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Abstract—a novel meta-cognitive-based scaffolding classifier, 
namely Generic-Classifier (gClass), is proposed in this paper to 
handle non-stationary classification problems in the single-pass 
learning mode. Meta-cognitive learning is a breakthrough in the 
machine learning where the learning process is not only directed 
to craft learning strategies to exacerbate the classification rates , 
i.e., how-to-learn aspect,  but also is focused to accommodate the 
emotional reasoning and commonsense of human being in terms 
of what-to-learn and when-to-learn facets. The crux of gClass is to 
synergize the scaffolding learning concept, which constitutes a 
well-known tutoring theory in the psychological literatures, in the 
how-to-learn context of meta-cognitive learning, in order to boost 
the learner’s performance in dealing with complex data. A 
comprehensive empirical studies in time-varying datasets is 
carried out, where gClass numerical results are benchmarked 
with other state-of-the-art classifiers. gClass is, generally 
speaking, capable of delivering the most encouraging numerical 
results where a trade-off between predictive accuracy and 
classifier’s complexity can be achieved.        

Keywords—gClass, Evolving Fuzzy Classifier, Fuzzy System, 
Neural Network. 

I.  INTRODUCTION  
The realm of evolving system of [16], [34]-[36] has been 

enriched by Suresh et al of [1]-[5] where they in essence unveil 
a new avenue to amalgamate the emotional perspective and 
commonsense of human being into the evolving system scope, 
which is thus far cognitive in nature. Suresh et al in [1]-[5] 
contends that meta-cognitive aspects can avail to mimic the 
ability of human being to appraise the observed knowledge 
with respect to environment and their knowledge. Specifically, 
it hedges the learning machine to learn full streaming data 
without being able to favor particular training samples and, in 
parallel to that, underpins the learners to figure out the 
compatible time instants to not regularly learn streaming data.  

The meta-cognitive learning with respect to the meta-
cognition and meta-memory theories in [6]-[8] comprises three 
cornerstones which are what-to-learn, how-to-learn and when-
to-learn components. In retrospect to [1]-[5], these three 
learning phases can be emulated in the scope of machine 
learning with the sample deletion strategy, schema theory and 
sample  reserve strategy.  

Scaffolding theory constitutes a firm theoretical framework 
of tutoring theory [9], aiding the learner in sorting out the 
complex task. The centric notion is to confer the learning 
supervision, capable of deciphering the complicated learning 
problem into a simpler one. The passive supervision endows 

the learner with the experience-feedback rule, where the 
corrective actions, supplied by this mechanism, conceive a 
reciprocal relationship with the predictive output of the 
machine learning. The active supervision consist of three 
phases, which are problematizing (drift detection) [10], 
complexity reduction (feature selection) [11], fading (rule 
pruning). 

This paper serves a novel meta-cognitive classifier of the 
so-called Generic Classifier (gClass), where the how-to-learn 
component is specifically devised in accordance with the 
Scaffolding and Schema theories of [12]. gClass complies a 
holistic concept of evolving system, where it can embark the 
training process from scratch with an empty knowledge. The 
fuzzy rules can be autonomously extracted from the high 
potential and summarization power streaming data, whereas the 
superfluous and obsolete fuzzy rules can be pruned to relieve 
the computational and structural complexities. More 
interestingly, the fuzzy rules, which have been trimmed in the 
earlier training episodes, can be recalled, whenever their 
contributions are entailed to apprehend the up-to-date data 
distribution. This component plays a precarious role in the case 
of cyclic drift, where the outdated data distribution is revisited. 
Apart from that, the online feature weighting mechanism and 
local drift handling strategy are amalgamated into the how-to-
learn component.  In the realm of the what-to-learn learning 
module, the active learning procedure is incorporated, where 
the merit, in comparison with Suresh et al work in [1]-[5], is 
not only capable of truncating the inconsequential training 
samples, but also capable of mitigating the annotation efforts 
by operator, which is desired in practice. Conversely, the 
standard sample reverse technique is plugged in the when-to-
learn learning module. Importantly, all learning modules are 
committed in the training process in the single-pass learning 
mode and exclude pre or post-processing approach. 

Another novelty of gClass leans on its cognitive 
component, where the generalized fuzzy rule is put forward. 
The premise part of the generalized fuzzy rule triggers a hyper-
ellipsoidal cluster arbitrarily rotated in any positions, which 
reaps some merits against a hyper-ellipsoidal cluster in main 
position or a hyper-spherical cluster. Unlike traditional Takagi 
Sugeno Kang (TSK) fuzzy system, the consequent part of 
gClass is carved on the local non-linear Chebyshev function 
[13]. The construct of this approach is to increase the degree of 
freedom of the rule consequent, thus rectifying a local output 
mapping ability in comparison with the local liner hyper-plane 
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function. Comprehensive numerical studies have been 
undertaken making use of datasets emphasizing various 
concept drifts, engaging benchmarks with gClass counterparts. 
In what follows, gClass can outperform other consolidated 
algorithms in terms of the predictive quality, rule-base 
simplicity and runtime, while consuming and labeling less 
streaming data than those of its counterparts.                         

The remainder of this paper is organized as follows: Section 
2 discloses the cognitive component of gClass, Section 3 
elaborates algorithmic development of gClass, Section 4 
outlines the empirical study on the numerous artificial and real-
life datasets and last section deduces this paper.  

II. COGNITIVE COMPONENT OF GCLASS 
The classification accuracy of TSK fuzzy system can be 

substantiated with the use of the non-linear function as the 
consequent parameters in lieu of the standard linear hyper-
plane. The linear hyper-plane consequent, arguably, does not 
exploit a full merit of the local approximation [14],[15].  The 
use of the functional link-based rule consequent has been 
pioneered with Y-Y.Lin et al in [14], stemming from the 
functional link neural network in [15]. Nonetheless, the work 
of [14] is reliant on the trigonometric-based rule consequent, 
which is adjusted by the global adaptation scheme. gClass 
benefits from the Chebishev function affirming a simpler 
mathematical from than that of the trigonometric function. 
Furthermore, the rule consequent is locally adjusted, thus being 
able to be interpreted as the non-linear function, snuggling 
along the real trend of the classification surface. Accordingly, 
the local learning approach can grant a sort of rule transparency 
in the context of operating region of the system being modeled.  
The generalized fuzzy rule is expressed as follow:  

 iR : IF X is close to iR Then ie
o

i xy Ω=  (1)  
where iR  stands for a multi-dimensional kernel, constructed 
from a concatenation of fuzzy sets, representing a rule 
(membership function) and all its antecedent parts, whereas 

o
iy denotes the regression output to o-th class in the i-th rule. 

Conversely, ex constitutes an expanded input vector yielded by 
a non-linear mapping based on the Chebyshev function. The 
mathematical expression of Chebyshev polynomial is as 
follows: 

)()(2)( 11 jnjnjn xTxTxxT −+ −=    (2) 
For instance: suppose X is 2-D input pattern ],[ 21 xx . Hence, 
the expanded input vector turns out to 
be )](,),(,,1[ 222121 xTxxTxxe = . Obviously, the Chebyshev 

function-based extended input vector )12(1 +×ℜ∈ u
ex can 

mitigate the consequent parameters in comparison with the use 
of the trigonometric function-based extended input 
vector )13(1 +×ℜ∈ u

ex , where u denotes input dimension. . Note 
that iΩ is a weight vector, which can be formulated as Multi-

Input-Single-Output(MISO) 1)12( ×+ℜ∈ u
iy or as Multi-Input-

Multi-Output(MIMO) mu
iy ×+ℜ∈ )12( structure, where m labels 

the number of output dimension or classes. The output of the 
local subsystem is inferred as follow:  
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where iC  designates a Center or template vector of i-th 

Gaussian function u
iC ×ℜ∈ 1 and 1−∑ i points out an inverse 

non-diagonal covariance matrix uu
i

×− ℜ∈∑ 1 , whose elements 
stands for the spreads of the Gaussian function in every 
direction or dimension hiσ  whereas p signifies the number of 
fuzzy rules. If the MIMO architecture of [16] is benefited to 
craft the decision boundary, the output of the classifier can be 
produced taking maximum output of the local sub-system as 
follow: 

mo
oyy

,..,1
)ˆmax(

=
=      (4) 

It is worth-noting that the MIMO architecture is put forward to 
deliver the classification decision as it is more reliable to 
surmount the class overlapping problem [17]-[20]. Moreover, 
the non axis-parallel cluster can be spurred by the non diagonal 
covariance matrix. This property can shed some virtues over 
the traditional axis-parallel or hyper-spherical cluster. It is 
endued by the scale-invariant characteristic and allows a more 
exact coverage of data distributions or classes, notably when 
the data are not scattered in the main axis [21]. Apart from that, 
it can evade a severe information loss of input variable 
interactions, which can be catastrophically omitted by the 
diagonal covariance matrix or the same spread per input 
variable.  One can envisage that this rule promise can arouse a 
demerit in the sense of the rule transparency as the input 
variables cannot directly associated with a linguistic label. 
Even so, two avenues to extract the fuzzy set from the 
generalized rule premise have been proposed in our past works 
[17],[18],  however, we do not detail these techniques in this 
paper for the sake of conciseness.   

III. META-COGNITIVE LEARNING SCHEME 
Meta-cognitive learning enjoys a mechanism, monitoring 

the knowledge being injected to it and its existing knowledge. 
A datum, which is deemed relevant with the learning context, 
can be captured and labeled with a true class label by the what-
to-learn learning module for a subject of learning purpose. 
Otherwise, it is ruled out without being learned and annotated 
with the target class. The how-to-learn module is devised by 
virtues of Schema and Scaffolding theories, encompassing an 
automatic knowledge building process, rule pruning scenario, 
drift handling technique, rule adaptation mechanism and online 
feature weighting algorithm. Another landmark of meta-
cognitive learning is capable of pinpointing suitable time 
instants to consume the training samples, where the sample 
reserve strategy is utilized. The training sample, which does not 
satisfy the criteria of the rule growing and adaptation, is 
consumed after that of the last training sample. This 
mechanism is fruitful to unveil possible unexplored states of 
already seen training stimuli.  
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A. What-to-learn  
The what-to-learn facet of gClass is distinguishable with 

those of Suresh et al works in [1]-[5], where sample pruning 
strategy is employed. What-to-learn-based active learning 
devolves an ability to suppress operator’s efforts to annotate 
the training samples, as it does not solicit the true class labels 
to be at hand, when delving the relevant training samples. 
Accordingly, gClass can be subsumed as a semi-supervised 
learning machine, whereas Suresh et al in [1]-[5] is 
categorized as a fully supervised classifier.  

Table 1. consolidated results of benchmarked system in three datasets 
algorithm  sin circle boolean Electricity 

pricing  
 

gClass 
 

classification 
rate 

0.92±0.3 0.91±0.06 0.92±0.2 0.79±0.08

Rule 3.3±0.9 2.4±1.6 2.3±0.5 2.7±0.5
Time  0.16±0.02 0.15±0.02 0.01±0.03 2.3±0.5

Rule base 39.6 28.8 46 243
Samples 86.4±24.5 156.2±53.7 52.2±20.12 887.95±15

 
pClass 

classification 
rate 

0.82±0.2 0.72±0.13 0.83±0.2 0.78±0.05

Rule  3.3±1.2 2.8±1.1 2.6±0.8 3.2±1.2
Time 0.17±0.04 0.17±0.008 0.08±0.002 4.23±0.8

Rule base 39.6 33.6 52 288
Samples 200 200 100 3172

 
GENEFIS-

class 

classification 
rate 

0.81±0.2 0.7±0.03 0.82±0.2 0.75±0.0

Rule 5.4±2.2 3.2±1.03 2.6±1.1 3.5±1.5
Time 0.32±0.3 0.25±0.01 0.09±0.05 4.49±0.4

Rule base 58.8 38.4 52 315
Samples  200 200 100 3172

 
eClass 

classification 
rate 

0.8±0.2 0.66±0.14 0.8±0.17 0.57±0.09

Rule 50 50 50 50
Time 0.25±0.02 0.08±0.02 0.24±0.02 2.43±0.2

Rule base 500 500 250 550
Samples 200 200 100 3172

Ubiquitous works in the active learning [22] are built upon 
the pool-based approach, which is computationally prohibitive 
and does not underpin an online fast labeling process. 
Lughofer et al in [23] has enriched a landscape of the active 
learning, where a conflict and ignorance method, 
compromising with an online learning scenario, was proposed. 
In this paper, the extended conflict and ignorance (ECI) 
method is put forward, where the crux ameliorates the measure 
of ignorance of the original work. The original work 
enumerates the compatibility measure by means of the rule 
firing strength, which is deemed conservative as it just takes 
into account the spatial proximity of the rule focal points and 
the datum. The original work in [23] excludes the impacts of 
all training data, which can indeed influence the ignorance, 
thus being vulnerable with outliers. In what follows, we adopt 
the Extended Recursive Density Estimation (ERDE) method, 
empowered as the rule growing module, to appraise the 
significances of the training data as follow: 

   )(max)(min
,..,1

1,..,1 i
Pi

piPi
ERDEERDEERDE

=
+=
≤≤  (5) 

In this circumstance, the datum clearly does not either incur 
a novelty to the system or is posited under a coverage of the 
existing fuzzy rules. In other words, this datum, noticeably, 
poses a redundant training sample. Another paramount 
occasion, delineating the ignorance case, is when the conflict 

situation does not ensue. No conflict case can be observed, 
when the classifier can yield a confident prediction as follow: 

 )5.0(
21

1 δ+≤
+

=
yy

y
conf final    (6) 

where 1y and 2y label the outputs of the two most dominant 
class whereas δ denotes the tolerance constant, which is set as 

05.0=δ in all of our empirical studies. Undoubtedly, if these 
two conditions are met, the datum can be repealed without a 
detrimental effect of classification quality. 

B. When-to-learn 
In the training process, there is a likelihood for the training 

sample, which does not fall into the criteria of what-to-learn 
and when-to-learn. In principle, such samples do not attract 
the model updates in the current time, nevertheless, they might 
be precarious in the future, in order to explore uncovered 
states of the learned training samples. Such samples are 
pushed into the rear stack and depleted subsequent to spend 
the last training signal. In general, the training process is 
capped off when no further samples exist in the stack. 
Nevertheless, this may be impossible as the reserve samples 
are still not the subject of the model updates. Hence, we 
terminate the training process when number of reserve 
samples remains the same.   

C. How-to-learn 
1) Autonomous fuzzy rule recruitment : gClass makes use 

of three cursors, termed datum significance (DS) method, 
extended recursive density estimation (ERDE) method and 
generalized adaptive resonance+ (GART+) theory, to fathom 
the quality of the datum. The DS method is bluepriented to pry 
the datum statistical contribution, in turn supplies a 
contribution of a hypothetical fuzzy rule in the future. The 
ERDE method is used to figure out the position of the 
focalpoint in the input space, whether or not it lies on a 
strategic position in the input space with respect to the all 
training samples. Meanwhile, GART+ deters the so-called 
cluster delamination phenomenon. That is,  one cluster 
contains two or more data clouds, inevitably worsening the 
logic of the inpur space parition and rule semantic. In a 
nutshell, three rule growing criteria are expressed as follows: 

Pi
iP VV

,..,1
1 )max(

=
+ ≥       (7) 
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where 1+PV indicates the volume  of a hypothetical new rule 
(the R+1st) and iV denotes the volume of the i-th rule, 
whereas 1+PERDE stands for the ERDE of the newest 
datum. 1ρ labels a predefined constant, whose value is 
stipulated in the range of [0.1,0.5]. More specifically, the 
density of the datum can be recursively elicited as follow: 
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One can perceive that ERDE method, mounted in gClass, is 
tantamount with the one in eClass of [24]. Nevertheless, we 
dissent with this argument as three differences are at hand. We 
apply the different fuzzy rule exemplar with eClass and utilize 
the inverse multi-quadratic function in lieu of the Cauchy 
function. Apart from that, we reinforce the ERDE method with 
a weighting factor, to hamper a large pair-wise distance 
problem due to outliers [25]. The volume of the non axis-
parallel ellipsoidal cluster can be concocted by the determinant 
operator. Nevertheless, it is a heuristic approach, so that it is 
less accurate. A volume of hyper-ellipsoidal cluster arbitrarily 
rotated in any positions can be quantified more accurately as 
follow: 
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where ir the Mahalanobis distance radius of the i-th fuzzy 
rule, which defines its (inner) contour (with default setting of 
1) , ijλ is the j-th eigenvalue of the i-th fuzzy rule and Γ  is the 
gamma function. To expedite the execution of (11b), a look up 
table can be a priori generated and used during the training 
process. Conversely, the Bayesian concept is explored to 
accord the winning category, which is effective to grasp the 
winning rule owing to the prior probability, when two or more 
rules dwell an input zone, which is in the similar proximity to 
the datum. The posterior, prior probabilities as well as the 
likelihood function are mathematically illustrated respectively 
as follows:    
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where oiN , stands for the number of samples covered by i-th  
cluster falling in the o-th class. Note that, equation (13) is a 
refurbished version of prior probability formula of [26], in 
order to allow the newly born cluster to win the competition 
and to evolve its shape as such clusters are usually populated 
with a lower number of samples than the older clusters.  

2) Rule base simplification : gClass relies on two rule 
pruning scenarios to appraise the fuzzy rule significances. On 
the one hand, The first method, namely the extended rule 
significance (ERS) theory is workable to infer the statistical 
contribution of the fuzzy rule and the fuzzy rule contribution 
with respect to the classifier’s output. The fuzzy rule, holding 
a tiny influence zone and a small output parameters, can be 
eroded with a marginal leverage to the resultant classifier’s 
output. On the other hand, the second method, namely 
potential+ (P+) theory, is a plausible approach, in order to 
seize the obsolete or outdated fuzzy rules. The P+ method 
scrutinizes the density of the cluster in accord with the data 
distribution, hence, the obsolete cluster can be written off due 
to a concept drift, when the potential is low. The ERS and P+ 
methods are respectively executed by the following equations. 
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where iβ denotes the rule significance of ERS method and 

iχ exhibits the rule sensitivity of P+ method, n
id stands for 

the Mahalanobis distance between the current training sample 
and the focal point of interest. If the training observation 
complies either σχχχ −< ˆi or σβββ −< ˆ

i , the fuzzy rules 

can be pruned, where σχχ ,ˆ and σββ ,ˆ stand for the mean and 
standard deviation of the rule significance and rule potential of 
existing rules. Nonetheless, if the fuzzy rules are pruned due to 
P+ method, they are just temporarily impounded and can be a 
subject of the rule recall mechanism. That is, such fuzzy rules 
can be noteworthy to the system in the future, as the old data 
distribution can be worked up as a causal relationship of the 
recurrent drift. It will be counterproductive to append a 
completely new fuzzy rule to spotlight this phenomenon, as 
the adaptation history granted to the pruned fuzzy rules in the 
earlier training episodes will be catastrophically dissolved. 
Accordingly, the rule recall mechanism is triggered, when the 
potentials of the pruned fuzzy rules are amplified by the up-to-
date data distribution, leading to the following condition.  

)(max)(max
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Pi
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Pi

ERDE
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where *P  signifies the number of rules which are 
dispossessed by the P+ method.  It is worth-stressing that this 
condition is synergized by the criteria of the fuzzy rule 
generation. In other words, the recall mechanism is sparked 
when an extraneous fuzzy rule is demanded.  Note that, the 
fuzzy rules pruned by the P+ method are merely used to 
cultivate (16), where they are involved neither to stimulate 
other learning strategies nor to underpin the inference process. 
Therefore, the computational cost can still dwindle and the 
training process can be expedited. If the recall mechanism is 
concurred, the fuzzy rule is assigned as follow:  
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In the viewpoint of the functionality, the P+ method is 

distinguishable with eClass [24], where the P+ method is 
revamped to work out the rule pruning purpose as with [27]. 
Nevertheless, we contend that our approach is different with 
the one in [27], where the P+ method is in line to facilitate the 
generalized fuzzy rule.  

3) Initialization of new fuzzy rule parameters: This step is 
inherent with the so-called class overlapping stumbling block. 
Generally speaking, the new fuzzy rule should be posited in 
the feature space in such a way to be hedged with the fuzzy 
rules of a different class. As the new fuzzy rule can verge the 
fuzzy rule of a different class during its evolution, the new 
fuzzy rule should not be too imminent with another class fuzzy 
rule. Suresh et al in [1]-[5] offers a specific concept of the 
inter and intra class distance to circumvent the class 
overlapping problem. The main drawback of this method is yet 
an irrelevant assumption of the same class cluster. Obviously, 
the cluster can be occupied by the training samples of various 
classes in the real-life problem, undermining its efficacy to 
devastate this fact.  

A new strategy is offerred by this paper, where, first of all, 
we vet the compatibility degree of the new rule with the 
winning cluster. If we encounter 2ρ≥winR , the new fuzzy 
rule is susceptible to be entrapped with the fuzzy rule 
redundancy. Instead of augmenting it as an extranrous fuzzy 
rule, it replaces the winning fuzzy rule, in order to eradicate 
the cluster redundancy.    
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where 2ρ is a predefined constant, that can be statistically 

represented by the critical value of a 2χ distribution with p  
degrees of freedom and a significance level of α , termed a 

)(2 αχ p . A typical value of α is 5%, and the degree of 
freedom is represented by the dimensionality of the learning 
problem, thus kp = . Therefore, we set ))(exp( 2 αχρ pa −= . In 

contrast, if we confront 2
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where oN denotes the number of samples falling in the o-th 

class, whereas N
jx respectively stand for the latest received 

datum of the respective class. The crux of (19) is alike (10), 
however, we amend it to the per-class circumstance.  An issue 
can come up, if the new fuzzy rule inclines to evolve to the 
different class cluster, where we land on the following 
condition. 

labelclasstrueERDE o
N
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__)(max

,..,1
≠

=
  (20) 

This condition implies that the latest datum is more adjacent to 
the different class cluster than the same class cluster. 
Notwithstanding warranted by 2

,..,1
)(max ρ<

=
i

Pi
R where the new 

cluster is not redundant, the fuzzy region of the cluster is 
lessened, so as to minimize the class overlapping. That is, the 
fuzzy region may grow and may later on overlap with the 
different class cluster, thus decreasing the zone of influence as 
the coherent option to dodge the class overlapping. By 
extension, we apply (17), where we inhibit the size of the 
fuzzy region to culminate uncontrollably. As such, the cluster 
overlapping contingency can be axed notably as the new rule 
is allocated with a small initial volume as follow: 

  Np XC =+1      (21) 
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=
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 where ]9.0,5.0[1 ∈k is an overlapping factor. In this regard, 
we resort to boil down the radius of the new rule, therefore, 
the possibility of class overlapping can be minimized as 
aforementioned. In contrast, if the datum dwells the area 
nearby the data points in the same class, the overlapping 
factor 1k is fixed as 1.11 =k choosing a slightly bigger fuzzy 
region of the new rule than the actual distance of the 
neighboring rule. 

Conversely, the winning rule is adjusted, when the datum 
possesses the minor difference with the existing fuzzy rule or 
the winning rule can accommodate the datum given an 
adaptation of the winning rule to modify its coverage span. 
Another worth-mentioning fact in refining the winning rule is 
whether this rule is allowable to extend its coverage with 

respect to (7), guiding to ∑
=

<
P

i
iwin VV

1
1ρ . Thereafter, the 

winning rule adaptation is conferred by the following 
equations. 
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win

N
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where )1(1 1 += −N
winNα .Note that equation (24) is a 

desirable one to be cultivated on the fly as no re-inversion 
process is sought. In parallel to that, the output parameters of 
the new rule are set up as follow: 

winnerR Ω=Ω +1      (26) 
IR ω=Ψ +1       (27) 

where ω  is a large positive constant. The setting of the output 
covariance matrix is a good one that can emulate the real 
solution yielded by the batch learning process when a 
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constantω is selected as a large positive constant. Meanwhile, 
the weight vector of the new rule is enacted as the weight 
vector of the winning rule, as the winning rule is presumed to 
portray the pertinent data trend of the new rule. Obviously, the 
fundamental working principle of gClass adopts a local 
learning adaptation scheme, wherein the growing and pruning 
of the fuzzy rules impose a marginal impact of the stability 
and convergence of other local sub-systems.   

4) Fuzzily Weighted Generalized Recursive Least Square 
(FWGRLS) Procedure: gClass is equipped by the FWGRLS 
method to polish up the rule consequent. This method is a 
local learning version of Generalized Recursive Least Square 
(GRLS) method of [28]. The prominent aspect of this method 
is capable of restraining a weight decay effect, thus boosting 
the generalization. The crux is to drive the weight vector to 
hower arround a small bounded range, which is also 
efficacious to evoke a compact rule base. As the inactive fuzzy 
rule possess a very small weight vector, it can be easily 
detected by the ERS method in equation (15). The FWGRLS 
method is formulated as follows: 
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where )1()1()( ××+ℜ∈Λ PP
i n indicates a diagonal matrix, whose 

diagonal element consists of the firing strength of fuzzy rule 
iR  and the covariance matrix of the modeling error is shown 

by )(nΔ  which is managed as an identity matrix for the sake of 
simplicity and iλ is a local forgetting factor, intended to ditch 
a detrimental effect of the concept drift, elaborated in the next 
sub-section of this paper. Meanwhile, ϖ is a predefined 
constant specified as 1510−≈ϖ and ))1(( −Ω∇ niξ stands for 
the gradient of the weight decay function. The weight decay 
function can be any non-linear function to which the exact 
solution of the gradient is unavailable. In consequence, it is 
expanded to the n-1 time step, whenever the gradient 
information is inconvenient to be elicited. For our case, we 
make use of the quadratic weight decay function 

2))1((
2
1))1(( −Ω=− nny iiξ  as it is capable of shrinking the 

weight vector proportionally to its current values.  Note that 
the consequent adaptation is performed, when the criteria of 
the rule growing and the rule premise adjustment are satisfied.  

5) Local drift handling strategy 
A drift is more troublesome to be surmounted than a shift as 

the data distribution changes from one local region to another 
in a smooth way. As reciprocal leverage, the fuzzy rules are 
enforced to move more strongly in accordance with a drift 
rate, in order to trace the change of the data distribution. 
Otherwise, the fuzzy rules cannot chase the data distribution 
change, thus being alleged as a downtrend of the classification 

rate. This is mainly the case, if the conventional model update 
without a particular forgetting scheme adjusts the fuzzy rules. 
Some researchers resorts to deal with the drift in [29],[30], 
benefiting from the local or global drift handling technique. 
The former can be presumed as a more plausible one, as the 
drift can be managed locally. The drift can occur differently in 
each local region, so that equating the same forgetting for each 
local region can inflict a detrimental effect of stability and 
convergence.   

We propose a novel local drift handling strategy of the so-
called locally recursive density estimation (LRDE) method. 
The crux of this approach is akin to ERDE method, but we 
merely take into account the density of the local region 
(cluster). In a nutshell, LRDE method is formulated as follow: 
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where iN epitomizes the number of sample belonging to the i-
th cluster. It is straightforward to discern that equation (32) 
from the time step N to N-1 is equivalent with a change of the 
data distribution, envisaged as the drift intensity. Therefore, 
the rate of change or first order derivative of equation (32) can 
devolve a cue of the drift, whereby a forgetting mechanism 
should be governed accordingly. According to [30], a strong 
forgetting mechanism is relinquished by setting 9.0=iλ , 
whereas no forgetting mechanism is signified with  1=iλ . To 
assure the forgetting factor in the range of ]1,9.0[∈iλ , the 
following equations are exploited: 

i
Ni LRDEΔ−= 1.01λ     (33) 

)99.0,min( transiii NNN λ−=    (34) 
9.99.9 +−= itrans λλ     (35) 

One can conceive that an unique forgetting level of each rule 
is laid out by (32)-(34), so that a forgetting mechanism of a 
particular rule does not agitate other rules. Furthermore, 
equation (33) affects a more vigorous tuning of the rule 
consequent, alluded by equation (33). Meanwhile, the 
forgetting mechanism of the rule premise can be induced by 
(35), lessening the cluster population, overwhelming (23)-
(25). Nonetheless, the fuzzy rules can gain a forgetting 
mechanism, if they have an adequate support, i.e., holding at 
least 30 loaded samples, unless, they can compel unlearning 
effect.   

6) Input feature weighting technique 
In this paper, the online feature weighting-based the 

separability criterion optimization in the empirical feature 
space is devised, which is extended from [31] in the offline 
case. It is worth-stressing that the optimization of the 
separability criterion in the feature weighting context can 
rectify the classification rate, as it essentially maximizes the 
between class distance, while minimizing within class 
distance. Our point of departure is the mathematical 
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expression of the FSC in the empirical feature space, between 
class scatter matrix and within class scatter matrix respectively 
as follows: 
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where W∑ signifies the sum of every dimension of matrix 
Wji,∑ , K denotes a kernel-Gram-matrix to which 

W∑ and K are stipulated as follows: 

miNKdiag
N

W iii ,...,1),/(1 ==     (38) 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

KKKkKK

Kk

Kk

KKKK

KKKK
KKKK

K

,..,,..,,
....................................

,..,,..,,
,..,,..,,

21

222221

111211

    (39)  

Note that 11
11

NNK ×ℜ∈ demonstrates a kernel-Gram-sub-
matrix emanating from data in class 1, 
whereas 21

12
NNK ×ℜ∈ constitutes a kernel-Gram-sub-matrix 

originating from data in classes 1 and 2 and so on. N indicates 
the total number of samples seen so far. The key idea lies on 
the recursive construction of the kernel-gram matrix by means 
of the Cauchy kernel as follows: 

NNN

N
oo N

NK
ςθϑ 2)1)(1(

)1(
ˆ −++−

−=   (40) 

∑
+

=

=
mu

j

o
jN Nx

1

2))((ϑ , ∑
+

=
− −+=

mu

j

o
jNN Nx

1

2ˆ
1 ))1((θθ

∑
+

=

=
mj

j
N

o
jN Nx

1

)( νς , o
NNN x ˆ

11 −− +=νν  

where o
j Nx )(  is the j-th element of the N-th training sample 

falling into class o. 0θ  and 0ν can be initialized as zero 
before the process ensues. Given that the kernel-gram matrix 
has been built upon the training observation, it allows  to 
undertake the gradient ascent optimization scheme. To this 
end, the alignment matrix ought to be computed as follow: 
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where FK  stands for the Frobenious norm of the kernel-
Gram matrix K , taking the gradient of alignment matrix can 
produce the following expression, which is, in turn, utilized in 
the subsequent gradient ascent optimization procedure: 
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where Nθ stands for the weight vector which is initialized as 
1. η exhibits the learning rate which decays overtime in the 
training process and is established according to [31] as follow: 

)_1(0 samplestraining
n

N −=ηη    (44)  

where 0η is the initial learning rate with the default setting of 
0.01 in accordance with [31] as the choice of initial learning 
rate, when the Gaussian kernel is employed. This choice of 
learning rate is coherent owing to the identical nature of 
Cauchy kernel with the Gaussian kernel. Meanwhile, the term 
training_samples means the total number of training samples 
to be learned in the training process. After identifying the 
input weight vector of the current training episode Nθ , it is 
integrated in the training and evolution engine of gClass: in all 
distance calculations, in all calculations involving solely the 
covariance or inverse covariance matrix as explained in [31]. 
It is worth-mentioning that gClass does not engage the Leave-
One-Feature-Out (LOFO), which is always to be committed, 
in order to dispatch the input weights in [20], [31]. The LOFO 
approach is time-consuming to be employed, thus constraining 
the low computational cost of the classifier. 

IV. EXPERIMENTATION 
gClass is numerically validated with 3 artificial data streams, 

namely sin, circle and Boolean, acquired from the so-called 
diversity for dealing with drift (DDD) database of [32] and a 
electricity pricing dataset )1 .  All of 4 datasets explored herein 
characterizes the various concept drifts, which are the main 
challenge in learning in the dynamic and evolving 
environments. gClass is benchmarked with state-of-the-art 
classifiers, encompassing pClass [20], eClass [24], GENEFIS-
class [19],. pClass, eClass and GENEFIS-class can be 
categorized as the evolving classifier, which constitutes a 
predecessor of the meta-cognitive classifier. 

The empirical studies in 4 datasets are availed by the 
periodic hold-out experimental procedure as it can simulate 
the training and testing process in the real-time. The 
classification decision is drawn by the MIMO architecture for 
all consolidated algorithms, in order to underpin a fair 
comparison. The classifier performance is appraised in terms 
of the classification rate of a testing data block, the run time, 
the number of fuzzy rules flourished in the training process 
and the number of rule base parameters garnered in the 
memory. The predefined parameters of other algorithms are 
assigned according to the rules of thumb of the parameter 
selection presented in their original publications so as to goad 
the valid and fair comparisons with rClass. The numerical 
studies are sorted out by the intel (R) core (TM) i7-2600 CPU 
@3.4 GHz processor and 8 GB memory. Table 1 encapsulates 
the consolidated results of the benchmarked algorithms.  

Referring to Table 1, gClass can deliver the most 
encouraging performances in all 4 criteria. gClass endures the 
most accurate classification rates in 4 study cases, showcasing 
10-20% refinements in average with another classifier yielding 
the second best predictive accuracy.  gClass proliferates more 
parsimonious rule bases than those of other benchmarked 

 )1 http://moa.cms.waikato.ac.nz/datasets/ 
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classifiers, evolving the smallest numbers of fuzzy rules in all 
4 study cases. More interestingly, gClass can endure the 
lightest memory burdens, albeit coalescing with the 
generalized fuzzy rules, alleged to bear more expensive 
memory demands.  That is, gClass deploys a more frugal 
number of fuzzy rules, thus alleviating the rule base 
parameters stored in the memory.  Apart from that, gClass 
experiences swifter training processes than those of other 
algorithms in 3 out of 4 training processes, notwithstanding 
committing numerous learning maneuvers. This is affected by 
which the classifier is equipped by the what-to-learn-based 
active learning module, thus relieving the annotation efforts 
and diminishing the number of training samples.   

V. CONCLUSION 
This paper introduces a novel meta-cognitive learning 

machine termed Generic Classifier (gClass). The novelty of 
gClass lies on the design of the how-to-learn learning module, 
which is in line with the Schema and Scaffolding theories in 
the psychological literatures. A series of study cases via 4 data 
streams, omnipresent in the literatures to posses various 
concept drifts, has numerically validated the efficacy of 
gClass, where it can outperform its counterparts in poising the 
accuracy and simplicity. The future works will be devoted to 
render a more flexible rule base management and to endow the 
recurrent property of the gClass cognitive component. 
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