 
become a central topic in the Semantic Web. In fact, standard 
ontology language is based on Description Logic[7,8], and the 
existing proposals for a rule language for use in the Semantic 
Web originate from Logic Programming.  

Description logics are a class of knowledge representation 
languages, which can model an application domain of interest 
by a structured and formally well-understood way[9]. Recently, 
with the rapid development of DLs, abundant DL systems have 
been provided, such as ALC[10], SHIN[11], SHIQ[12], 
SHOIQ[13,14], SROIQ [15]and so on. 

Recently, significant research efforts have focused on 
integration description logics and logic programmings. Eiter et 
al introduce disjunctive description logics (for short, dl-
programs), which is loose integration of description logic and 
logic programming [16,17]. In 2006, Rosatic presented tight 
integration of description logics and disjunctive Datalog [18]. 
Subsequently, Lukasiewicz propose tight integrated disjunctive 
description logic program under the answer set semantic [19]. 
In loose integration, the rules in disjunctive logic program 
knowledge of dl-program involved queries to description logic 
knowledge base, but the rules in disjunctive logic program 
knowledge involved concepts and roles from description logic 
knowledge base as unary resp. binary predicates in a tight 
integration. However, the above dl-programs can only 
represent and reason on precise or certain knowledge. 
Therefore some researchers extend the dl-programs allowing to 
express imprecise or uncertain knowledge. At this aspect, three 
kinds of dl-programs, i.e., fuzzy dl-programs, probabilistic dl-
programs, and rough dl-programs, are proposed.  

Regarding fuzzy dl-programs, Lukasiewicz introduced 
vagueness into dl-programs, and proposed fuzzy dl-program 
that combined fuzzy description logics and fuzzy disjunctive 
logic programs [20,21]. Subsequently, he presented tightly This work was supported by the National Natural Science Foundation of
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coupled fuzzy description logic programs under the answer set 
semantic, which extended tightly disjunctive description logic 
program by fuzzy vagueness in both the description logic and 
the logic program component [22,23]. Regarding probabilistic 
dl-programs, Lukasiewicz proposed the notion of probabilistic 
dl-programs, and described the syntax and semantic of 
probabilistic dl-programs [24,25]. Moreover, Andrea Calì 
present tightly coupled probabilistic dl-programs under the 
answer set semantics, which were a tight integration of 
disjunctive logic programs under the answer set semantics and 
Bayesian probabilities [26,27]. Furthermore, in 2009 
Lukasiewicz and Straccia presented probabilistic fuzzy 
description logic programs, which combine fuzzy description 
logics, fuzzy logic programs, and probabilistic uncertainty in a 
uniform framework for the semantic web [28]. This novel 
approach allows for handling both probabilistic uncertainty and 
fuzzy vagueness. Regarding rough dl-programs, we propose 
tightly coupled rough description logic programs under the 
answer set semantics, which are a tight integration of 
disjunctive logic programs under the answer set semantics, 
rough set theory and rough description logics[29]. 

However, the above description logic programs can not 
deal with imprecise information, and uncertain information at 
the same time. Therefore, this paper aims to further extend 
description logic programs such that they can model imprecise 
information, and uncertain information. In this paper, we first 
present fuzzy rough disjunctive logic programs (for short, 
fuzzy rough programs) under the answer set semantic, which is 
the rough extension of fuzzy disjunctive logic programs based 
on rough set theory. Then, we propose tightly coupled fuzzy 
rough description logic programs (for short, fuzzy rough dl-
programs) under the answer set semantics, which tightly 
integrates fuzzy rough disjunctive programs under the answer 
set semantics with fuzzy rough description logics. It is the 
generalization of the tightly coupled disjunctive dl-programs 
by fuzzy vagueness and rough in both the ontological and the 
rule component. Finally, we show that the new fuzzy rough dl-
programs have nice semantic features. More concretely, all 
their answer sets are also minimal models, and the cautious 
answer set semantics faithfully extends both fuzzy rough 
programs and fuzzy rough description logics. Similarly, this 
approach also does not need the unique name assumption. 

The rest of this paper is organized as follows. In section II, 
we recall fuzzy set theoretic operations and fuzzy rough 
description logic. Section � defines fuzzy rough programs 
under the answer set semantics. In section �, we present fuzzy 
rough dl-programs under the answer set semantics, and also 
propose some semantic properties. Section � summarizes our 
main results. 

II. PRELIMINARIES  
In this section, we first recall some work related to fuzzy 

set theoretic operations. Then we introduce the syntax and 
semantic of fuzzy rough description logic. 

A. Fuzzy set theoretic operations 
In order to combine and modify the truth in [0,1], we 

assume fuzzy operations, namely, fuzzy conjunction, fuzzy 

disjunction, fuzzy implication and fuzzy complement, denoted 
by ⊗ , ⊕ , � and Θ , respectively, which are functions 
⊗ , ⊕ , ]1,0[]1,0[]1,0[: →×�  and ]1,0[]1,0[: →Θ  that 
generalize the ordinary Boolean operations to the set of truth 
values [0,1].  

Several functions of fuzzy operations have been given in 
the literature. In the current paper we will use the following 
fuzzy functions: 

 },min{ baba =⊗ , 

 },max{ baba =⊕ ,  

max{1 , }a b a b= −�  , 

 aa −=Θ 1 . 

B. Fuzzy rough description logics 
Fuzzy rough description logics are fuzzy rough extensions 

classical description logics based on fuzzy rough theory, so 
fuzzy rough DLs can represent and reason on fuzzy and 
incomplete knowledge. We now recall the syntax and the 
semantics of fuzzy rough description logic FRSHIN [30].  

Let A, R and I be pairwise disjoint sets of atomic concepts, 
roles and individuals, respectively.  A role in FRSHIN is any 
element of R. FRSHIN-concepts(denoted by C or D) are 
composed inductively according to the following abstract 
syntax: 

, | | | | | | . |

. | | | | |

C D A C C D C D R C

R C nR nR C C

→⊥ ¬ ∃

∀ ≥ ≤
, 

where A denotes atomic concept, C and D denote concepts (or 
concept descriptions), R  denotes role name, and  n denotes a 
natural number. 

The semantics of FRSHIN is the extension of the semantics 
of the classical DL SHIN. A fuzzy rough interpretation 

),,( ~ II RI •Δ=  consists of a nonempty domain IΔ , a fuzzy 

relation ~R over IΔ , and a mapping I• that assigns to each 
individual an element of IΔ , to each atomic concept A∈A  a 
function IA : ]10[ ,I →Δ , to each R∈R a function 

IR : ]10[ ,II →Δ×Δ , ~RR ≠ . The mapping I• can be 
extended to all roles and concepts as follows: for all 

Idba Δ∈,, , 

1) ( ) 1I d = ;,     , 
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2) ( ) 0I d⊥ = ; 

3) ( ) ( ) min{ ( ), ( )}I I IC D d C d D d= ; 

4) ( ) ( ) max{ ( ), ( )}I I IC D d C d D d= ; 

5) )(1)()( dCdC II −=¬ ; 

6) )}}(),,({min{sup)().( dCddRdCR II
d

I
I ′′=∃ Δ∈′ ; 

7) )}}(),,(1{max{inf)().( dCddRdCR II
d

I
I ′′−=∀ Δ∈′ ; 

8) )},({minsup)()( 1,,1
i

In
ibb

I baRdnR I
n

=Δ∈=≥ … ; 

9) )},(1{maxinf)()( 1
1,, 11

i
In

ibb
I baRdnR I

n
−=≤ +

=Δ∈+… ; 

10) )}}(),,({min{sup)()( ~ dCddRdC I
d

I
I ′′= Δ∈′ ; 

11) )}}(),,(1{max{inf)()( ~ dCddRdC I
d

I
I ′′−= Δ∈′ ; 

12) ),(),()( baRabR II =− ; 

A FRSHIN knowledge base consists of a TBox, a RBox 
and an ABox. A FRSHIN TBox is a finite (possibly empty) set 
of fuzzy rough inclusion introductions of the form A C or 
fuzzy rough equivalence introductions of the form A C≡ , 
where A is a concept name and C is a FRSHIN-concept.  

A fuzzy rough interpretation I satisfies A C  iff Id Δ∈∀ , 

)()( dCdA II ≤ , and it satisfies CA ≡  iff Id Δ∈∀ , 

)()( dCdA II = .  

A FRSHIN RBox is a finite (possibly empty) set of fuzzy 
(rough) transitive role axioms of the form )(RTrans and fuzzy 
(rough) role inclusion axioms of the form R S , where R , S  
are FRSHIN-roles.  

A fuzzy rough interpretation I satisfies 
)(RTrans iff Ica Δ∈∀ , ,  

)}},(),,({min{sup),( cbRbaRcaR II
b

I
IΔ∈≥ . 

It satisfies R S  iff Iba Δ∈∀ , , ),(),( baSbaR II ≤ .  

 A FRSHIN ABox is a finite (possibly empty) set of fuzzy 
rough assertions of the form nθα  and ba ≠ , where α  is an 
assertion of the form Ca : , Rba :, >< , },,,{ <≤>≥∈θ and 

]1,0[∈n , C denotes a concept, R denotes a role, a and b denote 
individuals.  

 Formally, a fuzzy rough interpretation I satisfies 
nCa θ):( (or nRba θ):,( >< ) iff naC II θ)(  (or 

nbaR III θ),( ),  and it satisfies ba ≠  iff II ba ≠ .  

 A fuzzy rough interpretation I satisfies a FRSHIN 
knowledge base Σ  iff it satisfies all axioms in Σ ; in this case, 
we say that I is a model of Σ .  

 A FRSHIN knowledge base Σ  is satisfiable (unsatisfiable) 
iff there exists (does not exist) a fuzzy rough interpretation I 
which satisfies all axioms in Σ .  

III. FUZZY ROUGH DISJUNCTIVE PROGRAMS UNDER THE 
ANSWER SET SEMANTIC 

In this section, we definite fuzzy rough disjunctive 
program, and propose the syntax and semantic of fuzzy rough 
disjunctive program. First of all, we present some concepts that 
are useful of defining fuzzy rough disjunctive programs.  

Logic program is based on first-order logic, and in first-
order logic an unary predicate (i.e. R(t)) denotes whether a 
term (i.e. t) is an element of concept set expressed by predicate 
symbol (i.e. R). If it is, then the unary predicate is true (i.e. 
R(t)=1), otherwise unary predicate is false (i.e. R(t)=0). 
However, it may be impossible to define some concepts 
expressed by unary predicate symbol precisely, so we can’t 
decide whether the unary predicate is true. Therefore, in this 
section we propose approximate unary predicate symbols. The 
basic idea is to approximate unary predicate symbol by 
bounding from below and above the concept set expressed by 
unary predicate symbol.  

Let Q denotes unary predicate symbol, Con(Q) denotes 
concept set expressed by Q, and ~R denotes equivalence 
relation on Con(Q). We define approximate predicate symbols 
as follows. 

Definition 3.1  For unary predicate symbol Q, approximate 
predicate symbol is of the form ),( QQQ = , where Q is lower 

approximate predicate symbol and Q is upper approximate 
predicate symbol. Moreover,  

)}(Con)(|)(Con{)(Con ~ QxRQxQ ⊆∈= ,  

})(Con)(|)(Con{)(Con ~ ∅≠∩∈= QxRQxQ . 
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Obviously, we can obtain the following properties.  

1) )(Con)(Con)(Con QQQ ⊆⊆ ;  

2) )(Con Qx ∈∀ , 1)( =xQ , otherwise      0)( =xQ ; 

3) )(Con Qx ∈∀ , 1)( =xQ , otherwise      0)( =xQ ; 

Definition 3.2. For any approximate predicate symbol 
),( QQQ =  and x, unary predicate )(xQ  is definitely true iff 

lower approximate predicate 1)( =xQ ; unary predicate )(xQ  

is possibly true iff upper approximate predicate 1)( =xQ . 

Now, we introduce the syntax and semantic of fuzzy rough 
disjunctive logic programs under the answer set semantics. 

A. Syntax 
Let Φ  be a function-free first-order vocabulary with 

nonempty finite sets of constant and predicate symbols (include 
approximate predicate symbols). Let Χ be a set of variables. A 
term is either a variable from Χ or a constant symbol from Φ .  

Definition 3.3. An approximate atom is of the 
form ),( ααα = , where  α  is of the form )(tQ  and  α  is of 

the form )(tQ , ),( QQQ =  is an approximate predicate 
symbol from Φ , t is term. 

An atom is either an approximate atom or of the form 
),,( 1 nttp … , where p is a predicate symbol of arity 

0≥n form Φ , and ntt ,,1 …  are terms. A literal l is an 
atom α or a negated atom not α . If an atom α  is not an 
approximate atom, then αα =  and αα = .  

Definition 3.4. A disjunctive fuzzy rough rule (or simply 
fuzzy rough rule) r is of the form 

unotnot
nl

lk

nnll

llk

≥∧∧

∧∧∧←∨∨

Θ⊗⊗+Θ

⊗⊗⊗⊗⊕⊕

−++

−−

ββ
ββαα

111

11011

1

11

"

""
       (1) 

unotnot nl

lk

nnll

llk

≥∧∧

∧∧∧←∨∨

Θ⊗⊗+Θ

⊗⊗⊗⊗⊕⊕

−++

−−

ββ

ββαα

111

11011

1

11

"

""
      (2) 

where 1≥k , 0≥≥ ln , kαα ,,1 … , nl ββ ,,1 …+ are atoms, 

lββ ,,1 …  are either atoms or truth values form [0,1], 

11 ,, −⊕⊕ k… are disjunction strategies, 10 ,, −⊗⊗ n…  are 
conjunction strategies, nl ΘΘ + ,,1 …  are negation strategies, 
and ]1,0[∈u . The set },,{)( 1 krH αα …=  is the head of r, 

while },,{},,{)()()( 11 nllrBrBrB ββββ …… +
−+ ∪=∪=  is 

the body of r. 

  Definition 3.5. A fuzzy rough disjunctive program (or 
simply fuzzy rough program) P is a finite set of disjunctive 
fuzzy rough rules of the form (3.1) and (3.2). Moreover, P is 
normal fuzzy rough program iff 1=k for all fuzzy rough rules 
in P; P is a positive fuzzy rough program iff ln = for all fuzzy 
rough rules in P. 

Example 1. A fuzzy rough disjunctive program P contains 
the following fuzzy rough rules: 

1 1 1 2 2

2 1 3 2

( ) ( ) ( , ) ( , )

( ) ( ) 1

Q x C x R x y R x y

C y C y
⊗ ⊗ ⊗

⊗ ⊗

← ∧ ∧

∧ ∧ ≥
, 

1 1 1 2 2

2 1 3 2

( ) ( ) ( , ) ( , )

( ) ( ) 1

Q x C x R x y R x y

C y C y
⊗ ⊗ ⊗

⊗ ⊗

← ∧ ∧

∧ ∧ ≥
. 

B. Semantics 
Now, we define the answer set semantics of fuzzy rough 

disjunctive programs based on finite sets of ground atoms, 
which represent Herbrand interpretations. 

More formally, a term is ground iff it includes only 
constant symbols. An atom is ground iff all terms in it are 
ground.  A fuzzy rough rule is ground iff all atoms in it are 
ground.  

The Herbrand universe of a fuzzy rough program P, namely 
HUp, denotes the set of all constant symbols appearing P. If 
HUp is empty, then we let HUp={c}, where c is an arbitrary 
constant symbol from Φ . The Herbrand base of a fuzzy rough 
program P, namely HBp, denotes the set of all ground atoms 
that can be made from the predicate symbols contained by P 
and the constant symbols contained by HUp. A ground instance 
of a rule Pr ∈  is get through substituting constant symbol 
coming from HUp for every variable appearing in r. We use 
ground(P) to denote the set of all ground instances of rules in P. 

An interpretation I relative to a fuzzy rough program P is a 
mapping ]1,0[: →HBpI . For any interpretations I and J, for 
all HBp∈α , the inclusion relation JI ⊆ is true iff 

)()( αα JI ≤ ; the intersection relation JI ∩ is true iff 
)}(),(min{)( ααα JIJI =∩ . 

Definition 3.6. Let I be an interpretation of a fuzzy rough 
program P, and α  be a ground atom of HBp. α  is definitely 
satisfiable under interpretation I iff 0)( >αI ;  α  is possible 
satisfiable under interpretation I iff 0)( >αI . 
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Definition 3.7. Let I be an interpretation of a fuzzy rough 
program P, r be a ground fuzzy rough rule of the form (1) and 
(2). I is a model of r, denoted rI =| , iff 

⎪
⎩

⎪
⎨

⎧

≥⊗Θ⊗⊗

Θ⊗⊗⊗
≥⊕⊕

−+

++−

−

otherwiseu

nifuII

III
II

nnnl

lllll

kk

,

1),()(

)()()(
)()(

011

11111

111

β
βββ

αα

"

"
"

       

(3) 

⎪
⎪
⎩

⎪⎪
⎨

⎧

≥⊗Θ⊗⊗

Θ⊗⊗⊗

≥⊕⊕

−+

++−

−

otherwiseu
nifuII

III

II

nnnl

lllll

kk

,
1),()(

)()()(

)()(

011

11111

111

β
βββ

αα

"

"

"

        

                                                                                           (4) 
 

Definition 3.8. Let I be an interpretation of a fuzzy rough 
program P. I is a model of P, denoted PI =| , iff rI =|  for 
every )(Pgroundr ∈ . 

The Gelfond-Lifschitz reduct of a fuzzy rough program P 
relative to an interpretation I, denoted IP , is the ground 
positive fuzzy rough program obtained form ground(P) by 
substituting the truth value )( jj I βΘ for all default-negated 
atoms )( jInot

j
βΘ . 

Example 2. Consider again the fuzzy rough disjunctive 
program P of Example 1. It is not difficult to verify that P has a 
model I, which defined as follows: 

( ( )) 0.38, ( ( )) 0.45I Q a I Q a= = , 

1 1( ( )) 0.21, ( ( )( )) 0.35I C a I C x a= = , 

2 2( ( )) 0.27, ( ( )( )) 0.42I C b I C x b= = , 

3 1( ( )) 0.39, ( ( )( )) 0.55I C c I C x c= = , 

1 2( ( , )) 0.45, ( ( , )) 0.56I R a b I R a c= = . 

Definition 3.9. Let P be a fuzzy rough program. An 
interpretation I is an answer set of P iff I is a minimal model of 

IP . P is consistent iff P has an answer set. 

Definition 3.10. Let P be a fuzzy rough program, α  be a 
ground atom of HBp and ]1,0[∈n . Then, n≥α  is a cautious 
(resp., brave) consequence of P under the answer set semantics 
iff nI ≥)(α  for every (resp., some) answer set I of P. 

IV. FUZZY ROUGH DESCRIPTION LOGIC PROGRAMS UNDER 
THE ANSWER SET SEMANTIC 

In this section, we propose a tightly coupled approach to 
fuzzy rough description logic programs (or simply fuzzy rough 
dl-programs) under the answer set semantics, which extends 
tightly coupled fuzzy description logic programs under the 
answer set semantics with a simple mechanism to handle 
approximate knowledge. 

A. The syntax and semantics 
The basic idea of this tightly couple is presented as follows. 

Let P be a fuzzy rough disjunctive program, it is known that P 
is equivalent to its grounding ground(P) under the answer set 
semantics. If some of the ground atoms in ground(P) are 
additionally related to each other by a fuzzy rough description 
logic knowledge base L, that is to say that some of the ground 
atoms in ground(P) actually present concepts and role 
memberships relative to L, then we must  consider L when 
dealing with ground(P).  However, we only to consider it when 
we actually need for dealing with ground(P). Therefore, for a 
fuzzy rough Herbrand interpretation I, we need to prove that I 
represents a valid truth value assignment relative to L. In other 
words, the Herbrand interpretation I which satisfies P, is also 
satisfies L, while L is interpreted relative to general 
interpretations over a first-order domain. 

The first-order vocabulary Φ is defined as section Ⅲ, and 
the sets A, R and I is defined as section Ⅱ. Let cΦ be the set 
of all constant symbols in Φ . Suppose that cΦ is a subset of I. 
This hypothesis ensures that every ground atom made from A, 
R and I can be interpreted in the description logic knowledge 
base.  

A fuzzy rough description logic program (for short, fuzzy 
rough dl-program) KB=(L,P) includes a fuzzy rough 
description logic knowledge base L and a fuzzy rough 
disjunctive program P. It is a positive fuzzy rough dl-program 
iff P is positive fuzzy rough disjunctive program. It is a normal 
fuzzy rough dl-program iff P is normal fuzzy rough disjunctive 
program. 

Example 3. A fuzzy rough description logic program 
KB=(L,P) contains a fuzzy rough disjunctive program P in 
Example 1 and fuzzy rough description logic knowledge base 
L, which is given by the following axioms.  

1 5 6 7C C C C ,   7 1 2 2 3. .C R C R C∃ ∃ , 

8 9 10C C C ,          10 3 11.C R C∃ , 

1 1 1 2 2 3: . . 0.21a C R C R C∃ ∃ ≥ , 
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1 1 1 2 2 3: . . 0.35a C R C R C∃ ∃ ≥ , 

2 2 2 2: 0.28, : 0.42a C a C≥ ≥ , 

3 3 2 3: 0.37, : 0.51a C a C≥ ≥ , 

1 2 1, : 0.45a a R< > ≥ , 1 3 2, : 0.56a a R< > ≥ . 

Let KB=(L,P) be a fuzzy rough dl-program. The Herbrand 
base relative to Φ , namely ΦHB , denotes the set of all ground 
atoms made from the predicate symbols and the constant 
symbols from Φ .  A ground instance of a rule Pr ∈  is getted 
through substituting constant symbol coming from cΦ  for 
every variable appearing in r. We use ground(P) to denote the 
set of all ground instances of rules in P. 

An interpretation I relative to a fuzzy rough dl-program 
KB=(L,P) is a mapping ]1,0[: →ΦHBI .  In this way, I is a 
model of a fuzzy rough description logic knowledge base L, 
denoted LI =| , iff { }Φ∈=∪ HBaaIL |)(α  is satisfiable; 
I is a model of fuzzy rough disjunctive knowledge base P, 
denoted PI =| ,  iff rI =|  for every )(Pgroundr ∈ . 

Definition 4.1. Let I be an interpretation of a fuzzy rough 
dl-program KB=(L,P). Then I is a model of KB, denoted by 

KBI =| , iff LI =|  and PI =| . KB is satisfiable iff it has a 
model. 

The Gelfond-Lifschitz reduct of a fuzzy rough dl-program 
KB=(L,P) relative to an interpretation I, denoted IKB , is 
defined as the fuzzy rough dl-program (L, IP ), where IP is the 
Gelfond-Lifschitz reduct of P. 

Definition 4.2. Let KB=(L,P) be a fuzzy rough dl-program. 
An interpretation I is an answer set of KB iff I is a minimal 
model of IKB . KB is consistent iff KB has an answer set. 

Example 4. Consider again the fuzzy rough dl-program 
KB=(L,P) of Example 3. It is not difficult to verify that KB has 
an answer set, and so is consistent. 

1( ( )) 0.21M Q a = , 

1( ( )) 0.42M Q a = . 

Definition 4.3. Let KB=(L,P) be a fuzzy rough dl-program, 
Φ∈ HBα  and ]1,0[∈n . Then, n≥α  is a cautious (resp., 

brave) consequence of KB under the answer set semantics iff 
nI ≥)(α  for every (resp., some) answer set I of KB. 

Example 5. Consider again the fuzzy rough dl-program 
KB=(L,P)  of Example 3. According to Example 4,  

1( ( )) 0.21M Q a ≥  and 1( ( )) 0.42M Q a ≥  

are both cautious and brave consequences of KB. 

B. The semantic  properties 
In this section, we introduce some semantic properties of 

fuzzy rough dl-program under the answer set semantics, i.e., 
minimal models, faithfulness and unique name assumption. 

Theorem 4.1. Let KB=(L,P) be a fuzzy rough dl-program. 
Then, 

1) Every answer set of KB is a minimal model of KB;  

2) If KB is positive, then the set of all answer sets of KB is 
the set of all minimal models of KB. 

Proof. 1) Suppose that I is an arbitrary answer set of KB, 
then I is a minimal model of ),( II PLKB = . More formally, 

(a) LI =|  and (b) rI =|  for every IPr ∈ . In other words, (a) 
LI =|  and (b) rI =|  for every )(Pgroundr ∈ . Therefore, 

according Definition 4.1, I is a model of KB. Now, we need to 
prove that I is a minimal model of KB. Towards a contradiction, 
we assume that there exists a model IJ ⊂ of KB. In this way, 
(a) LJ =|  and (b) rJ =|  for every )(Pgroundr ∈ . 
According to the monotonicity and antitonicity of conjunction 
and negation strategies, this is equivalent to  (a) LJ =|  and (b) 

rJ =|  for every IPr ∈ . Thus J is also a model of IKB . But 

this contradicts I being a minimal model of IKB . Therefore, I 
is a minimal model of KB. In summary, every answer set of 
KB is a minimal model of KB. 

2) Because KB is a positive fuzzy rough dl-program, then 
))(,(),( PgroundLPLKB II == . Therefore, the set of all 

answer sets of KB is the set of all minimal models of IKB  that 
coincides with the sets of all minimal models of KB.  

Theorem 4.2. Let KB=(L,P) be a fuzzy rough dl-program 
with ∅=L  . Then, the set of all answer sets of KB is 
consistent with the set of all answer sets of the fuzzy rough 
program P. 

Proof. I is a model of ),( II PLKB =  iff  (a) LI =|  and (b) 

rI =|  for every IPr ∈ . Since ∅=L , then this is equivalent 

to rI =|  for every IPr ∈ . Moreover, I is a minimal model of 
IKB iff I is a minimal model of IP . In other words, I is an 

answer set of KB iff I is an answer set of P. Therefore, the set 
of all answer sets of KB is consistent with the set of all answer 
sets of the fuzzy rough program P. 

Theorem 4.3. Let KB=(L,P) be a positive fuzzy rough dl-
program, Φ∈ HBα  and ]1,0[∈n . Then, n≥α  is true in all 
answer set of KB iff n≥α is true in all fuzzy rough first-order 
models of )(PgroundL ∪ . 

Proof. Since KB is a positive fuzzy rough dl-program, then 
according to Theorem 4.1, the set of all answer sets of KB is 
the set of all minimal models of KB. Observe that for 

Φ∈ HBα , n≥α  is true in all minimal models of KB iff 
n≥α  is true in all models of KB. Therefore, the conclusion 

can be rewritten into the following form, n≥α  is true in all 

1485



models of KB iff n≥α  is true in all fuzzy rough first-order 
models of )(PgroundL ∪ . Now, we prove this conclusion. 

(⇒ ) Suppose that n≥α is true in all models of KB. Let J 
be any fuzzy rough first-order models of )(PgroundL ∪ , I be 
defined by )()( ββ JI = for all Φ∈ HBβ . In this way, J is a 
model of }|)({ Φ∈=∪=′ HBILL ααα , and thus L′ is 
satisfiable. Therefore, I is a model of L. On the other hand, 
because J is a model of ground(P),  then I is a model of 
ground(P). Thus, I is a model of KB. Therefore, n≥α  is true 
in I, and n≥α  is also true in J. In summary, n≥α is true in 
all fuzzy rough first-order models of )(PgroundL ∪ . 

( ⇐ ) Suppose that n≥α is true in all fuzzy rough first-
order models of )(PgroundL ∪ . Let I be any model of KB. 
Then }|)({ Φ∈=∪=′ HBILL ααα is satisfiable. Let J be a 
first-order model of L′ . In this way, J is a especial model of L. 
On the other hand, because I is a model of ground(P),  then J is 
a model of ground(P). Thus, J is a model of )(PgroundL ∪ . 
Therefore, n≥α  is true in J, and n≥α  is also true in I. In 
summary, n≥α  is true in all models of KB. 

Corollary 4.4. Let KB=(L,P) be a fuzzy rough dl-program 
such that ∅=P , Φ∈ HBα  and ]1,0[∈n . Then, n≥α  is true 
in all answer set of KB iff n≥α is true in all fuzzy rough first-
order models of L. 

Another aspect that we do not hope to consider in the 
Semantic Web is the unique name assumption. Therefore, in 
our approach, we do not need to make this assumption. The 
reason is that the fuzzy rough description logic knowledge base 
of a fuzzy rough dl-program includes or implies equalities 
between individuals, hence we have no unique name 
assumption in L and also have no unique name assumption in 
P. 

V. CONCLUSION 
We have proposed tightly coupled fuzzy rough description 

logic programs (fuzzy rough dl-programs) under the answer set 
semantics, which generalize the tightly coupled description 
logic programs by fuzzy rough set theory in both the logic 
program and the description logic.  

In this paper, we first provide the syntax and semantics of 
fuzzy rough disjunctive logic programs (for short, fuzzy rough 
programs) under the answer set semantic. Then we present the 
syntax and semantics of fuzzy rough dl-programs, and give 
some reasoning problems of fuzzy rough dl-program. Finally 
we show that the answer set of fuzzy rough dl-program has a 
close relation with the minimal model, and the fuzzy rough dl-
program faithfully extends both fuzzy rough disjunctive logic 
program and fuzzy  rough description logic. In a word, fuzzy 
rough dl-program can well represent and reason a great deal of 
real-word problems. 

An interesting topic of future research is to implement of 
the presented approach. Another interesting issue is to extend 
fuzzy rough dl-programs by a new semantics. 
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