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Abstract—A robust adaptive fuzzy control approach is 

proposed in this paper for a class of uncertain bilinear systems 

with unknown dead-zone. Dead-zone is one of the most important 

nonsmooth nonlinearities encountered in actuators, such as DC 

servo systems, pressure control systems, machine tools, and 

power amplifiers. In most practical motion systems, the dead-

zone parameters are poorly known and may severely limit system 

performance. Therefore, the design of the robust adaptive fuzzy 

controller in this paper provides robustness not only to 

uncertainties of the system, but also to the unknown dead-zone. 

Based on Lyapunov stability theorem, the proposed robust 

adaptive fuzzy controller would have the capability to ensure the 

successful achievement of the asymptotic stabilization of the 

whole close-loop system. Simulation results are included to 

illustrate the effectiveness of the proposed control scheme. 

Keywords—uncertain bilinear systems; dead zone; robust 

adaptive fuzzy control; Lyapunov stability theorem 

I. INTRODUCTION  

The research on the development of nonlinear process 

control methods has been examined in depth during the past 

few years. Throughout the research, bilinear systems are 

considered as the simplest nonlinear system that carries the 

important theoretical value. Many papers and monographs 

have been proposed and a variety of control designs, including 

adaptive control [1-2], robust control [3-4], output feedback 

control [5], and sliding mode control [6-7], have been used in 

practical systems. 
Some nonsmooth nonlinearities, which include dead-zone, 

saturation and backlash  are encountered in the actuators of real 
systems, such as DC servo systems, pressure control systems, 
machine tools, and power amplifiers [8-11, 23-24]. Because 
these nonsmooth nonlinearities are usually unacquainted and 
time-variant, the dead-zone traits in actuators will reduce the 
system performance such that the system output can not meet 
the requirements. In [8], the robust adaptive control was 
developed to cope with nonlinear systems with unknown dead-
zone. The sliding mode controller was presented in [9] to 
robustly stabilize a nonlinear uncertain system, containing dead 
zone or backlash in the actuator devices. Lin et al. [10] 
presented a robust adaptive dead-zone compensation method 

for a DC servo-motor control system. Based on dead-zone 
compensation, the robust fuzzy logic control approach [12] was 
proposed to tackle the stabilization problem of a class of 
nonlinear uncertain systems in the presence of an unknown 
dead-zone. An adaptive control method was proposed by Su et 
al. [13] to treat nonlinear systems with non-symmetric dead-
zone input. Many of existing control methods use a dead-zone 
inverse to handle the effects of dead-zone [14-15]. Therefore, 
in this paper, the controller will be constructed to cope with the 
robust control problem for bilinear systems including unknown 
dead-zone. 

Due to the existence of uncertain elements, including 
parameter variations, modeling errors, unmodelled dynamics 
and external disturbances, it is difficult to describe a real 
system based on an exact mathematical model. Those 
uncertainties may affect the stability of the systems. The 
stabilization of a class of uncertain homogenous bilinear 
systems under the sliding mode control was given in [16]. 
Huang and Lam [17] provided the linear controller to cope 
with the uncertain bilinear system. In [18], the robust adaptive 
controller for nonlinear uncertain system was presented. In the 
case of the bilinear systems with high-order perturbation 
uncertainties, the robust adaptive controller was discussed in 
[19]. 

In recent years, the fuzzy control techniques have been 

successfully used in many control problems [20-22]. The 

fuzzy If-Then rules build up the fuzzy logic system to make it 

useful to approximate the unknown nonlinear functions and 

uncertainties in the nonlinear systems. Yang and Ren [20] 

designed the adaptive fuzzy robust tracking control to deal 

with uncertain nonlinear systems. The adaptive controller 

employs fuzzy systems to approximate the dynamics of 

nonlinear systems such that the tracking performance could be 

achieved in [21]. Takagi-Sugeno (T-S) fuzzy model [22] was 

utilized to approximate the unknown uncertain function in the 

nonlinear systems. In this paper, the fuzzy logic system is used 

to approximate the uncertainties in the bilinear systems. 

The main focus of this paper is on the design of robust 

adaptive fuzzy control for a class of uncertain bilinear systems 

including unknown dead-zone. The description of a dead-zone 

feature is used to estimate the properties of the dead-zone 

model intuitively and mathematically. A common feature in This work was supported in part by Tatung University, Taipei, Taiwan, 

under Grant B98-E05-062. 

2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) 

July 6-11, 2014, Beijing, China

978-1-4799-2072-3/14/$31.00 ©2014 IEEE



previous works [14-15] is the construction of a dead-zone 

inverse to handle the effects of dead-zone. However, the dead-

zone inverse can be applied only when the dead-zone 

nonlinearity are completely known. In this paper, the robust 

adaptive fuzzy controller is published without constructing the 

dead-zone inverse. The fuzzy logic systems can be applied to 

approximate the nonlinear uncertainties by means of the 

adaptive laws. Moreover, the proposed robust adaptive fuzzy 

control approach can guarantee the robust stability of the 

whole closed-loop system based on the Lyapunov stability 

theorem. 

This paper is organized as follows. In Section II, the form 

of the uncertain bilinear system with unknown dead-zone is 

described, and a detailed description of fuzzy logic systems 

and fuzzy basis functions are introduced. Section III presents 

the robust adaptive fuzzy control and its stability analysis. 

Simulation results of two examples are illustrated to show the 

performance of the proposed robust adaptive fuzzy controller 

in Section IV. Finally, a conclusion is given in Section V.  

II. PROBLEM STATEMENT AND PRELIMINARIES 

A. Problem Statement 

Consider a class of the following uncertain bilinear system 

with an unknown dead-zone of the form: 

1

( ( )) Z ( ( )) ( )

q

i i i

i

t u tux Ax BZ N x x

=

= + + + ,           (1) 

where [ ]1 2
, , ,

T n

n
x x x R= ∈x  is the system state vector 

which is assumed to be available for measurement, 

1
( ) [ ( ), , ( )]

T q

q
t u t u t R= ∈u  is the input of the system, 

1 1
( ( )) [Z ( ( )), , Z ( ( ))]

T q

q q
t u t u t R= ∈uZ  is the output of the 

dead-zone model with input ( ),tu  ,n nR ×∈A ,n qR ×∈B and 

,n n

i R i×∈ ∀N  are assumed to be known constant matrices and 

( ) nRx ∈  is the unknown uncertainty. 

Eq. (1) can be rewritten as 

1

)Z ( ( )) ( )

q

i i i i

i

u tx Ax (b +N x x

=

= + + ,                    (2) 

where ib  is the ith column of matrix B .That is, 

1 qB = [b b ] . Z ( ( )) :i iu t R R→  is the output of the dead-

zone model with the input ( )iu t . 

Assumption 1: ( ) ( )h≤x x , where ( )h x  is an unknown 

positive smooth continuous function and can be estimated by 

an adaptive law in the later. 

To clarify the dead-zone nonlinear input function ( )iZ ⋅ , the 

dead-zone with input ( )iu t  and output ( )iw t  is described by 

  

( )

( )

( )   for ( ) ,

( ) ( ( )) 0                   for ( ) ,

( )  for ( ) ,

ir i ir i ir

i i i il ir

il i il i il

m u t c u t c

w t Z u t c u t c

m u t c u t c

− ≥

= = < <

− ≤

 (3) 

where 0irc > , 0ilc <  and 0irm > , 0ilm >  are parameters 

and slopes of the dead-zone, respectively.  In order to 

investigate the key features of the dead-zone in the control 

problems, we have the following assumptions: 

Assumption 2: The dead-zone output ( )iw t  is not available. 

Assumption 3: The dead-zone slopes are same, i.e.    

,    for =1, ,q.ir il im m m m i= = =  

Assumption 4: There exist known constants minrc , maxrc , 

minlc , maxlc , minm , maxm  such that the unknown dead-zone 

parameters 
ir

c , 
il

c , and 
i

m  are bounded, i.e. 

[ ]min  max,ir r rc c c∈ , [ ]min  max,il l lc c c∈ , and [ ]min max,im m m∈ . 

Based on the above assumptions, the expression (3) can be 
represented as 

( ) ( ( )) ( ) ( ( )),i i i i i iw t Z u t mu t z u t= = +                             (4) 

where ( ( ))i iz u t  can be calculated from (3) and (4) as 

i

i i

i

         for ( ) ,

( ( )) ( ) for ( ) ,

         for ( ) .

ir ir

i i il ir

il il

mc u t c

z u t mu t c u t c

mc u t c

− ≥

= − < <

− ≤

                  

(5) 

From Assumptions 3 and 4, one can conclude that ( ( ))i iz u t  

is bounded, and satisfies 

( ( ))i iz u t ρ≤ ,  

where ρ  is the upper-bound, which can be chosen as 

{ }max  max max  min
max ,

r l
m c m cρ = − ,                                  (6) 

where 
minl

c  is a negative value. 

Control Objective: Design the controller for (2) such that the 

system states ( )tx  would converge to zero. 

B. Description of Fuzzy Logic Systems 

The fuzzy logic system performs a mapping from nU R⊂  

to V R⊂ .  Let 
1 nU U U= × ×  where

iU R⊂ , 1, 2, ,i n= .  

The fuzzy rule base consists of a collection of fuzzy IF-THEN 

rules: 
( )

1 1 2 2:  IF  is ,  and  is ,  and  and,   is 

         THEN  is ,     for 1,2, , .

l l l l

n n

l

R x F x F x F

y G l M=

        (7) 

in which [ ]1 2, , ,
T

nx x x U= ∈x  and y V R∈ ⊂  are the input 

and output of the fuzzy logic system, l

iF  and lG  are fuzzy sets 

in 
iU  and V , respectively.  The fuzzifier maps a crisp point 

[ ]1 2
, , ,

T

n
x x x=x into a fuzzy set in U .  The fuzzy inference 

engine performs a mapping from fuzzy sets in U  to fuzzy sets 

in V , based upon the fuzzy IF-THEN rules in the fuzzy rule 

base and the compositional rule of inference.  The defuzzifier 

maps a fuzzy set in V  to a crisp point in V . 

     The fuzzy systems with center-average defuzzifier, product 

inference and singleton fuzzifier are of the following form: 
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1
1

1
1

l
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l
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M
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M
n

iFi
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x
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=
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=
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=
∏

∏
x

,                                      (8) 

where lθ  is the point at which fuzzy membership function 

( )l

l

G
µ θ  achieves its maximum value, and we assume that 

( ) 1l

l

G
µ θ = .  Eq. (8) can be rewritten as 

( ) ( )Ty ξ=x x                                                 (9) 

where 1 2, , ,
T

lθ θ θ=  is a parameter vector, and 

( ) ( ) ( )1 , ,
T

Mξ ξ ξ=x x x  is a regressive vector with the regressor 

( )lξ x , which is defined as fuzzy basis function 

( )
( )

( )( )
1

1
1

l
i

l
i

n

iFil

M
n

iFi
l

x

x

µ
ξ

µ

=

=
=

=
∏

∏
x

.                                      (10) 

III. CONTROLLER DESIGN AND STABILITY 

ANALYSIS 

In this section, we using expression (4), system (2) 

becomes 

1 1

) ( ) )z ( ( )) ( )

q q

i i i i i i i

i i

mu t u tx Ax (b + N x (b + N x x

= =

= + + +      (11) 

where the state variables of the control problem become linear 

to the input signal ( )
i

u t .  It is very important to note that 

( ( ))
i i

z u t  is uniformly bounded, and ,   and 
i i

A b N are known 

constant matrices, ∆  are unknown uncertainties with 

unknown upper bound functions and satisfies the assumption 

1, i.e., ( ).h≤ x  

    First, let the nonlinear function ( )h x  can be approximated, 

over a compact set Ω
x

, by the fuzzy logic systems as follows: 

ˆ( ) ( ),T

h h
h =x xθ θ         (12) 

where ( )x  is the fuzzy basis vectors and 
h

θ  is the 

corresponding adjustable parameter vectors of each fuzzy 

logic system.  It is assumed that 
h

θ  belong to compact 

set  
h

Ωθ , which is defined as 

{ }: ,
h

M

h hR NΩ = ∈ ≤ < ∞  (13) 

where N  is the designed parameter, and M  is the number of 

fuzzy inference rules.  Let us define the optimal parameter 

vectors 
*

h
θ  as follows: 

ˆarg  min sup ( ) ( ) ,
h h

h hh h∗

∈Ω ∈Ω

= −
xx

x x   (14) 

where h

∗  is bounded in the suitable closed set 
h

Ωθ . The 

parameter estimation errors can be defined as 
* ,h h h= −θ θ θ  (15) 

and 

1ω ω≤  (16) 

where 

( )*

1 ( ) ( )hh hω = −x x θ     (17) 

as the minimum approximation errors, which correspond to 

approximation errors obtained when optimal parameters are 

used. 
Secondly, we define 

ˆφ φ φ= −  (18) 

ˆω ω ω= −  (19) 

where φ̂  is an estimate of φ , which is defined as 

1( )mφ −= . ω̂ is an estimate of ω . 

    Based on the given plant and dead-zone models under the 

Assumptions 1-4, consider the following controller: 

1 2 3 4 5 ,i i i i i iu u u u u u= + + + +     (20) 

where 

( ) ( )
1 2

min

( )
,

( )

T

i i

i
T

i i

u
m q

− +
=

⋅

Tx P b +N x x A P PA x

x P b +N x
 (21) 

( )*

2

( )
 ,

( )

T

i i

i T

i i

k
u

− ⋅
=

x P b +N x

x P b +N x
 (22) 

( )
3 2

ˆˆ( ) ( )
,

( )

T T

i i h

i
T

i i

h
u

q

φ− ⋅ ⋅ ⋅
=
x P b +N x x P x

x P b +N x
 (23) 

( )
4 2

min

ˆ( )
 ,

( )

T T

i i

i
T

i i

u
m q

ω− ⋅ ⋅
=

⋅

x P b +N x x P

x P b +N x
        (24) 

( )
5 2

( )
 ,

( )

T

i i

i
T

i i

u
q

µ− ⋅
=

x P b +N x x

x P b +N x
        (25) 

where 
min

k mρ∗ ≥ , ρ  is defined in (6), and 0µ >  is a 

positive constant, P  is a symmetric positive definite matrix, 

and the parameter update laws are as follows: 

( )
T

h hγ ξ= ⋅ ⋅x P x , (26) 

 ˆ T

ωω γ= ⋅ x P ,               (27) 

ˆˆ ( )T

h
hφ η= ⋅ ⋅x P x ,            (28) 

where the scalar ,   and 
h ωγ γ η  are positive constants, 

determining the rates of adaptations. 

Remark 1: Without loss of generally, the adaptive laws used in 

this thesis are assumed that the parameter vectors are within 

the constraint sets or on the boundaries of the constraint sets 

but moving toward the inside of the constraint sets. If the 

parameter vectors are on the boundaries of the constraint sets 

but moving toward the outside of the constraint sets, we have 

to use the projection algorithm [25] to modify the adaptive 

laws such that the parameter vectors will remain inside of the 

constraint sets. The proposed adaptive law (26) can be 

modified as the following form: 

( )

( )
{ } ( )

( ( )),         if  or 

                                    and ( ( )) 0 ,

( ( )) ,   if  and ( ( )) 0 ,

T

h h

T T

h h h

T T T
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t N

N t

P t N t

γ

γ

<

= = ≤
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x P x
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x P x x P x

θ

θ θ θ

θ θ

 (29) 



where { }( ( ))T

hP tγ x P x  is defined as 

{ } 2
( ( )) ( ( )) ( ( )).

T
T T T h h

h h h

h

P t t tγ γ γ= −x P x x P x x P x  (30) 

The main result of the robust adaptive fuzzy control 

scheme is summarized in the following theorem. 

 

Theorem 1: Consider the uncertain bilinear system (2) with an 

unknown dead-zone input (4) and unmatched uncertainties. If 

Assumptions 1-4 are satisfied, then the proposed robust 

adaptive fuzzy controller defined by (21)-(25) with adaptation 

laws (26)-(28) ensures that all signals of the closed-loop 

system are bounded, and the system states can converge to 

zero. 

 

Proof: Consider the Lyapunov function candidate 

2 2

min

1 1 1 1

2

T
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V
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γ η γ
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⋅ ⋅

x Px   (31) 

Differentiating the Lyapounov function V  with respect to 

time, we can obtain 
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From (11) and by the fact ˆ,  h h φ φ= =θ  and ˆω ω=  the 

above equation becomes 
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Applying Assumption 1 to (33) yields 
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Substituting (12) into (34), we have 
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 Applying (15)-(17) to (35) yields 
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According to adaptive laws (26), (36) can be rewritten as 
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Using the control law (21)-(25), (37) can be rewritten as 
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x x P x x P x x P
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According to (18)-(19), we obtain 

( ) ( )

( )
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*

1

min min

1 1

2
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1 1 1ˆ ˆ ,

q
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i i h

i

V
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z u t
k h

m

m m ω

φ

ω µ φφ ωω
η γ

=

≤ + − +

− − − ⋅ ⋅

− ⋅ − + +
⋅

T Tx A P PA x x A P PA x

x P(b + N x x P x

x P x

 

( ) ( )
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min
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1 1

2

1ˆ( )

1 1ˆ ˆ.                                                        (39)
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φφ ωω
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According to adaptive laws (27)-(28), we have 

( ) ( )

( ) ( )

min

min

min

min

1 1

2

1ˆ( )

1ˆ( )

1 1

2

0.                                                                               

h

h

V
m m

h
m

h
m

m m

φ µ ω

φ ω

µ

≤ + − +

− ⋅ ⋅ − − ⋅

+ ⋅ ⋅ + ⋅

≤ + − + −

<

T T

T T

x A P PA x x A P PA x

x P x x x P

x P x x P

x A P PA x x A P PA x x

        (40)

      

    

Therefore, it can be concluded that 0V ≤  from (40), and the 

closed-loop system is asymptotically stable based on 

Lyapunov synthesis approach. This completes the proof. 

IV. AN EXAMPLE AND SIMULATION RESULTS 

   In this section, simulation results of the second-order 

bilinear system are illustrated to demonstrate the effectiveness 

of the proposed control method. 

   Consider the second-order system, described by 

1

( ( )) Z ( ( )) ( ) 
2

i i i

i

u t u t
=

= + + +x Ax BZ N x x  (41) 

where 

1 2

1

2

3 2 1 0
,         ,

12 0 100
6

1 0 1 0
,        ,

0 10 0 10

,

A B

N N

φ

φ

= =

= =

∆
=

∆

 

and 

1 1

2 2

( ) 0.1 sin( ),  

( ) 0.3 sin( ),

x t

x t

φ

φ

∆ = ⋅ ⋅

∆ = ⋅ ⋅

x

x
 

( ( ))Z u t  is an output of a dead-zone. 
1 1
( ) 0.1 sin( )x tφ∆ =x , 

2 2
( ) 0.3 sin( )x tφ∆ =x  are unknown uncertainties. The control 

objective is to maintain the system states 
1

x  and 
2

x  converge 

to zero. 

     In the simulation, the parameters of the dead-zone are 

1im = , 0.5irc = , 0.6,  for ilc i = 1, 2.= −  And their bounds are 

chosen as 
max

1.5m = , 
min

0.6m = , 
r max

0.9c = , 
 min

0.1rc = , 

 max
0.1lc = − , and 

 min
0.8lc = − . In the implementation, six 



fuzzy sets are defined over interval [-3, 3] for both 
1

x  and 
2

x , 

with labels F1, F2, F3, F4, F5, and F6, and their membership 

functions are 

( )( )1

1
( )

1 exp 5 2
F i

i

x
x

µ =
+ +

, ( )( )2

2 ( ) exp 1.5F i ix xµ = − + , 

( )( )2

3 ( ) exp 0.5F i ix xµ = − + , ( )( )2

4 ( ) exp 0.5F i ix xµ = − − , 

( )( )2

5 ( ) exp 1.5F i ix xµ = − − ,  

( )( )6

1
( )

1 exp 5 2
F i

i

x
x

µ =
+ − −

,     for  1,  2.i =  

In this section, we apply the robust adaptive fuzzy control 

approach in Section 3 to deal with an uncertain second-order 

bilinear system with unknown dead-zone.  

Choose a symmetric positive definite matrix as follows:  

5.25 0.25

0.25 0.275
=P .                                         (4.2) 

Let the sampling time be 0.01, and the initial values are 

chosen as ( ) [ ]
T

0 5, 3= −x . The other values are selected as 

( )ˆ 0 0.85φ = , ˆ (0) 0ω = , 2.0hγ = , 0.1ωγ = , 0.5η = , 2q = , 

2.5k∗ = , 1µ = .  The control scheme is shown to suffer from 

chattering which is an expected behavior due to the presence 

of the switching function ( )sgn ( )
T

i ix P b +N x . The effect of 

chattering can be abated by replacing the switching function 

with the continuous approximation 
( )

( )

T

i i

T

i i ε+

x P b +N x

x P b +N x
 where 

0ε > . The controller ( )iu t  with 0.02ε =  is shown to be able 

to stabilize the system in Fig. 1.  Fig. 2 illustrates the 

effectiveness of the proposed control law, where it is clear to 

see the trajectories towards the origin. Finally, Figs. 3-4 

explain that the chattering is mitigated in the control action 

when the system is in steady state. 

V. CONCLUSION 

 The dead-zone characteristics in the actuators of practical 

control systems are often poorly known and severely limit 

system performance. In this paper, a robust adaptive fuzzy 

control scheme is proposed for a class of uncertain bilinear 

systems with unknown dead-zone. By utilizing a description 

of a dead-zone feature and by investigating the properties of 

the dead-zone model intuitively, this paper suggests a feasible 

robust adaptive fuzzy control scheme without constructing a 

dead-zone inverse. Based on Lyapunov stability theorem, the 

proposed robust adaptive fuzzy controller is able to ensure the 

successful achievement of the asymptotic stabilization of the 

whole close-loop system. The simulation results are provided 

to demonstrate the validity of the proposed control method.   
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Fig. 1. The trajectories of states 
1

x  and 
2

x  with ( )iu t  for    
0.02ε = . 

 

Fig. 2. The phase plane plot of states 
1

x  and 
2

x  with ( )iu t  

for 0.02ε = . 
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Fig. 3. The control input u1(t) for =0.02.

Fig. 4. The control input u2(t) for =0.02.


