
Interval Type-2 Relational Analysis and Its
Application to Multiple Attribute Decision Making

Jindong Qin and Xinwang Liu
School of Economics and Management

Southeast University
Nanjing, Jiangsu, 210096, China

Email: qinjindongseu@126.com, xwliu@seu.edu.cn

Abstract—In this paper, we present the interval type-2 fuzzy
rational degree to measure the similarity of the interval type-
2 fuzzy sets and apply it to multiple attribute decision making
with interval type-2 fuzzy information. First, we introduce the
concept of the interval type-2 fuzzy metric spaces, which include
interval type-2 fuzzy distance space and interval type-2 fuzzy
inner product space, respectively. Based on which, we derive the
distance measure and inner product of interval type-2 fuzzy sets,
respectively. Then, we introduce the axiomatic definition of the
interval type-2 fuzzy rational degree and propose an interval
type-2 fuzzy rational degree formula. Moreover, we construct the
mathematical optimal model based on two types of interval type-
2 fuzzy measures (center of gravity and fuzziness) to determine
the optimal attribute weights. Based on the interval type-2 fuzzy
rational degree and the optimal weights solution model we
proposed, an approach to multiple attribute decision making
under interval type-2 fuzzy environment is developed. Finally,
an illustrative example is given to demonstrate the practicality
and effectiveness of our method.

I. INTRODUCTION

Type-2 fuzzy sets (T2FSs) theory initially introduced by
Zadeh in 1975 [1], which can be viewed as an effective
extension of tradition type-1 fuzzy sets (T1FSs), it is more
capable for handling imprecision and imperfect information
in real-world application. In recent years, the type-2 fuzzy
sets theory [2] has widely used in computing with words
[3], information fusion [4], pattern recognition [5] and other
domains [6]–[8].

Type-2 fuzzy multiple attribute decision making (MADM)
is the most hotly topic in the research of type-2 fuzzy theory,
which aims to find the best solution from a finite number of
feasible alternatives assessed on multiple attributes. To date,
many useful decision making techniques have been presented.
Chen et al. [9] developed an extended QUALIFLEX approach
with interval type-2 fuzzy information to solve MADM prob-
lems. Chen and Li [10] developed extended TOPSIS method
to handle MADM with interval type-2 information. Wang and
Liu [11] presented some optimization models to determine
the attribute weights and developed its application to interval
type-2 fuzzy decision making. Celik et al. [12] developed
an integrated novel interval type-2 fuzzy MADM method to
improve customer satisfaction in public transportation. Naim
and Hagras [13] proposed a hybrid approach for multi-attribute
group decision making (MAGDM) based on interval type-2
fuzzy logic and intuitionistic fuzzy information. In additional,
some studies have focus on other interval type-2 fuzzy decision

making methods based on a variety of classical decision mak-
ing techniques such as AHP [14], TOPSIS [15], PROMETHEE
[16] etc. Recently, the research of general type-2 fuzzy MADM
are receiving more attention from scholars, some valuable
researches have been presented [17][18].

Type-2 fuzzy measure is an interesting research direction
of the T2FSs theory. As the most important fuzzy measure,
the similarity of the T2FSs are receiving more and more
attention from scholars in different domains. Many valuable
research works of type-2 fuzzy similarity measure have been
published during the last several years. For example, Wu and
Mendel [19] studied the uncertainty fuzzy similarity measure
for interval type-2 fuzzy sets (IT2FSs) and made a compara-
tive study of ranking methods, similarity measures and other
uncertainty measures of IT2FSs. Zeng and Li [20] introduced
the axiomatic definition of the interval type-2 fuzzy similarity
measure and discussed the relationship between the similarity
measure and entropy of IT2FSs. Hwang et al. [21] proposed
a similarity measure based on Sugeno integral. Recently,
Zhai and Mendel [22] investigated the general type-2 fuzzy
similarity measure. Zhao et al. [23] defined two new similarity
measures based on 𝛼− plane representation theory, the main
characteristic of these similarity measures are expressed as
T1FSs.

However, the current researches of interval type-2 fuzzy
similarity measure can only measure the similarity of two
IT2FSs. In real practical situations, we usually should consider
all the IT2FSs as a whole. That means we should find a
new aggregation tool to measure the relationship among the
multiple interval type-2 fuzzy sets vector sequence. To fill
this gap, we focus our attention on this issue and introduce
a new concept of interval type-2 fuzzy measure: interval type-
2 fuzzy relational degree and develop a new method based on
the proposed interval type-2 fuzzy relational degree to handle
multiple attribute decision making problems.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce some basic concepts of T2FSs
and IT2FSs. In Section III, we investigate the interval type-2
fuzzy metric spaces and derive the distance measure and inner
product of the IT2FSs, respectively. In Section IV, we propose
an interval type-2 fuzzy relational degree formula and give a
strictly proof process. In Section V, we develop an approach
based on the proposed relational degree to solve multiple
attribute decision making. Furthermore, a optimization model
in accordance with center of gravity and fuzziness is provided
to determine the attribute weights. An illustrative example is
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given to demonstrate the practicality and effectiveness of our
method in Section VI. Section VII concludes the paper.

II. PRELIMINARIES

In this section, we briefly introduce some basic concepts
related to T2FSs and IT2FSs, which will be used in the next
sections.

Definition 1: [2] Let 𝑋 be a universe of discourse, a type-
2 fuzzy sets A can be represented by a membership function
𝜇𝐴(𝑥, 𝑢), shown as follows:

𝐴 = {((𝑥, 𝑢), 𝜇𝐴(𝑥, 𝑢))∣∀𝑥 ∈ 𝑋,∀𝑢 ∈ 𝐽𝑥 ⊆ [0, 1]} (1)

where 0 ≤ 𝜇𝐴(𝑥, 𝑢) ≤ 1. 𝐴 can also be expressed as the
following form:

𝐴 =

∫
𝑥∈𝑋

∫
𝑢∈𝐽𝑥

𝜇𝐴(𝑥, 𝑢)/(𝑥, 𝑢)

=

∫
𝑥∈𝑋

(

∫
𝑢∈𝐽𝑥

𝜇𝐴(𝑥, 𝑢)/𝑢)

/
𝑥

(2)

where 𝐽𝑥 ⊆ [0, 1] is the primary membership at 𝑥, and∫
𝑢∈𝐽𝑥 𝜇𝐴(𝑥, 𝑢)/𝑢 indicates the second membership at 𝑥. For

discreet situations,
∫

is replaced by
∑

.

Definition 2: [24] Let 𝐴 be a type-2 fuzzy sets, if all
𝜇𝐴(𝑥, 𝑢) = 1, that is

𝐴 =

∫
𝑥∈𝑋

∫
𝑢∈𝐽𝑥

1/(𝑥, 𝑢) =

∫
𝑥∈𝑋

(∫
𝑢∈𝐽𝑥

1/𝑢

)/
𝑥 (3)

then 𝐴 is called an interval type-2 fuzzy sets (IT2FSs).

It is obvious that the IT2FSs 𝐴 is completely determined
by the primary membership which is called the footprint of
uncertainty (FOU), the FOU can be expressed as follows:

FOU(A) =
∪

∀𝑥∈𝑋
𝐽𝑥 = {(𝑥, 𝑢)∣𝑢 ∈ 𝐽𝑥 ⊆ [0, 1]} (4)

Let 𝜇𝐴(𝑥) and 𝜇
𝐴
(𝑥) be the upper membership function

(UMF) and lower membership function (LMF), respectively.
Based on the definition of FOU, for any 𝑥 ∈ 𝑋 , we have:

𝜇𝐴(𝑥) = sup(FOU(A))

𝜇
𝐴
(𝑥) = inf(FOU(A))

(5)

Therefore, the FOU of IT2FSs 𝐴 can be expressed as:

FOU(A) =
∪

∀𝑥∈𝑋
[𝜇
𝐴
(𝑥), 𝜇𝐴(𝑥)] (6)

For further explanation, we let 𝐴 = (𝜇𝐴(𝑥), 𝜇𝐴(𝑥)) =

((𝑎+11, 𝑎
+
12, 𝑎

+
13, 𝑎

+
14;ℎ

+
𝐴), (𝑎

−
11, 𝑎

−
12, 𝑎

−
13, 𝑎

−
14;ℎ

−
𝐴)) be a trape-

zoidal interval type-2 fuzzy sets (TIT2FSs), as shown in Fig.1,
where ℎ+𝐴 denotes the upper membership value of 𝑎+12 and
𝑎+13 ; ℎ−𝐴 denotes the upper membership value of 𝑎−12 and
𝑎−13; and 0 ≤ ℎ−𝐴 ≤ ℎ+𝐴 ≤ 1. Especially, if 𝑎+12 = 𝑎+13 and
𝑎−12 = 𝑎−13, then the trapezoidal interval type-2 sets 𝐴 reduces
to a triangular interval type-2 fuzzy sets.

Fig. 1. The ten reference points to determine an FOU. (𝑎+11, 𝑎
+
12, 𝑎

+
13, 𝑎

+
14)

determines a trapezoidal UMF 𝐴 with the height ℎ+𝐴, and (𝑎−11, 𝑎
−
12, 𝑎−13, 𝑎

−
14)

determines a trapezoidal LMF 𝐴 with the height ℎ−𝐴 .

Definition 3: [25] Let 𝐴 be an interval type-2 fuzzy sets,
then the ranking value of 𝐴 is defined as:

𝑅𝑎𝑛𝑘(𝐴) =
3∑
𝑖=1

(𝑀𝑖(𝐴
+) +𝑀𝑖(𝐴

−))

− 1
4

4∑
𝑖=1

(𝑆𝑖(𝐴
+) + 𝑆𝑖(𝐴

−)) +
2∑
𝑖=1

(𝐻𝑖(𝐴
+) +𝐻𝑖(𝐴

−))

(7)
where 𝑀𝑖(𝐴

𝑗) denotes the average value of the elements
𝑎𝑗1𝑝 and 𝑎𝑗1𝑝+1,𝑀𝑖(𝐴

𝑗) = (𝑎𝑗1𝑝 + 𝑎𝑗1𝑝+1)/2(𝑖 = 1, 2, 3),
𝑆𝑖(𝐴

𝑗) denotes the standard deviation of the elements 𝑎𝑗1𝑝 and

𝑎𝑗1𝑝+1, 𝑆𝑖(𝐴𝑗) =
√

1
2

∑𝑖+1
𝑘=𝑖 (𝑎

𝑗
1𝑖 − 1

2

∑𝑖+1
𝑘=𝑖 𝑎

𝑗
1𝑖)

2(𝑖 = 1, 2, 3),

𝐻𝑖(𝐴
𝑗) denotes the membership value of the element 𝑎𝑗1𝑝+1

in the interval type-2 fuzzy sets 𝐴, 1 ≤ 𝑖 ≤ 2, 𝑗 ∈ {+,−}.

III. THE METRIC SPACE OF TRAPEZOIDAL INTERVAL
TYPE-2 FUZZY SETS

A. Distance space of trapezoidal interval type-2 fuzzy sets

Definition 4: Let 𝐴 and 𝐵 be two TIT2FSs on 𝑋 , there
exists a real number 𝑑(𝐴,𝐵), which satisfies the following
properties:

1) 𝑑(𝐴,𝐵) ≥ 0, when 𝑑(𝐴,𝐵) = 0, if and only if 𝐴 =
𝐵 = ((0, 0, 0, 0; 0), (0, 0, 0, 0; 0));

2) 𝑑(𝐴,𝐵) = 𝑑(𝐵,𝐴);
3) 𝑑(𝐴,𝐵) ≤ 𝑑(𝐴,𝐶) + 𝑑(𝐶,𝐵) for any 𝐶 ∈ 𝑋 .

then (𝑋, 𝑑) is called a trapezoidal interval type-2 fuzzy dis-
tance space (TIT2FDS).

Based on functional analysis theory [30], we know that the
distance measure usually derived by norm operations directly.
Therefore, we first define some trapezoidal interval type-2
fuzzy norms as follows.

Definition 5: Let 𝐴 = ((𝑎+11, 𝑎
+
12, 𝑎

+
13, 𝑎

+
14;ℎ

+
𝐴), (𝑎

−
11, 𝑎

−
12,

𝑎−13, 𝑎
−
14;ℎ

−
𝐴)) be a TIT2FSs on 𝑋 , then the commonly norms

of 𝐴 (denote by ∥ 𝐴 ∥) are defined as follows:

1) 1-norm ∥ 𝐴 ∥1=
4∑
𝑖=1

(∣∣𝑎+1𝑖∣∣+ ∣∣𝑎−1𝑖∣∣)+ ∣∣ℎ+𝐴∣∣+ ∣∣ℎ−𝐴∣∣
2) 2-norm

∥ 𝐴 ∥2=
√

4∑
𝑖=1

(∣∣𝑎+1𝑖∣∣2 + ∣∣𝑎−1𝑖∣∣2)+ ∣∣ℎ+𝐴∣∣2 + ∣∣ℎ−𝐴∣∣2

307



3) p-norm

∥ 𝐴 ∥𝑝=
(

4∑
𝑖=1

(∣∣𝑎+1𝑖∣∣𝑝 + ∣∣𝑎−1𝑖∣∣𝑝)+ ∣∣ℎ+𝐴∣∣𝑝 + ∣∣ℎ−𝐴∣∣𝑝
)1/𝑝

4) ∞-norm
∥ 𝐴 ∥∞= max

1≤𝑖≤4

{∣∣𝑎+1𝑖∣∣ , ∣∣𝑎−1𝑖∣∣ , ∣∣ℎ+𝐴∣∣ , ∣∣ℎ−𝐴∣∣}
Definition 6: Let 𝐴 and 𝐵 be two TIT2FSs on 𝑋 , then

the distance measure between 𝐴 and 𝐵 is defined as

𝑑(𝐴,𝐵) =∥ 𝐴−𝐵 ∥ (8)

Without loss of generality, we take 2-norm to derive the
distance measure, which is defined as:

𝑑(𝐴,𝐵) =

((
4∑
𝑖=1

(𝑎+1𝑖 − 𝑏+1𝑖)2 +
4∑
𝑖=1

(𝑎−1𝑖 − 𝑏−1𝑖)2

+(ℎ+𝐴 − ℎ+𝐵)
2
+ (ℎ−𝐴 − ℎ−𝐵)

2
)
/10
)1/2 (9)

where 0 ≤ 𝑑(𝐴,𝐵) ≤ 1.

B. Inner product space of trapezoidal interval type-2 fuzzy sets

Definition 7: Let 𝐴 and 𝐵 be two TIT2FSs on 𝑋 , there
exists a real number ⟨𝐴,𝐵⟩, which satisfies the following
properties:

1) ⟨𝐴,𝐵⟩ = ⟨𝐵,𝐴⟩
2) ⟨𝑘1𝐴 + 𝑘2𝐵,𝐶⟩ = 𝑘1⟨𝐴,𝐶⟩ + 𝑘2⟨𝐵,𝐶⟩, for any

𝐶 ∈ 𝑋 , 𝑘1, 𝑘2 ∈ 𝑍.
3) ⟨𝐴,𝐴⟩ ≥ 0, if and only if 𝐴 = ((0, 0, 0, 0; 0), (0, 0,

0, 0; 0)), ⟨𝐴,𝐴⟩ = 0

then ⟨𝐴,𝐵⟩ is called an inner product of 𝐴 and 𝐵, and (𝑋, ⟨⟩)
is called trapezoidal interval type-2 fuzzy inner product space
(TIT2FIPS).

Based on Definition 7, we propose a inner product formula
of TIT2FSs as follows:

< 𝐴,𝐵 >=
4∑
𝑖=1

𝑎+1𝑖𝑏
+
1𝑖 +

4∑
𝑖=1

𝑎−1𝑖𝑏
−
1𝑖 + ℎ

+
𝐴ℎ

+
𝐵 + ℎ−𝐴ℎ

−
𝐵 (10)

It can be easily proved that Eq.(10) satisfying the axiom
of TIT2FIPS described in Definition 7.

IV. INTERVAL TYPE-2 FUZZY RELATIONAL DEGREE

In this section, we shall give the definition of interval type-
2 fuzzy relational degree and propose an interval type-2 fuzzy
relational degree formula.

Definition 8: Let 𝐴0 = (𝐴01, 𝐴02, ⋅ ⋅ ⋅ , 𝐴0𝑛) be an
interval type-2 fuzzy reference sequence, and 𝐵𝑖 =
(𝐵𝑖1, 𝐵𝑖2, ⋅ ⋅ ⋅ , 𝐵𝑖𝑛)(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) be an interval type-2
fuzzy sets sequences in the universe of discourse 𝑋 . For given
real numbers 𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗)(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛), such that

𝑅(𝐴0, 𝐵𝑖) =
1

𝑛

𝑛∑
𝑗=1

𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗) (11)

which satisfying the following conditions:

1) Normality
0 ≤ 𝑅(𝐴0, 𝐵𝑖) ≤ 1, when 𝑅(𝐴0, 𝐵𝑖) = 1 if and
only if 𝐴0 = 𝐵𝑖;

2) Symmetry
For any 𝐴0, 𝐵𝑖 ∈ 𝑋 , we have 𝑅(𝐴0, 𝐵𝑖) =
𝑅(𝐵𝑖, 𝐴0);

3) Closeness
If ∣𝐴0𝑗 −𝐵𝑖𝑗 ∣ → 0, then 𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗)→ 0.

then 𝑅(𝐴0, 𝐵𝑖) is referred to as a interval type-2 fuzzy
relational degree between 𝐴0 and 𝐵𝑖, where 𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗) is
the relational coefficient of 𝐴0 and 𝐵𝑖 at point 𝑗.

Based on the concept of interval type-2 fuzzy relational
degree proposed above, we can derive the following Theorem
1.

Theorem 1: Let 𝐴0 = (𝐴01, 𝐴02, ⋅ ⋅ ⋅ , 𝐴0𝑛) be an in-
terval type-2 fuzzy sets reference sequence and 𝐵𝑖 =
(𝐵𝑖1, 𝐵𝑖2, ⋅ ⋅ ⋅ , 𝐵𝑖𝑛)(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) be a common interval
type-2 fuzzy sets sequence, then

𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗)

=
1−sinΔ𝑖𝑗

cos(min
𝑖

{Δ𝑖𝑗})

𝑛∑
𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

𝑛∑
𝑗=1

∥𝐴0𝑗∥2+
𝑛∑

𝑗=1

∥𝐵𝑖𝑗∥2−
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

(12)

and

𝑅(𝐴0, 𝐵𝑖)

= 1
𝑛

𝑛∑
𝑗=1

1−sinΔ𝑖𝑗

cos(min
𝑖

{Δ𝑖𝑗})

𝑛∑
𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

𝑛∑
𝑗=1

∥𝐴0𝑗∥2+
𝑛∑

𝑗=1

∥𝐵𝑖𝑗∥2−
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

(13)
then 𝑅(𝐴0, 𝐵𝑖) is called an interval type-2 fuzzy relational
degree between 𝐴0 and 𝐵𝑖.

where Δ𝑖𝑗 =

∑
𝑝={+,−}

4∑
𝑘=1

(∣∣∣∣𝑎𝑝1𝑘(0𝑗)
−𝑏𝑝

1𝑘(𝑖𝑗)

∣∣∣∣+
∣∣∣∣ℎ𝑝

𝐴0𝑗
−ℎ𝑝

𝐵𝑖𝑗

∣∣∣∣
)

10 .

Proof:

1) Normality
Based on Cauchy inequality, we can easy to obtain
𝑛∑
𝑗=1

∥𝐴0𝑗∥2 +
𝑛∑
𝑗=1

∥𝐵𝑖𝑗∥2 ≥ 2
𝑛∑
𝑗=1

< 𝐴0𝑗 , 𝐵𝑖𝑗 >⇒
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

𝑛∑
𝑗=1

∥𝐴0𝑗∥2+
𝑛∑

𝑗=1

∥𝐵𝑖𝑗∥2−
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>
≤ 1. Also since

0 ≤ Δ𝑖𝑗 ≤ 1, so we have min
𝑖
{Δ𝑖𝑗} ≤ Δ𝑖𝑗 ⇒

cos(min
𝑖
{Δ𝑖𝑗}) ≥ cos(Δ𝑖𝑗), then it follows that

1−sinΔ𝑖𝑗−cos(min
𝑖
{Δ𝑖𝑗}) ≤ 1−sinΔ𝑖𝑗−cosΔ𝑖𝑗 .

Since 0 ≤ Δ𝑖𝑗 ≤ 1 ⇒ 1 − sinΔ𝑖𝑗 − cosΔ𝑖𝑗 ≤
0 ⇒ 1 − sinΔ𝑖𝑗 − cos(min

𝑖
{Δ𝑖𝑗}) ≤ 0 ⇒

1−sinΔ𝑖𝑗

cos(min
𝑖

{Δ𝑖𝑗}) ≤ 1.

Therefore, we can deduce that 0 ≤ 𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗) ≤ 1
for all 𝑗 = 1, 2, . . . , 𝑛, then 0 ≤ 𝑅(𝐴0, 𝐵𝑖) =
1
𝑛

𝑛∑
𝑗=1

𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗) ≤ 𝑛
𝑛 = 1. When 𝑅(𝐴0, 𝐵𝑖) = 1,

if and only if Δ𝑖𝑗 = 0 for all 𝑗, thus, we can easy
to obtain 𝐴0 = 𝐵𝑖.

2) Symmetry
The symmetry is obvious, omitted in here.

3) Closeness
If ∣𝐴0𝑗 −𝐵𝑖𝑗 ∣ → 0 for all 𝑗, then we have Δ𝑖𝑗 → 0,
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we can further deduce that 1−sinΔ𝑖𝑗

cos(min
𝑖

{Δ𝑖𝑗}) → 0 and
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

𝑛∑
𝑗=1

∥𝐴0𝑗∥2+
𝑛∑

𝑗=1

∥𝐵𝑖𝑗∥2−
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>
→ 0, then it fol-

lows that 𝑅𝑗(𝐴0𝑗 , 𝐵𝑖𝑗) → 1 for all 𝑗 = 1, 2, . . . , 𝑛.
Therefore, 𝑅(𝐴0, 𝐵𝑖)→ 0.

which completes the proof of Theorem 1.

Example 1: Let 𝐴0 = {𝐴01, 𝐴02} = (((0, 0, 0, 0.1; 1), (0,
0, 0, 0.05; 0.9)), ((0, 0.1, 0.1, 0.3; 1), (0.05, 0.1, 0.1, 0.2; 0.9))
be an interval type-2 fuzzy sets reference sequence , 𝐵1 =
{𝐵11, 𝐵12} = (((0.1, 0.3, 0.3, 0.5; 1), (0.2, 0.3, 0.3, 0.4; 0.9)
), ((0.3, 0.5, 0.5, 0.7; 1), (0.4, 0.5, 0.5, 0.6; 0.9))), and 𝐵2 =
{𝐵21, 𝐵22} = (((0.5, 0.7, 0.7, 0.9; 1), (0.6, 0.7, 0.7, 0.8; 0.9
)), ((0.7, 0.9, 0.9, 1; 1), (0.8, 0.9, 0.9, 0.95; 0.9))) be the two
interval type-2 fuzzy sets sequences, then based on Eqs.(10)
and (13), we have

𝑅1(𝐴01, 𝐵11) =
1− sin 0.225

cos(min(0.225, 0.545))

4.24

3.805 + 6.54− 4.24

= 0.5535

𝑅2(𝐴02, 𝐵12) =
1− sin 0.305

cos(min(0.305, 0.61))

4.24

3.805 + 6.54− 4.24

= 0.5094
(14)

then

𝑅(𝐴0, 𝐵1) =
𝑅1(𝐴01, 𝐵11) +𝑅2(𝐴02, 𝐵12)

2
= 0.5314

Similarly, we can obtain the 𝑅(𝐴0, 𝐵2) as follows:

𝑅(𝐴0, 𝐵2) =
𝑅1(𝐴01, 𝐵21) +𝑅2(𝐴02, 𝐵22)

2
= 0.2597

Since 𝑅(𝐴0, 𝐵1) > 𝑅(𝐴0, 𝐵2), therefore, 𝐵1 is closeness to
𝐴0 than 𝐵2.

In Eq.(10), we assume that the importance of each element
in interval type-2 fuzzy sets sequence is equal. However, in
some practical situations, especially in MADM problems, we
usually should consider the weight of each element. In this
case, we can introduce the weighted interval type-2 fuzzy
relational degree as follows:

𝑅𝑤(𝐴0, 𝐵𝑖)

=
𝑛∑
𝑗=1

𝜔𝑗
1−sinΔ𝑖𝑗

cos(min
𝑖

{Δ𝑖𝑗})

𝑛∑
𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

𝑛∑
𝑗=1

∥𝐴0𝑗∥2+
𝑛∑

𝑗=1

∥𝐵𝑖𝑗∥2−
𝑛∑

𝑗=1

<𝐴0𝑗 ,𝐵𝑖𝑗>

(15)

Similarly to Theorem 1, we can easily to prove that the
weighted interval type-2 fuzzy relational degree we proposed
is satisfying axiom rules described in Definition 8.

V. AN APPROACH TO MULTIPLE ATTRIBUTE DECISION
MAKING WITH INTERVAL TYPE-2 RELATIONAL DEGREE

A. The description of MADM problems

For an interval type-2 fuzzy MADM problem, let 𝐴 =
{𝐴1, 𝐴2, ⋅ ⋅ ⋅ , 𝐴𝑚} be a discrete set of alternatives and
𝐶 = {𝐶1, 𝐶2, ⋅ ⋅ ⋅ , 𝐶𝑛} be a set of attributes. 𝑊 = (<
𝑤1, [𝑤

𝐿
1 , 𝑤

𝑅
1 ] >,< 𝑤2, [𝑤

𝐿
2 , 𝑤

𝑅
2 ] >, ⋅ ⋅ ⋅ , < 𝑤𝑛, [𝑤

𝐿
𝑛 , 𝑤

𝑅
𝑛 ] >

)𝑇 is the weighting vector of attributes, where 𝑤𝑗(𝑗 =
1, 2, ⋅ ⋅ ⋅ , 𝑛) is in the form of IT2FSs, 𝑤𝐿𝑗 and 𝑤𝑅𝑗 be the
lower extreme and the upper extreme of the IT2FSs 𝑤𝑗 , and∑𝑛
𝑗=1 𝐶𝑂𝐺(𝑤𝑗) = 1, where 𝐶𝑂𝐺(𝑤𝑗) indicate the center of

gravity of 𝑤𝑗 . Assume that decision matrix 𝑅 = (𝐴𝑖𝑗)𝑚×𝑛,
where the attribute value 𝐴𝑖𝑗 takes the form of the IT2FSs
provided by decision maker (DM) for alternative 𝐴𝑖 with
respect to attribute 𝐶𝑗 . Based on these necessary conditions,
the ranking of alternatives is required.

B. Weight solution method

Solving attribute weight is the most important part in
decision making procedure. In the following, we shall propose
a new method to determine the traditional trapezoidal interval
type-2 fuzzy attribute weights based on trapezoidal type-1
fuzzy COG and the fuzziness of trapezoidal type-1 fuzzy sets
(TT1FSs).

For any TT1FSs 𝐴 = (𝑎1, 𝑎2, 𝑎3, 𝑎4;ℎ𝐴), Chen and Chen
[26] introduced a simple formula to calculate the center of
gravity of 𝐴, denote by (𝑥∗𝐴, 𝑦

∗
𝐴), which is defined as follows:

𝑦∗𝐴 =

{
ℎ𝐴(

𝑎3−𝑎2
𝑎4−𝑎1

+2)

6 if 𝑎1 ∕= 𝑎4 and 0 < 𝑥 ≤ 1
ℎ𝐴

2 if 𝑎1 = 𝑎4 and 0 < 𝑥 ≤ 1
(16)

𝑥∗𝐴 =
𝑦∗𝐴(𝑎2 + 𝑎3 + (𝑎1 + 𝑎4)(ℎ𝐴 − 𝑦∗𝐴))

2ℎ𝐴
(17)

In [27], Li propose the measure of fuzziness of TT1FSs 𝐴,
denote by 𝐹 (𝐴), which can be calculated as:

𝐹 (𝐴) =
(𝑎4 − 2𝑎2 + 2𝑎3 − 𝑎1)ℎ2𝐴

6
(18)

In order to obtain the related feature information, we
should maximize the COG of 𝑊 = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛)𝑇 ,
where 𝑤𝑗 = [𝑤𝐿𝑗 , 𝑤

𝑅
𝑗 ](𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛) be an interval type-2

fuzzy weight, and minimize the weighted fuzziness measure,
respectively. The ranges of attribute weights (incomplete
known attribute weights) are provided by decision maker
as: Ω = {𝑤𝑗 ∣𝑤−

𝑗 ≤ 𝑤𝑗 ≤ 𝑤+
𝑗 ,
∑𝑛
𝑗=1 𝑤𝑗 = 1}. Based on

the above analysis, we can establish the maximize x-COG
optimal linear programming model first as follows:
(Mod 1)

max
∑𝑛
𝑗=1

∑𝑚
𝑖=1 (𝑥

∗
𝑎𝐿𝑖𝑗
𝑥∗
𝑤𝐿

𝑗
+ 𝑥∗

𝑎𝑅𝑖𝑗
𝑥∗
𝑤𝑅

𝑗
)

𝑠.𝑡.

⎧⎨
⎩

𝑥∗
𝑤𝐿

𝑗
≤ 𝑥∗

𝑤𝑅
𝑗
(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

𝑥∗
𝑤𝐿

𝑗
≥ 𝑤−

𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
𝑥∗
𝑤𝑅

𝑗
≤ 𝑤+

𝑗 (𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)∣∣∣𝑥∗𝑤𝐿
𝑗
− 𝑥∗

𝑤𝑅
𝑗

∣∣∣ ≤ 𝐿 ∣∣𝑤𝐿𝑗 − 𝑤𝑅𝑗 ∣∣∑𝑛
𝑗=1

𝑥∗
𝑤

+
𝑗

+𝑥∗
𝑤

−
𝑗

2 = 1
0 ≤ 𝑥∗

𝑤𝐿
𝑗
, 𝑥∗
𝑤𝑅

𝑗
≤ 1(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

(19)

It is noted that the fourth constrain condition is a Lipschitz
condition, where 𝐿 is a Lipschitz constant and 0 < 𝐿 < 1.
From contraction mapping principle in convex functional
analysis [29], we can get the globe optimal solution of this
model. In general, we take 𝐿 = 0.5 to use. Similarly, we
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can construct the minimize fuzziness measure optimal linear
programming model and the maximize y-COG optimal linear
programming model, respectively.
(Mod 2)

max
∑𝑛
𝑗=1

∑𝑚
𝑖=1 (𝐹 (𝑎

𝐿
𝑖𝑗)𝐹 (𝑤

𝐿
𝑗 ) + 𝐹 (𝑎

𝑅
𝑖𝑗)𝐹 (𝑤

𝑅
𝑗 ))

𝑠.𝑡.

⎧⎨
⎩

𝐹 (𝑤𝐿𝑗 ) ≤ 𝐹 (𝑤𝑅𝑗 )(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
𝐹 (𝑤𝐿𝑗 ) ≥ 5

18 (𝑥
∗
𝑤𝑅

𝑗
− 𝑥∗

𝑤𝐿
𝑗
)(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

𝐹 (𝑤𝑅𝑗 ) ≤ 5
18 (𝑤

+
𝑗 − 𝑤−

𝑗 )(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
∑𝑛

𝑗=1 𝐹 (𝑤𝐿
𝑗 )+𝐹 (𝑤𝑅

𝑗 )

2𝑛 = 5
18

𝑤+
𝑗 −𝑤−

𝑗 +𝑥∗
𝑤𝑅

𝑗
−𝑥∗

𝑤𝐿
𝑗

2
0 ≤ 𝐹 (𝑤𝐿𝑗 ), 𝐹 (𝑤𝑅𝑗 ) ≤ 1(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

(20)
(Mod 3)

max
∑𝑛
𝑗=1

∑𝑚
𝑖=1 (𝑦

∗
𝑎𝐿𝑖𝑗
𝑦∗
𝑤𝐿

𝑗
+ 𝑦∗

𝑎𝑅𝑖𝑗
𝑦∗
𝑤𝑅

𝑗
)

𝑠.𝑡.

⎧⎨
⎩

𝑦∗
𝑤𝐿

𝑗
≤ 𝑦∗

𝑤𝑅
𝑗
(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

𝑦∗
𝑤𝐿

𝑗
≥ 7

18 (1− 𝐹 (𝑤𝑅𝑗 ))(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)
𝑦∗
𝑤𝑅

𝑗
≤ 7

18 (1− 𝐹 (𝑤𝐿𝑗 ))(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)∑𝑛
𝑗=1 𝑦

∗
𝑤𝐿

𝑗
+𝑦∗

𝑤𝑅
𝑗

2𝑛 = 7
18 (1−

∑𝑛
𝑗=1 𝐹 (𝑤𝑅

𝑗 )+𝐹 (𝑤𝑅
𝑗 )

2 )
0 ≤ 𝑦∗

𝑤𝐿
𝑗
, 𝑦∗
𝑤𝑅

𝑗
≤ 1(𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛)

(21)

Based on the models above, we can construct the alge-
braic equations to solve the interval type-2 fuzzy attribute
weight 𝑤𝑗 = [𝑤𝐿𝑗 , 𝑤

𝑅
𝑗 ], where 𝑤𝐿𝑗 = (𝑎𝐿1𝑗 , 𝑎

𝐿
2𝑗 , 𝑎

𝐿
3𝑗 , 𝑎

𝐿
4𝑗 ;ℎ

𝐿
𝑤𝑗),

and 𝑤𝑅𝑗 = (𝑎𝑅1𝑗 , 𝑎
𝑅
2𝑗 , 𝑎

𝑅
3𝑗 , 𝑎

𝑅
4𝑗 ;ℎ

𝑅
𝑤𝑗). For computational con-

venience, we consider a special case that the 𝑤𝑗 is a arith-
metic symmetry interval type-2 fuzzy sets, which means the
reference point of 𝑤𝐿𝑗 and 𝑤𝑅𝑗 are satisfying 𝑎𝐿2𝑗 − 𝑎𝐿1𝑗 =
𝑎𝐿3𝑗 − 𝑎𝐿2𝑗 = 𝑎𝐿4𝑗 − 𝑎𝐿3𝑗 = 𝑑𝐿𝑗 and 𝑎𝑅2𝑗 − 𝑎𝑅1𝑗 = 𝑎𝑅3𝑗 −
𝑎𝑅2𝑗 = 𝑎𝑅4𝑗 − 𝑎𝑅3𝑗 = 𝑑𝑅𝑗 , respectively. Therefore, we have

𝑎
𝐿(𝑅)
𝑛𝑗 = 𝑎

𝐿(𝑅)
1𝑗 + (𝑛 − 1)𝑑

𝐿(𝑅)
𝑗 (𝑛 = 1, 2, 3, 4). Based on

this assumption and related mathematical relationship, we can
establish the linear equations for solving the IT2FSs attribute
weights as follows:⎧⎨

⎩

𝑦∗
𝑤𝐿

𝑗
(2𝑎𝐿1𝑗+3𝑑𝐿𝑗 )(ℎ𝐿

𝑤𝑗
−𝑦∗

𝑤𝐿
𝑗
+1)

2ℎ𝐿
𝑤𝑗

= 𝑥∗
𝑤𝐿

𝑗

ℎ𝐿
𝑤𝑗

(
𝑑𝐿𝑗

3𝑑𝐿
𝑗

+2)

6 = 𝑦∗
𝑤𝐿

𝑗

5𝑑𝐿𝑗 (ℎ𝐿
𝑤𝑗

)
2

6 = 𝐹 (𝑤𝐿𝑗 )

(22)

and ⎧⎨
⎩

𝑦∗
𝑤𝑅

𝑗
(2𝑎𝑅1𝑗+3𝑑𝑅𝑗 )(ℎ𝑅

𝑤𝑗
−𝑦∗

𝑤𝑅
𝑗
+1)

2ℎ𝐿
𝑤𝑗

= 𝑥∗
𝑤𝑅

𝑗

ℎ𝑅
𝑤𝑗

(
𝑑𝑅𝑗

3𝑑𝑅
𝑗

+2)

6 = 𝑦∗
𝑤𝑅

𝑗

5𝑑𝑅𝑗 (ℎ𝑅
𝑤𝑗

)
2

6 = 𝐹 (𝑤𝑅𝑗 )

(23)

Solving these two algebraic equations, we can obtain the
optimal attribute weights under interval type-2 fuzzy environ-
ment.

Remark 1: In Mod-2 and Mod-3, we take Lipschitz con-
stant 𝐿 = 7

18 and 5
18 , respectively. Where 7

18 is the maximum
value of 𝐹 and 5

18 is the maximum value of 𝑦∗. In what
follows, we shall give a strictly proof.

Theorem 2: Let 𝐴 be a type-1 fuzzy sets, then max 𝑦∗𝐴 =
7
18 and 𝐹 (𝐴) = 5

18 .

Proof: Based on Eq.(16), we have 𝑦∗𝐴 =
ℎ𝐴(

𝑎3−𝑎2
𝑎4−𝑎1

+2)

6 ,
also since 𝑎3 − 𝑎2 = 1

3 (𝑎4 − 𝑎1), then it follows that 𝑦∗𝐴 =
ℎ𝐴( 1

3+2)

6 = 7
18ℎ𝐴 ≤ 7

18 . Similarly, from Eq.(18), we have

𝐹 (𝐴) =
(𝑎4−2𝑎2+2𝑎3−𝑎1)ℎ2

𝐴

6 = 5
6𝑑𝐴ℎ

2
𝐴. Since 0 ≤ ℎ𝐴 ≤ 1

and 0 ≤ 3𝑑 = 𝑎4 − 𝑎1 ≤ 1 =⇒ 0 ≤ 𝑑 ≤ 1
3 , then we have

𝐹 (𝐴) = 5
6𝑑𝐴ℎ

2
𝐴 ≤ 5

6 × 1
3 × 12 = 5

18 . Thus, the proof of
Theorem 2 is completed.

C. Decision making steps

Step 1: Calculate the IT2FSs attribute weights based on
Eqs.(20-23).

Step 2: Define the positive ideal solution (PIS) and the
negative ideal solution (NIS) based on interval type-2 fuzzy
numbers, respectively:

𝐴+ = (𝐴+
1 , 𝐴

+
2 , ⋅ ⋅ ⋅ , 𝐴+

𝑛 ) (24)

𝐴− = (𝐴−
1 , 𝐴

−
2 , ⋅ ⋅ ⋅ , 𝐴−

𝑛 ) (25)

where
𝐴+
𝑗 = max

𝑖
𝑅𝑎𝑛𝑘(𝐴𝑖𝑗), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (26)

𝐴−
𝑗 = min

𝑖
𝑅𝑎𝑛𝑘(𝐴𝑖𝑗), 𝑗 = 1, 2, ⋅ ⋅ ⋅ , 𝑛 (27)

Step 3: Calculate the interval type-2 fuzzy relational coef-
ficient of each alternative from the PIS and NIS by using the
Eq.(12), respectively:

The interval type-2 fuzzy relational coefficient of each
alternative from the PIS is defined as:

𝑅+
𝑖𝑗 =

1−sin 𝑑(𝐴𝑖𝑗 ,𝐴
+
𝑗 )

cos(
𝑚

min
𝑖=1

𝑑(𝐴𝑖𝑗 ,𝐴
+
𝑗 ))

𝑛∑
𝑗=1

<𝐴𝑖𝑗 ,𝐴
+
𝑗 >

𝑛∑
𝑗=1

∥𝐴𝑖𝑗∥2+
𝑛∑

𝑗=1
∥𝐴+

𝑗 ∥2−
𝑛∑

𝑗=1

<𝐴𝑖𝑗 ,𝐴
+
𝑗 >

(28)

Similarly, the interval type-2 fuzzy relational coefficient of
each alternative from the NIS is defined as:

𝑅−
𝑖𝑗 =

1−sin 𝑑(𝐴𝑖𝑗 ,𝐴
−
𝑗 )

cos(
𝑚

min
𝑖=1

𝑑(𝐴𝑖𝑗 ,𝐴
−
𝑗 ))

𝑛∑
𝑗=1

<𝐴𝑖𝑗 ,𝐴
−
𝑗 >

𝑛∑
𝑗=1

∥𝐴𝑖𝑗∥2+
𝑛∑

𝑗=1
∥𝐴−

𝑗 ∥2−
𝑛∑

𝑗=1
<𝐴𝑖𝑗 ,𝐴

−
𝑗 >

(29)

Step 4: Calculate the weighted interval type-2 fuzzy rela-
tional degree of each alternative based on the PIS and NIS,
we utilize the following two formulas, respectively:

𝑅+
𝑖 =

𝑛∑
𝑗=1

𝑅𝑎𝑛𝑘(𝑤𝑗)
𝑛∑
𝑗=1

𝑅𝑎𝑛𝑘(𝑤𝑗)
𝑅+
𝑖𝑗 (𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) (30)

𝑅−
𝑖 =

𝑛∑
𝑗=1

𝑅𝑎𝑛𝑘(𝑤𝑗)
𝑛∑
𝑗=1

𝑅𝑎𝑛𝑘(𝑤𝑗)
𝑅−
𝑖𝑗 (𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) (31)
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Step 5: Calculate the interval type-2 fuzzy relative rela-
tional degree of each alternative as follows:

𝑅𝑖 =
𝑅+
𝑖

𝑅+
𝑖 +𝑅−

𝑖

(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) (32)

Step 6: Rank the alternatives 𝐴𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ ,𝑚) based
on the value of relative relational degree 𝑅𝑖. Obviously, the
greater the value 𝑅𝑖, the better the alternative 𝐴𝑖 will be.

Step 7: End.

VI. NUMERICAL EXAMPLE

In this section, we consider an investment problem of
the transport facilities, which aims to search the best in-
vestment alternative (adapted from [28]). There are seven
potential investment alternatives 𝐴𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 7) to be
evaluated and four critical attributes should be considerate: (1)
Resources(C1); (2) Politics and Policy(C2); (3) Economy(C3);
(4) Infrastructure(C4). Assume that the decision maker (DM)
use the linguistic terms from Table I to express the characteris-
tics of the potential investment alternatives 𝐴𝑖(𝑖 = 1, 2, ⋅ ⋅ ⋅ , 7)
with respect to four attributes Cj(j = 1, 2, 3, 4) under interval
type-2 fuzzy environment. The decision making information
provide by DM as shown in Table II. The incomplete known
attribute weights provided by DM is: Ω = {0.25 ≤ 𝑤1 ≤
0.4, 0.3 ≤ 𝑤2 ≤ 0.4, 0.2 ≤ 𝑤3 ≤ 0.4, 0.2 ≤ 𝑤4 ≤ 0.35}.
Now, we apply our proposed method to the ranking and
selection of the best investment alternative, which involves the
following steps:

TABLE I. LINGUISTIC TERMS AND THEIR CORRESPONDING INTERVAL

TYPE-2 FUZZY SETS

Linguistic terms Interval type-2 fuzzy sets
Very low(VL) ((0,0,0,0.1;1),(0,0,0,0.05;0.9))
Low(L) ((0,0.1,0.1,0.3;1),(0.05,0.1,0.1,0.2;0.9))
Medium low(ML) ((0.1,0.3,0.3,0.5;1),(0.2,0.3,0.3,0.4;0.9))
Medium(M) ((0.3,0.5,0.5,0.7;1),(0.4,0.5,0.5,0.6;0.9))
Medium high(MH) ((0.5,0.7,0.7,0.9;1),(0.6,0.7,0.7,0.8;0.9))
High(H) ((0.7,0.9,0.9,1;1),(0.8,0.9,0.9,0.95;0.9))
Very high(VH) ((0.9,1,1,1;1),(0.95,1,1,1;0.9))

TABLE II. DECISION MAKING INFORMATION PROVIDED BY DECISION

MAKER

Resources Politics and Policy Economy Infrastructure
𝐴1 VH M H MH
𝐴2 H VH ML M
𝐴3 H H MH H
𝐴4 VH H H M
𝐴5 VH H H MH
𝐴6 H M H VH
𝐴7 VH VH ML MH

A. Decision making procedure based on interval type-2 fuzzy
relational degree

Step 1: Utilize Eqs. (20-23) to calculate the IT2FSs at-
tribute weights.

Based on Mod (1)-(3), we can obtain the optimal models
from x-COG, y-COG, and the minimize fuzziness with 𝑤𝑗(𝑗 =

1, 2, 3, 4), the results are shown as follows:

𝑥∗𝑤1
= [𝑥∗𝑤𝐿

1
, 𝑥∗𝑤𝑅

1
] = [0.25, 0.32]

𝑥∗𝑤2
= [𝑥∗𝑤𝐿

2
, 𝑥∗𝑤𝑅

2
] = [0.30, 0.34]

𝑥∗𝑤3
= [𝑥∗𝑤𝐿

3
, 𝑥∗𝑤𝑅

3
] = [0.20, 0.22]

𝑥∗𝑤4
= [𝑥∗𝑤𝐿

4
, 𝑥∗𝑤𝑅

4
] = [0.20, 0.21]

𝑦∗𝑤1
= [𝑦∗𝑤𝐿

1
, 𝑦∗𝑤𝑅

1
] = [0.2908, 0.3781]

𝑦∗𝑤2
= [𝑦∗𝑤𝐿

2
, 𝑦∗𝑤𝑅

2
] = [0.2462, 0.3841]

𝑦∗𝑤3
= [𝑦∗𝑤𝐿

3
, 𝑦∗𝑤𝑅

3
] = [0.2462, 0.3506]

𝑦∗𝑤4
= [𝑦∗𝑤𝐿

4
, 𝑦∗𝑤𝑅

4
] = [0.2443, 0.2593]

𝐹 (𝑤∗
1) = [𝐹 (𝑤𝐿1

∗
), 𝐹 (𝑤𝑅1

∗
)] = [0.023, 0.038]

𝐹 (𝑤∗
2) = [𝐹 (𝑤𝐿2

∗
), 𝐹 (𝑤𝑅2

∗
)] = [0.010, 0.020]

𝐹 (𝑤∗
3) = [𝐹 (𝑤𝐿3

∗
), 𝐹 (𝑤𝑅3

∗
)] = [0.010, 0.020]

𝐹 (𝑤∗
4) = [𝐹 (𝑤𝐿4

∗
), 𝐹 (𝑤𝑅4

∗
)] = [0.015, 0.030]

Take 𝑤1 as an example, we can obtain the parameter value
of 𝑤1 based on Eqs.(22-23) as follows:⎧⎨

⎩

𝑦∗
𝑤𝐿

1
(2𝑎𝐿11+3𝑑𝐿1 )(ℎ𝐿

𝑤1
−𝑦∗

𝑤𝐿
1
+1)

2ℎ𝐿
𝑤1

= 0.25

ℎ𝐿
𝑤1

(
𝑑𝐿1
3𝑑𝐿1

+2)

6 = 0.2908
5𝑑𝐿1 (ℎ𝐿

𝑤1
)
2

6 = 0.023

(33)

and ⎧⎨
⎩

𝑦∗
𝑤𝑅

1
(2𝑎𝑅11+3𝑑𝑅1 )(ℎ𝑅

𝑤1
−𝑦∗

𝑤𝑅
1
+1)

2ℎ𝐿
𝑤1

= 0.32

ℎ𝑅
𝑤1

(
𝑑𝑅1
3𝑑𝑅1

+2)

6 = 0.3781
5𝑑𝑅1 (ℎ𝑅

𝑤1
)
2

6 = 0.038

(34)

By solving the linear equations above, we can obtain the
interval type-2 fuzzy attribute weight 𝑤1 as follows:

𝑤1 = ((0.367, 0.416, 0.465, 0.514; 0.747),

(0.438, 0.488, 0.538, 0.588; 0.956))

Similarly, we can solve other attribute weights 𝑤𝑗(𝑗 =
2, 3, 4) respectively, the results are shown as follows:

𝑤2 = ((0.511, 0.540, 0.569, 0.598; 0.633),

(0.461, 0.485, 0.509, 0.533; 0.987))

𝑤3 = ((0.325, 0.355, 0.385, 0.415; 0.633),

(0.305, 0.334, 0.363, 0.392; 0.902))

𝑤4 = ((0.304, 0.349, 0.394, 0.439; 0.628),

(0.262, 0.343, 0.424, 0.505; 0.667))

(35)

Step 2: Define the positive ideal solution (PIS) and the
negative ideal solution (NIS) based on interval type-2 fuzzy
numbers, respectively:

Based on Eq.(7), we can obtain the positive ideal solution
(PIS) and the negative ideal solution (NIS) as follows:

311



1) Positive ideal solution (PIS)

𝐴+ = {((0.9, 1, 1, 1; 1, 1), (0.95, 1, 1, 1; 0.9, 0.9)),
((0.9, 1, 1, 1; 1, 1), (0.95, 1, 1, 1; 0.9, 0.9)),

((0.7, 0.9, 0.9, 1; 1, 1), (0.8, 0.9, 0.9, 0.95; 0.9, 0.9)),

((0.9, 1, 1, 1; 1, 1), (0.95, 1, 1, 1; 0.9, 0.9))}
2) Negative ideal solution (NIS)

𝐴− = {((0.7, 0.9, 0.9, 1; 1, 1), (0.8, 0.9, 0.9, 0.95; 0.9, 0.9)),
((0.3, 0.5, 0.5, 0.7; 1, 1), (0.4, 0.5, 0.5, 0.6; 0.9, 0.9)),

((0.1, 0.3, 0.3, 0.5; 1, 1), (0.2, 0.3, 0.3, 0.4; 0.9, 0.9)),

((0.1, 0.3, 0.3, 0.5; 1, 1), (0.2, 0.3, 0.3, 0.4; 0.9, 0.9))}
Step 3: Calculate the interval type-2 fuzzy relational coef-

ficient of each alternative from the PIS and NIS by using the
Eq.(22), respectively.

Based on Eqs.(12-13) and Eqs.(28-29), we can calculate
the relational coefficient of each alternative. Take 𝑅+

11 as an
example, we have the following calculation process:

𝑅+
11 =

1− sin 𝑑(𝐴11, 𝐴
+
1 )

cos(
7

min
𝑖=1

𝑑(𝐴𝑖1, 𝐴
+
1 ))

4∑

𝑗=1
< 𝐴1𝑗 , 𝐴

+
𝑗 >

4∑

𝑗=1
∥𝐴1𝑗∥2 +

4∑

𝑗=1

∥
∥
∥𝐴+

𝑗

∥
∥
∥
2 −

4∑

𝑗=1
< 𝐴1𝑗 , 𝐴

+
1 >

=
1− 0

cos 0

37.935

34.585 + 43.89− 37.935
= 0.936

Similarly, we can calculate the other relational coefficients
of each alternative from the PIS and NIS, the results are shown
as the following matrix form:

𝑅+ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.936 0.539 0.936 0.693
0.791 0.882 0.443 0.508
0.884 0.884 0.823 0.508
0.951 0.854 0.951 0.548
0.981 0.881 0.981 0.725
0.854 0.548 0.951 0.951
0.846 0.846 0.425 0.626

⎤
⎥⎥⎥⎥⎥⎥⎦

𝑅− =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.794 0.884 0.444 0.734
0.929 0.536 0.929 0.929
0.886 0.589 0.576 0.589
0.786 0.582 0.439 0.875
0.781 0.578 0.437 0.723
0.858 0.858 0.431 0.494
0.829 0.533 0.924 0.767

⎤
⎥⎥⎥⎥⎥⎥⎦

Step 4: Utilize Eq.(7) to calculate the ranking value of
attribute weight 𝑤𝑗(𝑗 = 1, 2, 3, 4), the results are shown as
follows:

𝑅+
1 = 0.7581, 𝑅+

2 = 0.7036, 𝑅+
3 = 0.8043, 𝑅+

4 = 0.8454

𝑅+
5 = 0.9009, 𝑅+

6 = 0.7869, 𝑅+
7 = 0.7253, 𝑅−

1 = 0.7463

𝑅−
2 = 0.7964, 𝑅−

3 = 0.6725, 𝑅−
4 = 0.6666, 𝑅−

5 = 0.6359

𝑅−
6 = 0.7101, 𝑅−

7 = 0.7362.

Step 5: Calculate the interval type-2 fuzzy relative rela-
tional degrees of each alternative based on Eq.(32), the results
are shown as follows:

𝑅1 = 0.5039, 𝑅2 = 0.4691, 𝑅3 = 0.5446, 𝑅4 = 0.5591

𝑅5 = 0.5862, 𝑅6 = 0.5256, 𝑅7 = 0.4962

Since

𝑅5 > 𝑅4 > 𝑅3 > 𝑅6 > 𝑅1 > 𝑅7 > 𝑅2

Therefore, we have

𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴7 ≻ 𝐴2

Thus, the best investment alternative is 𝐴5.

B. Comparisons of our proposed method with other existing
methods

In what follows, we compare our proposed method with
other previous methods including similarity measure method
[20], possibility degree method [28], and ranking value method
[10]. The results are shown in Table III.

TABLE III. COMPARISONS OF FOUR METHODS

Methods Order of alternatives
Similarity method [20] 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴7 ≻ 𝐴2

Possibility degree method [28] 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴7 ≻ 𝐴2

Ranking value method [10] 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴7 ≻ 𝐴2

The proposed method 𝐴5 ≻ 𝐴4 ≻ 𝐴3 ≻ 𝐴6 ≻ 𝐴1 ≻ 𝐴7 ≻ 𝐴2

From Table III, it is clear that four methods have the
same ranking results, this verifies the method we proposed
is reasonable and validity in this paper.

(1) Compared with Zeng and Li’s similarity measure
method in [20], the main advantage of our method is that
we consider all the IT2FSs as a whole, not individual. Fur-
thermore, the similarity measure proposed by Zeng and Li
[20] can only reflect the relationship between two IT2FSs,
which means that our method in this paper is more generalized
and versatility. In addition, the proposed method only use
the discreet reference points of the membership to calculate
the relational degree whereas Zeng and Li’s method must
use the continues membership function to obtain the value of
similarity, so the computational complexity of our method is
much lower than Zeng and Li’s method.

(2) Compared with possibility degree method in [28], the
proposed method is based on interval type-2 fuzzy relational
degree, and the method by Hu et al. [28] is based on possibility
degree. In real decision making, the decision maker usually
difficult to give a exact value of attribute weight under various
uncertain factors, it is usually converted to IT2FSs information.
In our method, we construct a optimization model to solve
interval type-2 fuzzy attribute weights easily, so the method in
this paper is more suitable for MADM problems under interval
type-2 fuzzy environment.

(3) Compared with ranking value method in [10], the
method in this paper propose a new uncertainty measure for
IT2FSs, and extend to MADM problems. The ranking value
method by Chen et al. [10] can only rank the order of any two
IT2FSs, however, it is not reflect the correlation or similarity
of IT2FSs. Moreover, the ranking value method include some
complex operational laws and its geometric meaning is not
clear, therefore, it is difficult to use in real-life decision
making. Our method can overcome these drawbacks, because
we give a simple relational degree measure to rank the IT2FSs
and apply to MADM problem, the prominent characteristic is
that the geometric meaning is clear and easy to use in practice.
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According to the comparisons and analysis above, our
proposed relational degree of IT2FSs method is better than
the other three methods.

VII. CONCLUSION

Due to the powerful ability of IT2FSs in describing the
uncertainty and fuzzy information, and motivated by the simi-
larity measure of IT2FSs, we have first investigated the interval
type-2 fuzzy metric spaces and propose the distance measure
and inner product measure in this paper. Then, we introduce
the concept of interval type-2 fuzzy relational degree and
derive to a simple relational degree formula which satisfies
the axiomatic definition we proposed. On the basis of our
theoretical analysis, we construct a group of mathematical opti-
mization models based on the center of gravity and fuzziness of
IT2FSs to solve the optimal attribute weights. Furthermore, we
have developed the procedure of interval type-2 fuzzy multiple
attribute decision making problems. To illustrate the interval
type-2 fuzzy relational analysis decision making method we
proposed, an practical example is given. The result has shown
that our method is effective and validity for handling MADM
problems with interval type-2 fuzzy information.

For further research, we shall extend the proposed method
to general type-2 fuzzy sets, and apply it to decision making,
cluster analysis, computing with words and data mining.
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